碳点是一类新兴的零维碳纳米光学材料, 在众多领域备受关注. 近红外光相比于可见光具有更深的组织穿透能力和更低的散射, 在生物成像等领域优势明显. 随着科研人员的探索, 碳点发光带隙的调控从最初的蓝紫光向长波长不断红移. 近年来, 近红外波段吸收/发光的碳点也相继被报道. 本文以本课题组在近红外碳点领域的一系列工作为基础, 总结评述了近红外碳点的制备策略及多方面应用的最新进展, 并对未来的发展方向进行了展望.
表面增强拉曼光谱(SERS)是一种已被广泛应用于疾病诊断、 药物筛选及生物分析等领域的光谱检测方法, 它不仅可以提供丰富的化学指纹信息, 而且具有灵敏度高、 抗光漂白和光降解能力强等优点. 然而, 由于SERS增强基底的结构均一性差和化学分子吸附数量的不确定性, 导致检测结果重现性差, 其定量分析面临诸多挑战. 通过引入内标信号可以消除或减少外部干扰因素, 从而实现SERS的准确定量分析. 本文首先阐述了内标法的机理, 然后介绍了内标法的主要类型, 接着举例说明了内标型SERS探针在环境分析、 食品药品分析以及生物分析等领域的应用, 最后展望了内标型SERS面临的挑战及未来发展方向.
非金属掺杂石墨烯基催化剂在催化析氧反应(OER)和氧还原反应(ORR)领域具有良好的应用前景. 本文基于石墨烯常见双空位缺陷构建了非金属N掺杂的催化材料, 对所有可能存在的活性位点进行了研究. 通过密度泛函理论(DFT)计算发现, 13个碳活性位点均不能有效吸附H2O, 而O2可以被有效吸附. 计算结果表明, 最优的ORR催化位点是C12位点, 其催化ORR的过电势为0.71 V; 毗邻吡啶N的C10位点和C3位点的ORR催化效果稍差, 过电势分别为0.75 V和0.78 V. 研究结果证明非金属N掺杂缺陷石墨烯材料可应用于催化ORR, 可为非金属催化OER/ORR反应提供理论支撑和指导.
在醋酸缓冲溶液中于室温合成了COF-LZU1, 并用于固定化漆酶和辣根过氧化物酶. 通过优化反应浓度、 时间、 缓冲溶液pH值、 温度、 洗涤溶剂和干燥方式等条件, 在pH=4.5的醋酸缓冲溶液中, 于室温下搅拌30 min, 合成了具有高结晶度的COF-LZU1, 其比表面积高达501 m2/g, 且具有较高的热稳定性(480 ℃). 在最优反应条件下, 以COF-LZU1为载体, 采用原位包埋法对漆酶和辣根过氧化物酶进行固定化, 并对其性质进行了研究. 实验结果表明, 固定化酶的活性高达84.26%和73.66% (相对于游离酶活性), 且在循环使用10次后, 其相对活性仍保持约80%. 通过多个结合位点, COF-LZU1可有效稳定酶的活性构象, 使其不易发生结构变形, 提高了酶的热稳定性、 pH稳定性和重复使用性等. 醋酸缓冲溶液是生化实验中常用的缓冲溶液, 本研究中其既作为溶剂又作为催化剂, 与现有合成方法相比, 该方法更有利于提高生物分子的稳定性, 并有望为固定化酶提供新的解决方案.
通过机器学习和分子动力学模拟方法发现了细胞周期蛋白依赖性激酶2(CDK2)潜在的抑制剂. 首先, 利用现有的大型活性数据库和机器学习算法, 建立了针对CDK2抑制剂的分类模型. 采用圆形指纹(ECFP6)的极端梯度提升树模型(XGBoost)筛选Enamine数据库, 并选出了1152个新型化合物. 通过分子对接和打分函数对这些潜在化合物在CDK2中的亲和力进行了排序, 并采用指纹聚类的方法将化合物分为4类. 分别从 4类中选择1种对接评分较高的化合物, 然后对4种化合物进行了类药性分析和分子动力学模拟. 类药性分析结果表明, 筛选出的4种潜在的CDK2抑制剂(Z1766368563, Z363564868, Z1891240670和Z2701273053)具有良好的成药性, 并在分子动力学模拟结果中具有较高的结合自由能. 这4种化合物可作为CDK2的先导化合物进行后续的改造和优化.
基于聚酰亚胺重复单元获得了分子访问系统(MACCS)指纹图谱和9种量子化学密度泛函理论(DFT)描述符, 构建了MACCS, DFT和两者集成的3类预测模型. 通过比较分析随机森林(RF)、 支持向量回归(SVR)、 极致梯度提升(XGB)和梯度提升回归(GBR)等4种机器学习算法共12个机器学习模型来预测聚酰亚胺的玻璃化转变温度, 并提取关键特征信息. 结果表明, 最优的玻璃化转变温度预测模型是XGB集成模型, 其训练集和测试集的决定系数(R2)分别为0.956和0.811, 测试集的均方根误差(RMSE)和平均绝对误差(MAE)分别为25.41和20.20. 此外, 集成MACCS指纹和DFT的模型均比单一模型的效果好. 建立的集成模型框架可为聚酰亚胺材料及聚合物材料结构的设计提供参考.
防晒吸收剂是防晒产品中的关键物质, 是吸收紫外线的有效成分. 然而, 传统的有机和无机吸收剂都存在未知的人体健康及环境危害、 稳定性和水溶性差以及紫外吸收波长范围较窄等问题, 因此, 研发环境友好的广谱抗紫外防晒吸收剂材料对于防晒产品的开发具有重要意义. 碳点材料因其化学稳定性好、 光学性能优异、 制备方法简单、 成本低及环境友好等优点而展示出良好的应用前景. 本文首先以盐酸多巴胺及邻苯二胺、 柠檬酸及尿素为原料, 通过简单水热法制备并提纯出UVB和UVA吸收碳点材料(分别命名为 O-CDs和A-CDs), 并利用X射线光电子能谱(XPS)、 透射电子显微镜(TEM)、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)等分析方法表征了其组成和形貌结构, 通过紫外吸收光谱(UV)和荧光光谱测试了其光学性能. 研究结果表明, 将O-CDs和A-CDs以最佳质量比1∶1.5混合, 可制成广谱抗紫外碳点防晒吸收剂材料(命名为B-CDs). 将B-CDs作为有效防晒吸收剂成分制备了可顺滑书写的墨水添加剂, 并测试了其一定周期内(120 h)的抗紫外光稳定性. 结果表明, 所制备的碳点作为防晒墨水成分具有抗紫外辐射效果显著、 稳定性好的优点, 说明碳点材料作为广谱防晒吸收剂在防晒产品中的应用具有可行性.
分子结内的电荷传输过程受到分子骨架以及锚定基团等多种因素的影响. 为了探索分子骨架对分子结电荷传输特性的影响, 本文设计并合成了3种以不同π共轭面积的苯、 萘和蒽为分子骨架, 以噻吩为锚定基团的分子(DT-B, DT-N, DT-A), 并结合扫描隧道显微镜裂结技术(STM-BJ)及密度泛函理论(DFT), 对不同 π共轭面积的稠环芳烃分子结中的电荷传输过程进行了研究. 结果表明, 3种分子均存在高电导(GH)与低电导(GL)两种电导态, 对应单分子结中Au-π与Au-S两种结合构型. 对于GL态, π共轭面积的增大使得HOMO能级逐渐接近金费米能级, 呈现出GDT-A>GDT-N>GDT-B的电导趋势. 对于GH态, 电导值不会随π共轭面积的增大而发生明显改变, 但稠环芳烃扭转角的增大会引起空间位阻的增强, 使Au-π结合概率降低, 导致Au-π与Au-S两种分子构型的比例发生了改变.
基于液态镓铟合金(EGaIn)上电极和自组装单分子层(SAM)来构筑功能性分子器件是近年来的研究热点之一. 目前, 国内在EGaIn基功能性分子结(MJ)的研究方面处于起步阶段. 本文综合评述了以EGaIn为上电极进行分子结研究的优势, 以及自组装单分子层-分子结(SAM-MJ)的构筑, 对近年来EGaIn基分子结在整流、 记忆、 光电开关、 热电以及固态阻抗方面的成果进行了总结, 分析了EGaIn分子结存在的难题, 并对未来分子器件的发展方向进行了展望.
采用密度泛函理论研究了B, N共掺杂富勒烯C70[C68B(n)N(m), n, m=1~5, 分别代表B和N取代的C位点]的氧还原反应(ORR)和氧析出反应(OER)性能. 结果表明, C68B(n)N(m)在热力学上是稳定的, 且其ΔG*OOH和ΔG*O与ΔG*OH均呈良好的线性关系. 其中, C68B(4)N(2)与C68B(5)N(2)催化剂的ORR过电位为0.45 V, 与商业Pt催化剂相当; C68B(4)N(1)的OER过电位最低(0.38 V), 优于传统RuO2催化剂(0.42 V), C68B(1)N(3)也表现出与RuO2相当的OER活性. 通过精确调控B, N共掺杂位置, 可显著降低ORR与OER过电位, 提升C70的催化性能. 根据活性趋势图, C68B(n)N(m)的最佳ORR和OER活性分别出现在ΔG*O-ΔG*OH=0.92 eV和ΔG*O-ΔG*OH=1.42 eV处. 研究结果为设计和发现新的非金属碳基电催化剂提供了线索.
采用第一性原理计算方法研究了C, Pd元素掺杂及点缺陷MoS2/ZnO异质结的电子结构、 光学性质及光催化性能. 计算结果表明, 本征MoS2/ZnO异质结具有0.66 eV的直接带隙, 带边位置呈现Ⅱ型能带排列. 掺杂和缺陷可以有效减小MoS2/ZnO异质结的带隙, Pd@Zn为磁性半导体, VMo和VZn体系具有磁性半金属特性. 掺杂和缺陷使MoS2/ZnO异质结禁带之中出现杂质能级, 有利于电子跃迁, 吸收范围扩展至红外波段, 在可见光范围(500~760 nm)内的光吸收系数提高. 本征、 掺杂与缺陷MoS2/ZnO异质结体系界面处均存在由ZnO层指向MoS2层的内建电场, 促使本征MoS2/ZnO异质结, C@S2, Pd@Zn, VS1, VS2和VO体系形成直接Z型异质结, 促进了光生电子-空穴对的有效分离. 异质结的带边电位跨过pH=0和7时的氧化还原电位, 表明这些异质结可以在强酸溶液与中性溶液条件下进行氧化还原反应, 且载流子具有较强的氧化还原能力. 研究结果为基于MoS2/ZnO异质结的设计提供了理论参考.
分子筛是一种具有规则孔道结构的无机微孔晶体材料, 广泛应用于工业吸附分离和催化过程. 本文从已知的260余种分子筛拓扑结构中选取了14种能够以纯硅、 硅铝和磷酸铝形式合成的拓扑结构, 通过高通量计算方法探究了有机结构导向剂(OSDA)对这些不同元素组成的分子筛骨架的结构导向作用. 研究结果表明, 不同的OSDA对元素组成结构的导向作用有显著差异, 某些OSDA倾向于导向纯硅或硅铝结构, 而另一些则更倾向于导向纯磷酸铝结构. 本文所得结果不仅有助于加深对OSDA在分子筛合成中作用机制的理解, 还可为设计和合成具有特定元素组成的分子筛提供理论依据.
湿气发电是近年来兴起的一种新型能源转化方式, 它可以将大气环境湿气中的能量直接转化为电能, 且不会衍生任何污染物及有害气体. 得益于大气中无处不在的水汽和清洁无污染的发电过程, 这一发电技术适应性极宽, 不受时间、 地域及环境等自然条件限制, 因此“水汽发电”具有非常好的发展前景. 本文简单回顾了湿气发电技术的演进历程, 讨论了湿气与发电材料之间的相互作用机理, 主要包括离子梯度扩散和流动电势两个方面, 并对新型碳基吸湿层材料的种类、 特性及其优缺点进行了分析, 综合评述了湿气发电技术在最新应用领域的发展情况, 最后, 讨论了碳基湿气发电器件在应用中所面临的挑战和障碍, 并对未来该领域的研究方向进行了展望.
提出了一种简单易行的前驱体分子结构调控策略, 以Al2O3作为基质, 不同结构的小分子为有机前驱体, 通过原位煅烧法制备了磷光发射颜色覆盖可见光区的碳点基复合材料. 通过透射电子显微镜、 傅里叶变换红外光谱、 X射线衍射和X射线电子能谱表征证明了碳点生长在Al2O3基质内部. 荧光光谱测试结果表明, 4种CDs@Al2O3复合材料的磷光颜色分别为蓝色(454 nm)、 绿色(520 nm)、 橙色(572 nm)和红色(632 nm), 平均寿命分别为130.6, 293.6, 498.6和539.0 ms. 随着前驱体中π共轭度及含氧官能团数量的增加, 碳点激发态与基态之间的能隙变小, 引起磷光发射波长红移, 从而实现多色磷光发射的调控. 基于该材料多色室温磷光特性, 初步探究了其在防伪和信息加密方面的应用效果.
以CO2和三羟甲基丙烷三缩水甘油醚为起始原料, 通过环加成反应制备了具有五元环状碳酸酯结构的三羟甲基丙烷基五元环碳酸酯(TPTE). 在此基础上, 以TPTE和邻苯二胺为前驱体, 乙醇为溶剂, 采用溶剂热法合成了量子产率达38%的红色荧光碳点(R-CDs). 结构表征结果表明, 所得R-CDs的平均粒径为9.41 nm, 其碳核呈现高度石墨化特征, 表面富含羟基和氨基等活性官能团. 光学性能测试结果显示, 在乙醇溶液中R-CDs展现出明显的激发独立特性, 其荧光峰呈现三重峰, 峰位分别为599, 648和702 nm, 其最佳激发波长位于 535 nm, 对应荧光寿命为6.46 ns. 通过理论计算与光谱分析证实, 该发光特性源于碳核内扩展的π共轭体系诱导的π→π* 电子跃迁. 值得注意的是, 当与聚乙烯吡咯烷酮(PVP)复合时, R-CDs的紫外吸收和荧光发射特性未发生显著变化, 表明PVP基体与R-CDs间未产生明显的电子相互作用. 基于其优异的光学性能, 将R-CDs/PVP复合物作为荧光粉, 与360 nm紫外LED芯片集成构建了红光发光器件. 所制备LED器件的CIE色坐标(0.42, 0.21)精确落入红光区域, 展现出良好的单色性. 本研究通过将CO2有效转化为功能化环碳酸酯前驱体, 实现了CO2向高附加值碳材料的高效间接固定, 为温室气体资源化利用提供了创新思路. 这种集高量子产率荧光材料开发与碳减排技术于一体的研究策略, 在光电器件和绿色化学领域均具有重要应用价值.
有机太阳能电池(OSCs)因具有制备工艺简单、 材料来源广泛、 柔性及可以卷对卷生产等优势而逐渐成为光伏领域的研究热点. 在进一步商业化推广的道路上, OSCs也面临着提高光电转换效率(PCE)、 规模化生产、 降低成本及提高稳定性等诸多挑战. 在探索解决这些问题的研究中, 碳点(CDs)因具有成本低、 结构多样、 绿色环保、 来源广泛、 导电性高及稳定性好等优点而备受关注. 在OSCs器件中, CDs可以作为电荷传输层和界面修饰层材料使用, 通过界面工程改善电池界面处的能级匹配和电荷传输性能, 提升OSCs器件的整体性能, 为光伏电池的发展提供新的思路, 成为推动OSCs发展的关键材料之一. 本文介绍了CDs的概念、 分类和独特的结构特征, 综合评述了其优异的可调光电特性和功能化改性方法, 总结了CDs在OSCs界面工程领域的应用, 指出了应用于OSCs领域的CDs基界面材料存在的问题, 并对其进一步发展进行了展望.
将采用硅胶废料(SGW)制备的多孔二氧化硅(PSD)作为载体, 以癸酸-十六醇(DA-HD)作为基础相变 材料, 制备了复合相变材料癸酸-十六醇/多孔二氧化硅(PSD-DA-HD), 并引入膨胀石墨(EG)来增强其导热 能力. 采用差示扫描量热法(DSC)、 热重分析法(TGA)和热常数分析法对复合相变材料的热性能进行了评价. 将复合相变材料与水泥砂浆按比例进行共混, 形成相变砂浆, 研究了相变砂浆在模拟应用实验中的控温能力. 结果表明, DA-HD通过物理作用被包裹在PSD孔隙中, 负载能力可达61.7%, 其焓值为105.6 J/g, 负载后的PSD-DA-HD复合相变材料具有定型性. 膨胀石墨的引入可使PSD/EG-DA-HD复合相变材料的导热系数增至0.9513 W/(m·K), 但其负载能力降至49.5%, 焓值变为88.1 J/g. PSD-DA-HD和PSD/EG-DA-HD的最高工作温度为92.2 ℃, 在该温度以下可确保材料具有热稳定性. 将PSD-DA-HD和PSD/EG-DA-HD分别与水泥砂浆进行共混, 制成的相变砂浆C-PSD-DA-HD和C-PSD/EG-DA-HD均具有良好的储热控温特性, 在18~32 ℃范围内分别可维持12.7和6.7 min. 在模拟实验中, 与没有相变材料的空白组相比, 含有PSD-DA-HD的相变砂浆在18~32 ℃范围内的控温时间增加了267.92%.
通过微波辅助法制备了具有高比表面积的咪唑酸分子筛框架-8(ZIF-8)纳米片(ZIF-8-NS), 并将其作为纳米电介质均匀分散到聚乳酸(PLA)溶液中, 通过静电纺丝技术制备了ZIF-8-NS功能化PLA(PLA/ZIF-8-NS)纳米纤维膜; 研究了PLA/ZIF-8-NS纳米纤维膜的微观结构及性能. 结果表明, ZIF-8-NS的加入使PLA/ZIF-8-NS纤维明显细化(平均直径253 nm), 且纤维表面粗糙度提升; PLA/ZIF-8-NS纳米纤维膜的表面电位达到10.4 kV, 介电常数达到2.71, 表现出优异的电荷存储能力; PLA/ZIF-8-NS纳米纤维膜对颗粒物的滤除性能优异, 在 85 L/min的高空气流速下对PM0.3和PM0.3~2.5的过滤效率分别达到95.57%和99.95%, 空气阻力为305.3 Pa, 且过滤360 min后对PM0.3仍能保持98.50%的高过滤效率; PLA/ZIF-8-NS纳米纤维膜还具有优异的抗菌性能, 对金黄色葡萄球菌的抑菌率达到99.9%. 研究结果表明, PLA/ZIF-8-NS纳米纤维膜在实现长效低阻颗粒物滤除方面具有巨大潜力, 能够为高尘环境作业人员的呼吸健康防护提供重要保障.
采用溶剂热法合成了一种新型带负电的钍-铁金属氧簇[Th2Fe10O4(C6H5PO3)12(CH3O)8Cl4]6-(Th2Fe10), 并表征了其晶体结构、 化学组成、 磁性质和催化性能. 单晶X射线衍射数据显示, Th2Fe10为一种新型十二核Th-Fe金属氧簇, Th(Ⅳ)和Fe(Ⅲ)离子的协同水解、 醇解和缩聚反应以及苯基膦酸根的钝化作用促进了该簇合物的形成. Th2Fe10不仅是第二例被报道的Th-Fe氧簇, 也是为数不多的锕系-过渡金属氧簇之一. 光性质和磁性质表征结果表明, Th2Fe10晶体具有显著的吸收可见光的特性, 且Fe(Ⅲ)离子间展现出强的反铁磁交换作用. 催化反应结果表明, Th2Fe10具有优良的催化苄胺偶联反应的性能, 实现了高达94%的转化率和96%的选择性, 且经过多次循环使用后, 仍保持良好的催化性能. 活性物种清除实验表明, 电子、 空穴、 1O2和·OH在催化过程中具有重要作用, 并通过电化学测试和电子顺磁共振谱(EPR)进行了验证. 基于以上实验结果推测了催化反应机理.