高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (8): 20240196.doi: 10.7503/cjcu20240196

• 综合评述 • 上一篇    

连接-脱硫策略在蛋白质化学合成中的发展与应用

许玲1, 尹盼盼1, 鲁显福1(), 李宜明2()   

  1. 1.安徽医科大学第一附属医院麻醉科, 合肥 230022
    2.合肥工业大学食品与生物工程学院农产品生物化工教育部工程中心, 合肥 230009
  • 收稿日期:2024-04-17 出版日期:2024-08-10 发布日期:2024-05-17
  • 通讯作者: 鲁显福,李宜明 E-mail:luxianfu@ahmu.edu.cn;ymli@hfut.edu.cn
  • 作者简介:第一联系人:共同第一作者.
  • 基金资助:
    国家自然科学基金(22207001);安徽省自然科学基金(2208085QC74)

Development and Applications of Ligation-Desulfurization Strategy in Protein Chemical Synthesis

XU Ling1, YIN Panpan1, LU Xianfu1(), LI Yiming2()   

  1. 1.Department of Anesthesiology,the First Affiliated Hospital of Anhui Medical University,Hefei 230022,China
    2.School of Food and Biological Engineering,Engineering Research Center of Bio?process,Ministry of Education,Hefei University of Technology,Hefei 230009,China
  • Received:2024-04-17 Online:2024-08-10 Published:2024-05-17
  • Contact: LU Xianfu, LI Yiming E-mail:luxianfu@ahmu.edu.cn;ymli@hfut.edu.cn
  • Supported by:
    the Natural Science Foundation of China(22207001);the Natural Science Foundation of Anhui Province, China(2208085QC74)

摘要:

蛋白质化学合成是获取特定序列与结构蛋白质分子的关键技术, 为研究蛋白质的结构与功能提供了物质基础. 传统的固相多肽合成受限于分步氨基酸偶合和脱保护反应效率, 难以一次性合成分子量较大的蛋白质. 自然化学连接和酰肼连接技术作为无保护肽片段间连接的策略, 具有高效选择性, 极大地推动了蛋白质化学合成的发展. 然而, 这些连接策略需依托蛋白质中丰度较低的半胱氨酸, 难以适用于无半胱氨酸或者半胱氨酸不合适作为连接位点的蛋白质的合成. 连接-脱硫策略的提出首次将连接位点拓展至丙氨酸, 并促进了硫代氨基酸的发展, 使得蛋白化学合成不再受限于连接位点的选择. 在此基础上, 自由基脱硫、 光化学脱硫、 P-B脱硫和铁催化脱硫等新兴脱硫技术的进步为蛋白质化学合成提供了多样化的选择, 拓展了其应用范围. 连接-脱硫的化学方法不断地演进创新, 丰富了蛋白质化学合成方法库, 为蛋白质工程与化学生物学领域的深入研究提供了重要支持. 本综合评述以时间线的形式, 全面回顾了连接-脱硫化学方法在蛋白质化学合成中的发展历程. 从早期基于半胱氨酸位点的自然化学连接和酰肼连接技术, 到连接-脱硫策略的开创性发展, 再到硫代氨基酸和多样化脱硫策略的探索, 这些技术不仅丰富了多肽合成的策略, 也展示了它们在合成蛋白质中的广阔应用前景和发展潜力. 本文旨在为蛋白质化学合成领域的科研工作者提供深刻的见解和有价值的信息, 激发该领域的进一步探索与创新.

关键词: 自然化学连接, 蛋白酰肼连接, 脱硫, 蛋白质化学合成, 硫代氨基酸

Abstract:

Protein chemical synthesis plays a crucial role in preparing protein with specific sequences and structures. Traditional solid-phase peptide synthesis encounters limitations due to the efficiency of stepwise amino acid coupling and deprotection reactions, posing challenges for synthesizing longer proteins in a single synthesis. Native chemical ligation and peptide hydrazide ligation have significantly facilitated protein synthesis by efficiently connecting unprotected peptide fragments. However, these ligation strategies rely on the relatively low abundance of cysteine in proteins, rendering them unsuitable for synthesizing proteins lacking cysteines or with inappropriate cysteine positions for ligation. The development of protein ligation-desulfurization has surmounted this hurdle by extending ligation sites to alanine and introducing thioamino acids. This innovation liberates protein synthesis from strict ligation site requirements. Moreover, advancements like VA044-based radical desulfurization and emerging desulfurization technologies such as photochemical desulfurization, P-B desulfurization, and iron-catalyzed desulfurization provide diverse options for protein chemical synthesis and expand its application scope. Overall, the chemical methods of protein ligation-desulfurization have undergone continuous evolution and innovation. This not only enriches synthetic methodology but also empowers in-depth investigations in protein engineering and chemical biology. This review provides a comprehensive overview of the development of ligation-desulfurization chemistry approaches in protein chemical synthesis in a timeline format. From the early native chemical ligation and peptide hydrazide ligation based on cysteine sites, to the breakthrough development of ligation-desulfurization strategies, to the exploration of thioamino acids and diversified desulfurization strategies, these techniques have not only enriched the strategies for peptide synthesis, but also demonstrated their broad application and development potential in protein synthesis. We expect that this review will provide insightful and valuable information for researchers in the field of protein chemical synthesis and stimulate further exploration and innovation in this field.

Key words: Native chemical ligation, Peptide hydrazide ligation, Desulfurization, Protein chemical synthesis, Thioamino acid

中图分类号: 

TrendMD: