二氧化碳是众所周知的温室气体, 也是重要的C1资源, 利用二氧化碳合成高附加值化合物具有重要意义. 其中, 羧酸类化合物广泛存在于天然产物、 药物、 日化品及工业原料中, 是一类非常重要的化合物. 因此, 利用二氧化碳合成羧酸类化合物是一个重要的研究方向; 另一方面, 由于二氧化碳反应活性低, 其转化通常需要高温等苛刻条件. 为解决该问题, 人们利用可见光作为能量来源, 可以在温和条件下实现二氧化碳的高效转化. 鉴于该方向近年来的蓬勃发展, 本文主要对可见光促进二氧化碳参与的羧基化反应进行介绍和总结, 按烯烃、 炔烃、 醛酮、 亚胺和(类)卤代物等重要的化工原料分类阐述, 并将各个反应的特点和机理将作为阐述的重点. 本文也对该领域的未来发展方向进行了展望, 希望为该领域的进一步发展提供参考.
研究了偶联Saccharomyces cerevisiae BY4741/pYX212?TYR催化L-多巴(L-Dopa)合成多巴色素(DC)的生物氧化步骤和DC还原合成5,6-二羟基吲哚(DHI)化学步骤, 实现了DHI的生物-化学合成. 通过优化生物氧化步骤的反应条件及供氧策略等因素, 使L-Dopa的转化率提升至94.75%; 通过优化化学还原步骤反应条件及化学助剂, 使DHI的产率提高到90.03%. 产物的超高效液相色谱-四极杆飞行时间质谱联用(UPLC-Q-TOF-MS)分析结果表明, 反应体系中存在DHI可溶性低聚物.
以石蜡(PA)作为相变储热材料、 膨胀石墨(EG)作为主导热材料和支撑材料, 石墨烯气凝胶(GA)作为导热增强材料和辅支撑材料制备了PA/EG/GA复合相变材料, 研究了GA添加量对复合相变材料相变温度、 相变潜热、 导热性能以及循环稳定性的影响. 结果表明, 所制备的80%PA-17%EG-3%GA复合相变材料导热性能良好, 循环稳定性出色. 与80%PA-20%EG复合材料相比, 该材料的相变温度、 相变潜热以及循环稳定性无明显变化, 但导热系数由4.089 W/(m·K)提升到了5.336 W/(m·K), 显示出良好的应用前景.
近年来, 二氧化碳过量排放所引发的全球变暖等气候问题引起了全世界的广泛关注, 碳减排已成为人类社会可持续发展面临的共同挑战. 利用电化学方法将二氧化碳转化为高附加值化学品是实现碳减排和二氧化碳高附加值利用的理想途径之一, 但仍面临能耗高、 二氧化碳转化率低、 产物选择性差和难分离等问题. 本文以电还原二氧化碳制草酸为例, 从反应机理、 催化剂、 电解液、 催化电极及反应器等方面介绍该反应的研究进展, 对当前二氧化碳电还原制草酸存在的关键问题进行了分析, 并对其未来研究方向进行了展望.
化石燃料的利用为人类社会带来了前所未有的繁荣和发展. 然而, 化石燃料燃烧引起的过量的二氧化碳(CO2)排放导致全球气候变化和海洋酸化; 而且作为一种有限的资源, 化石燃料的消耗将迫使人们寻找其它碳源以维持可持续的发展. 利用可再生能源获取电能分解水制得的绿色氢气(H2)与捕集后的CO2反应制成甲醇, 不仅能有效利用工业废气中多余的CO2, 还能获取清洁、 可再生的甲醇化学品, 该过程的技术核心是开发高效稳定的CO2加氢制甲醇催化剂. 本文综合评述了现有研究关注较多的多相催化CO2加氢制甲醇催化剂的反应机理和构效关系, 总结了目前多相催化CO2加氢制甲醇催化剂(Cu基催化剂、 贵金属与双金属催化剂、 氧化物催化剂以及其它新型催化剂)的设计与合成方面的研究进展, 最后对该领域所面临的机遇和挑战进行了展望.
相比于传统块体材料, 铂单原子催化剂(Pt SACs)具有接近100%的贵金属利用率、 优异的催化活性和均一的反应位点等优势, 近年来逐渐成为催化研究的前沿之一. 高度分散的Pt原子与载体之间的界面相互作用很大程度上决定了Pt SACs的物理和化学性能. 因此, 建立金属-载体相互作用与性能之间的内在关联机制, 对于单原子催化剂的优化设计至关重要. 得益于同步辐射光源高亮度、 高准直性和宽波谱的优势, X射线吸收谱技术在鉴别单原子催化剂的电子结构和局域配位方面的成果显著. 本文综合评述了Pt SACs X射线吸收谱的研究进展, 重点介绍了Pt与金属氧化物、 金属、 纳米碳和多孔有机框架等载体之间独特的相互作用, 以及其对性能的影响机制, 并对未来同步辐射新技术在Pt SACs的高分辨解析方面的前景进行了展望.
有序介孔材料是指孔径在2~50 nm之间的多孔材料, 是一类具有均匀孔径、 高有序度纳米孔道和高比表面积的新材料. 在过去30年里, 有序介孔材料的研究取得了长足的进步, 在可控合成、 结构设计和调控及功能化等方面形成了系统的理论. 同时, 其应用领域也不断被拓展, 包括能源存储与转化、 催化、 生物医药和传感等方面. 本文首先回顾了有序介孔材料的发展历史, 简要介绍发展过程中“里程碑式”的研究工作; 然后根据构效关系总结了其在不同领域应用的最新进展; 最后讨论了有序介孔材料领域进一步发展所面临的挑战与机遇, 并对未来前景进行了展望.
在准化学模型框架下, 假设有序原子对同时具有可区分与不可区分的双重属性, 首先构造了双重短程有序准化学模型, 然后讨论了该模型所能满足的各类理论极限. 经总结提炼, 提出了有序原子对的对立统一理论. 基于该理论, 进一步将双重短程有序准化学模型做了一般化推广, 开发了多重短程有序准化学模型. 该模型能够有效描述二元熔体中存在多重短程有序构型时的热力学行为. 选取了至少存在两重短程有序构型的Bi-K熔体来检验模型的合理性和可靠性. 结果表明, 除配位数外, 只需4个模型参数就能合理再现该二元熔体所有的热化学数据.
由于具备组织穿透深度深和时空分辨率高等优势, 近年来近红外二区(Near-infrared-Ⅱ, NIR-Ⅱ, 1000~1700 nm)荧光成像技术得到了快速发展, 其在肿瘤临床诊断和治疗的潜力更是引发了广泛关注. 本文首先阐释了NIR-Ⅱ窗口荧光成像的原理及其优势, 随后根据结构分类归纳总结了现有荧光团的特征, 重点介绍了荧光探针在性能优化上的进展以及在肿瘤早期检测、 术中导航和光疗中的应用, 最后讨论了现有NIR-Ⅱ 荧光探针的局限以及临床转化面临的挑战, 并对未来的发展方向进行了展望.
硫代磷酸酯(PS)修饰的寡聚核苷酸被广泛应用于生物化学机制研究、 生物医药和新材料等领域. 硫代磷酸酯中心P原子的立体构型对于PS核酸的生化性质具有显著影响. 因此, 高效、 高立体选择性地合成PS寡聚核苷酸在过去的30年中引起了广泛的关注. 本文分类归纳了制备立体纯PS寡聚核苷酸的方法, 重点总结了近10年来基于立体纯单体和手性催化剂进行立体控制合成PS寡聚核苷酸的重要进展, 对不同合成方法的优缺点进行了对比分析, 最后对立体纯PS寡聚核苷酸合成的前景进行了展望.
采用温度控制的浸渍-热解法, 合成了以碳纳米管为载体的一系列铜单原子催化剂. 扩展X射线吸收精细结构(EXAFS)分析表明, 催化剂中的单原子铜位点分别由吡啶氮和吡咯氮配位. 电催化性能测试表明, 所制备催化剂可用于电催化二氧化碳生成一氧化碳, 由吡啶氮配位的铜单原子催化剂的反应选择性较差, 而由吡咯氮配位的铜单原子催化剂则具有更强的活性, CO法拉第效率在-0.70 V(vs. RHE)时可达到96.3%; 吡咯氮配位的铜单原子中心对于析氢反应具有更好的抑制效果.
木质素是一种天然可再生芳香族聚合物, 通过催化反应过程可实现其解聚制备芳香族化学品, 其高附加值转化对实现生物燃料、 精细化学品和大宗化学品的绿色生产具有重要意义. 其中, 电催化氧化解聚为木质素的高值化利用提供了一种高效节能途径. 凭借电催化过程中电位或电流易于调节的特性, 可实现产物的选择性和反应物转化率的有效调控. 但实现木质素的可控降解, 首先需对其解聚机理充分了解掌握. 其中, 由催化剂、 电解质和催化反应池等组成的电催化系统均需合理设计. 本文以木质素解聚过程中C—C键和C—O键的断裂机理为基础, 综合评述了近年来木质素及其模型化合物在电催化氧化制备芳香族单体过程中不同的断键机制, 总结了自由基中间体在C—O和C—C键的高选择性断裂中发挥的决定作用. 最后, 展望了电催化木质素解聚的发展前景以及面临的挑战.
在大数据机器学习时代, 选择更具代表性的数据集对于模型的训练和验证尤为重要. Kennard- Stone(KS)算法及其各种变种(泛KS算法)是一大类优异的数据集分割方法, 但其采样比例或采样数的选择仅能依靠经验或根据建模结果事后评判. KS算法依据原始文献的计算复杂度为OK3, 难以用于超大数据样本量的计算. 本文基于数据集完备性的讨论, 提出泛KS算法的数据集代表性度量, 以简正振动采样的甲烷分子中碳氢键数据特征分布为例展示采样集代表性效果. 简化KS采样过程的筛选算法, 提高算法效率至O'K2. 提出将数据集切分成多个子集分别实施KS采样的分块采样策略, 可进一步提高算法效率至O″K. 偏最小二乘回归测试结果表明, 该方法在提高采样效率的同时仍可保障采样集的代表性.
DNA银纳米簇(DNA-AgNCs)是以DNA为模板, 通过碱基杂环上的N原子与Ag+结合, 用NaBH4将Ag+还原得到的具有荧光性质的新兴纳米探针. 由于DNA-AgNCs具有合成方法简单、 生物相容性好和荧光发射波长可调等优点, 使其在分析检测等领域具有广泛的应用. 本文对DNA-AgNCs的合成和荧光性质两个方面进行了综述, 分类总结了以DNA-AgNCs为无标记荧光探针在功能核酸荧光生物传感器方面的应用, 对其不足与应用潜力进行展望, 以期为未来的研究与应用提供借鉴.
随着能源短缺和环境问题日益突出, 寻找清洁和可再生能源来替代化石燃料是本世纪科学家面临的最紧迫的任务之一. 为了实现我国“双碳”战略目标, 利用太阳能将二氧化碳(CO2)转化为清洁燃料和化学品是实现社会可持续发展的途径之一. 催化剂是CO2光还原技术的核心组成部分, 其可以吸附气态CO2分子, 在可见光照射下将CO2还原为一氧化碳(CO)、 甲酸(HCOOH)、 甲醇(CH3OH)或甲烷(CH4)等能源小分子. 目前, 新型CO2还原光催化体系的开发取得了很好的进展. 本文综合评述了近年来均相及非均相丰产金属卟啉类催化剂在光催化CO2还原中的研究进展, 并对在金属卟啉均相催化剂作用下, CO2光还原为CO或CH4的反应机理分别进行了介绍, 还讨论了金属卟啉基多孔有机聚合物与卟啉有机金属框架在光催化CO2方面的重要应用. 最后, 对可见光驱动卟啉类金属配合物催化的CO2还原的发展前景进行了展望.
离子可控传输是维持众多正常生理活动的重要基础, 而实现可控离子传输的关键是生命体系中的各类蛋白质离子通道. 受此启发, 科研工作者开发了一系列仿生智能离子通道, 实现了类似生命体中的可控离子传输. 其中, 基于水凝胶体系的离子通道由于其空间荷电性和三维互通特性, 展现出高离子选择性和高离子通量的优点. 同时, 水凝胶基离子通道的生物相容性、 可形变特性及稳定的离子储存特性, 使其成为智能离子传输领域的研究热点之一, 该类材料已被广泛应用于离子-电子电路、 医疗健康、 能源转化与存储以及资源与环境等领域. 本文主要从水凝胶基智能离子通道的构筑方法出发, 阐述了凝胶内部离子传输机制, 并对其在各领域的应用进行了总结, 最后对目前水凝胶基离子通道存在的问题及未来发展趋势进行了展望.
光催化技术被认为是将太阳能转化为可存储化学能的有效策略. 通过在半导体光催化剂上负载高度分散的金属活性位点(如单原子、 团簇等), 能够显著促进光催化过程中物质和电荷的转移, 提高光催化反应的效率. 光催化过程中真正的活性位点是单原子还是团簇仍存在较大争议. 本文概述了单原子光催化的最新研究进展, 在此基础上对单原子和团簇作为活性位点的竞争与协同作用进行了分析与讨论, 并探论了用于鉴别单原子和团簇光催化活性位点的可靠方法. 最后, 对单原子与团簇协同的光催化在水分解和CO2还原等太阳能-化学能转化领域的未来发展进行了展望.
全球环境问题推动了可充电锂电池技术的飞速发展. 与液态电解液相比, 固态电解质不易燃, 构筑所得固态电池的安全性能得以提升. 如果能够理解固态电解质中的离子输运行为, 就能精准调控固态电池锂的动力学稳定性和倍率性能. 随着计算机技术的快速发展, 原子尺度模拟技术成为理解材料离子输运的重要手段. 针对以上问题, 本综合评述首先汇总了固体材料中的常见扩散机制; 然后介绍了固态电解质中的锂离子输运机制, 着重讨论了影响固态电解质锂离子输运的重要因素(晶体结构、 电子结构、 外部因素及晶界); 最后对固态电解质锂离子输运机制研究进行了总结与展望.
富含鸟嘌呤的DNA或RNA序列可以折叠成非典型G-四链体二级结构. G-四链体结构丰富多样, 在生物体内动态存在, 参与了转录、 复制、 基因组稳定性和表观遗传调控等关键的基因组功能, 与癌症生物学密切相关. G-四链体的结构与功能机制研究促进了以G-四链体为靶点的肿瘤治疗干预. 本文综合评述了核酸G-四链体的特异性识别、 细胞内探测及生物学功能的调控, 总结了识别靶向G-四链体的小分子及复合物结构的研究进展, 讨论了以G-四链体为靶点的靶向干预及疾病治疗的可能性, 最后展望了G-四链体未来研究所面临的挑战与机遇.
作为最有前途的生物衍生材料之一, 纤维素纳米晶体(CNCs)具有来源广泛、 生物相容性好和可形成光子结构等优点, 在能源、 生物医学和光子材料领域具有重要的应用价值. 本文总结了CNCs的制备、 CNCs形成的胆甾型胶体液晶及CNCs衍生的光子材料的研究进展, 重点评述了CNCs在液滴和毛细管中的自组装和基于CNCs空间受限组装的功能材料研究进展, 并讨论了空间受限CNCs自组装研究面临的挑战和未来的发展方向.