高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (2): 20240451.doi: 10.7503/cjcu20240451
陈晓萍1,2(), 黄士1, 郭千千1, 刘宁1, 倪建聪1,2, 杨伟强1,2, 林振宇3(
)
收稿日期:
2024-09-29
出版日期:
2025-02-10
发布日期:
2024-11-06
通讯作者:
林振宇
E-mail:xiaopingchen@mnnu.edu.cn;zylin@fzu.edu.cn
作者简介:
陈晓萍, 女, 博士, 教授, 主要从事功能性分子器件和化学传感方面的研究. E-mail: xiaopingchen@mnnu.edu.cn
基金资助:
CHEN Xiaoping1,2(), HUANG Shi1, GUO Qianqian1, LIU Ning1, NI Jiancong1,2, YANG Weiqiang1,2, LIN Zhenyu3(
)
Received:
2024-09-29
Online:
2025-02-10
Published:
2024-11-06
Contact:
LIN Zhenyu
E-mail:xiaopingchen@mnnu.edu.cn;zylin@fzu.edu.cn
Supported by:
摘要:
基于液态镓铟合金(EGaIn)上电极和自组装单分子层(SAM)来构筑功能性分子器件是近年来的研究热点之一. 目前, 国内在EGaIn基功能性分子结(MJ)的研究方面处于起步阶段. 本文综合评述了以EGaIn为上电极进行分子结研究的优势, 以及自组装单分子层-分子结(SAM-MJ)的构筑, 对近年来EGaIn基分子结在整流、 记忆、 光电开关、 热电以及固态阻抗方面的成果进行了总结, 分析了EGaIn分子结存在的难题, 并对未来分子器件的发展方向进行了展望.
中图分类号:
TrendMD:
陈晓萍, 黄士, 郭千千, 刘宁, 倪建聪, 杨伟强, 林振宇. 镓铟共晶-自组装单分子层的功能性分子结研究进展. 高等学校化学学报, 2025, 46(2): 20240451.
CHEN Xiaoping, HUANG Shi, GUO Qianqian, LIU Ning, NI Jiancong, YANG Weiqiang, LIN Zhenyu. Research Progress on Eutectic Gallium-indium and Self-assembled Monolayer-based Functional Molecular Junctions. Chem. J. Chinese Universities, 2025, 46(2): 20240451.
Fig.1 Schematic illustration of basic construction of molecular junctions(A) A single-molecule junction; (B) a SAM-based molecular junction with EGaIn top electrode.
Fig.2 Schematic illustration of molecular junctions without(A—D) or with(E—L) protective layer(A) A junction with mercury top electrode; (B) schematic of a n-Si-SAMs//Au junction[36]; (C) surface-diffusion-mediated deposition(SDMD) process fabricated PPF/SAM/Au(PPF: pyrolyzed photoresist film) molecular junction; (D) a molecular junction with atomic layer deposition of copper as top electrode[38]; (E) a molecular electronic device with multilayer graphene protected top electrode[39]; (F) an atomic layer deposition(ALD) nanometer Al2O3 layer used as protective layer to eliminate the penetration of Au atoms during deposition; (G) a junction with a Xe layer as protective film; (H) molecular device of SAMs with conducting polymer contact[42]; (I) a PPF/(fluorine) n /eC/Au molecular junction with 10 nm thickness of eC, 20 nm Au, and a variable oligomer film, eC is eco-carbon[43]; (J) a robust Au/eC/anthraquinone/eC/Au junction fabricated on plastic films[44]; (K) a junction in the form of Au-S(CH2) n-1CH3//carbon paint//Au[45]; (L) schematic illustration of a EGaIn junction.(B) Copyright 2010, American Chemical Society; (D) Copyright 2009, American Chemical Society; (E) Copyright 2011, Wiley-VCH; (H) Copyright 2012, American Chemical Society; (I) Copyright 2017, American Chemical Society; (J) Copyright 2016, American Chemical Society; (K) Copyright 2020, American Chemical Society.
Fig.3 Schematic illustration of molecular junctions with EGaIn conical tip(A) and the real photo capture(B), schematic illustration of molecular junctions with EGaIn confined in PDMS microchannel(C) and the real photo of the PDMS device(D)
Fig.4 Symmetric thiophene⁃1,1⁃dioxide oligomer containing molecule and the representative J(V) with R of more than 200(A), schematic illustration of the superdiode molecular junction(B) and the representative J(V) curve(C)[20], the SAMs of Fc⁃C≡C⁃Fc(CH2) n S⁃M(nc=9—15, M=Au, Ag or Pt)(D), the Gaussian log⁃averaged rectification ratio<log10R>G(E) and the saturation bias Vsat, Rvs. nc(F)[66](B, C) Copyright 2017, Springer Nature; (D—F) Copyright 2024, the Royal Society of Chemistry.
Fig.5 Schematic illustration of SM⁃MJ with atomically precise gating(A)[69], quantum interference of BIT⁃Zwitterion(functionalized[2,2′⁃Bi⁃1H⁃indene]⁃3,3′⁃dihydroxy⁃1,1⁃dione) and BIT⁃Neutral⁃based SM⁃MJ induced by hydrogen bonds(B)[70], quantum interference⁃controlled conductance of graphene⁃like dimers(C)[74], quantum interference⁃induced on⁃off effects in SM⁃MJ transistors(D)[76], the junctions of benzodithiophenes(BDT) and quinone(AQ) derivatives(E)[79], scaling up of quantum interference effects of 1,3⁃dipyridylbenzene molecules with EGaIn top electrode(F)(A) Copyright 2021, American Chemical Society; (B) Copyright 2022, the Royal Society of Chemistry; (C) Copyright 2022, American Chemical Society; (D) Copyright 2023, American Chemical Society; (E) Copyright 2018, the Royal Society of Chemistry.
Fig.6 Single⁃molecule memristor induced by the strength and direction of electric field(A), SM⁃MJ of metallofullerene[Sc2C2@Cs(hept)⁃C88] with different direction of dipole moment and the illustration of electrical memory response(B), methylviologen⁃based molecule and the representative J(V) curve with dual function(C), the J(V) response with memory effects from Au/S(CH2)10O⁃AQ//GaOx/EGaIn junctions(AQ: anthraquinone)(D)
Fig.7 EGaIn junctions with mixed monolayers of hexanethiol and spiropyran moiety(A) and the J(V) responses at open and closed conformations(B)[97], EGaIn junction of SAM[FeIII(qsal⁃I)2]NTf2(qsal⁃I=4⁃iodo⁃2⁃[(8⁃quinolylimino)methyl]phenolate) on graphene(C) and the current density vs. temperature(D)[98], molecular photo switch induced by mechanical bending(E)[99](A, B) Open Access; (C, D) Open Access; (E) Open Access.
Fig.8 Schematic illustration of Seebeck effects in a molecular junction(A)[101], influence of anchoring group on Seebeck effect(B)[104], Seebeck coefficient and power factor as a function of bottom electrode topology(C)(A) Copyright 2023, American Chemical Society; (B) Copyright 2022, American Chemical Society.
Fig.9 Schematic illustration of the molecular junction and the resistance corresponding with the two spin states(A)[113], schematic illustration of the ferritin⁃based molecular junction(B), the energy level diagram of the junction at low resistance state(C) and high resistance state(D)[115](C, D) The arrows indicate the orientation of the magnetization of the Ni and biomolecule layers that determine the resistance of the junction. (A) Copyright 2016, American Chemical Society; (B—D) Open Access.
Fig.10 Schematic illustration of the different electric components(RSAM, RC and CSAM) in a typical EGaInbased molecular junction(A) and the electric circuit applied to fit the raw impedance data(B)[23]Copyright 2022, Wiley⁃VCH GmbH.
1 | Chen H., Fraser Stoddart J., Nat. Rev. Mater., 2021, 6(9), 804—828 |
2 | Li X., Ge W., Guo S., Bai J., Hong W., Angew. Chem. Int. Ed., 2023, 62(13), e202216819 |
3 | Liu T. S., Long S. C., Yao Z. Y., Shi J., Yang Y., Hong W. J., Chem. J. Chinese Universities, 2020, 41(12), 2629—2637 |
刘天硕, 龙世川, 姚志轶, 师佳, 杨扬, 洪文晶. 高等学校化学学报, 2020, 41(12), 2629—2637 | |
4 | Zhang Z. Y., Li T., Acta Polymerica Sinica, 2021, 52(6), 602—616 |
张召阳, 李涛. 高分子学报, 2021, 52(6), 602—616 | |
5 | Li M., Rogatch M., Chen H., Guo X., Tang J., Acc. Mater. Res., 2024, 5(4), 505—517 |
6 | Zhang H., Li J., Yang C., Guo X., Acc. Mater. Res., 2024, 5(8), 971—986 |
7 | Aviram A., Ratner M. A., Chem. Phys. Lett., 1974, 29(2), 277—283 |
8 | Geddes N. J., Sambles J. R., Jarvis D. J., Parker W. G., Sandman D. J., Appl. Phys. Lett., 1990, 56(19), 1916—1918 |
9 | Meng L., Xin N., Hu C., Sabea H. A., Zhang M., Jiang H., Ji Y., Jia C., Yan Z., Zhang Q., Gu L., He X., Selvanathan P., Norel L., Rigaut S., Guo H., Meng S., Guo X., Nat. Commun., 2022, 13(1), 1410 |
10 | Zhao Z., Soni S., Lee T., Nijhuis C. A., Xiang D., Adv. Mater., 2023, 35(1), 2203391 |
11 | Li Y., Yang C., Guo X., Acc. Mater. Res., 2020, 53(1), 159—169 |
12 | Mathew P. T., Fang F., Engineering, 2018, 4(6), 760—771 |
13 | Vilan A., Aswal D., Cahen D., Chem. Rev., 2017, 117(5), 4248—4286 |
14 | Xiang D., Wang X., Jia C., Lee T., Guo X., Chem. Rev., 2016, 116(7), 4318—4440 |
15 | Jeong H., Kim D., Xiang D., Lee T., ACS Nano, 2017, 11(7), 6511—6548 |
16 | Quek S. Y., Kamenetska M., Steigerwald M. L., Choi H. J., Louie S. G., Hybertsen M. S., Neaton J. B., Venkataraman L., Nat. Nanotechnol., 2009, 4(4), 230—234 |
17 | Chen X., Kretz B., Adoah F., Nickle C., Chi X., Yu X., del Barco E., Thompson D., Egger D. A., Nijhuis C. A., Nat. Commun., 2021, 12(1), 3432 |
18 | Chen X., Volkova I., Wang Y., Zhang Z., Nijhuis C. A., J. Am. Chem. Soc., 2024, 146(33), 23356—23364 |
19 | Chen X., Annadata H. V., Kretz B., Zharnikov M., Chi X., Yu X., Egger D. A., Nijhuis C. A., J. Phys. Chem. Lett., 2019, 10(14), 4142—4147 |
20 | Chen X., Roemer M., Yuan L., Du W., Thompson D., Del Barco E., Nijhuis C. A., Nat. Nanotechnol., 2017, 12(8), 797—803 |
21 | Chen X., Hu H., Trasobares J., Nijhuis C. A., ACS Appl. Mater. Interfaces, 2019, 11(23), 21018—21029 |
22 | Thompson D., Nijhuis C. A., Acc. Chem. Res., 2016, 49(10), 2061—2069 |
23 | Chen X., Nijhuis C. A., Adv. Electron. Mater., 2022, 8(2), 2100495 |
24 | Cheng J., Shang J., Yang S., Dou J., Shi X., Jiang X., Adv. Funct. Mater., 2022, 32(25), 2200444 |
25 | Chiechi R. C., Weiss E. A., Dickey M. D., Whitesides G. M., Angew. Chem. Int. Ed. Eng., 2008, 47(1), 142—144 |
26 | Dickey M. D., Chiechi R. C., Larsen R. J., Weiss E. A., Weitz D. A., Whitesides G. M., Adv. Funct. Mater., 2008, 18(7), 1097—1104 |
27 | Chen X., Salim T., Zhang Z., Yu X., Volkova I., Nijhuis C. A., ACS Appl. Mater. Interfaces, 2020, 12(40), 45111—45121 |
28 | Peng W., Cao Z., Chen N., Xie Y., Li Y., J. Mater. Chem. A, 2022, 10(43), 23304—23313 |
29 | Han Y., Nickle C., Zhang Z., Astier H., Duffin T. J., Qi D., Wang Z., Del Barco E., Thompson D., Nijhuis C. A., Nat. Mater., 2020, 19(8), 843—848 |
30 | Wang Z., Li Z., Li C., Ji X., Song X., Yu X., Wang L., Hu W., Proc. Natl. Acad. Sci. USA, 2023, 120(24), e2304506120 |
31 | Wang Y., Zhang Q., Astier H., Nickle C., Soni S., Alami F. A., Borrini A., Zhang Z., Honnigfort C., Braunschweig B., Leoncini A., Qi D. C., Han Y., Del Barco E., Thompson D., Nijhuis C. A., Nat. Mater., 2022, 21(12), 1403—1411 |
32 | Zhang Y., Liu L., Tu B., Cui B., Guo J., Zhao X., Wang J., Yan Y., Nat. Commun., 2023, 14(1), 247 |
33 | Xu B., Tao N. J., Science, 2003, 301(5637), 1221—1223 |
34 | Isshiki Y., Matsuzawa Y., Fujii S., Kiguchi M., Micromachines, 2018, 9(2), 67 |
35 | Ratner M., Nat. Nanotechnol., 2013, 8(6), 378—381 |
36 | Stein N., Korobko R., Yaffe O., Har Lavan R., Shpaisman H., Tirosh E., Vilan A., Cahen D., J. Phys. Chem. C, 2010, 114(29), 12769—12776 |
37 | Bonifas A. P., McCreery R. L., Nat. Nanotechnol., 2010, 5(8), 612—617 |
38 | Seitz O., Dai M., Aguirre⁃Tostado F. S., Wallace R. M., Chabal Y. J., J. Am. Chem. Soc., 2009, 131(50), 18159—18167 |
39 | Wang G., Kim Y., Choe M., Kim T. W., Lee T., Adv. Mater., 2011, 23(6), 755—760 |
40 | Preiner M. J., Melosh N. A., Appl. Phys. Lett., 2008, 92(21), 213301 |
41 | Rahim A., Liu J., Shahed S. M. F., Komeda T., Appl. Phys. Express, 2013, 6(10), 105201 |
42 | Neuhausen A. B., Hosseini A., Sulpizio J. A., Chidsey C. E. D., Goldhaber⁃Gordon D., ACS Nano, 2012, 6(11), 9920—9931 |
43 | Morteza Najarian A., McCreery R. L., ACS Nano, 2017, 11(4), 3542—3552 |
44 | Morteza Najarian A., Szeto B., Tefashe U. M., McCreery R. L., ACS Nano, 2016, 10(9), 8918—8928 |
45 | Karuppannan S. K., Neoh E. H. L., Vilan A., Nijhuis C. A., J. Am. Chem. Soc., 2020, 142(7), 3513—3524 |
46 | Xue J. H., Ji X., Chen C., Ding X. H., Yu X., Hu W. P., Prog. Chem., 2024, 36(1), 1—17 |
47 | Amini S., Chen X., Chua J. Q. I., Tee J. S., Nijhuis C. A., Miserez A., ACS Appl. Mater. Interfaces, 2022, 14(24), 28074—28084 |
48 | Rothemund P., Bowers C. M., Suo Z., Whitesides G. M., Chem. Mater., 2018, 30, 129—137 |
49 | Sangeeth C. S. S., Wan A., Nijhuis C. A., J. Am. Chem. Soc., 2014, 136(31), 11134—11144 |
50 | Yuan L., Jiang L., Nijhuis C. A., Adv. Funct. Mater., 2018, 28(28), 1801710 |
51 | Wan A., Suchand Sangeeth C. S., Wang L., Yuan L., Jiang L., Nijhuis C. A., Nanoscale, 2015, 7, 19547—19556 |
52 | Park J. E., Kang H. S., Koo M., Park C., Adv. Mater., 2020, 32(37), 2002178 |
53 | Cuevas J. C., Scheer E., Molecular Electronics., World Scientific, Singapore, 2017, 848 |
54 | Ha T. Q., Planje I. J., White J. R. G., Aragonès A. C., Díez⁃Pérez I., Curr. Opin. Electrochem., 2021, 28, 100734 |
55 | Chen N., Li S., Zhao P., Liu R., Xie Y., Lin J. L., Nijhuis C. A., Xu B., Zhang L., Xu H., Li Y., Sci. Adv., 2023, 9(42), eadh3412 |
56 | Khalid H., Opodi E. M., Song X., Wang Z., Li B., Tian L., Yu X., Hu W., Langmuir, 2022, 38(35), 10893—10901 |
57 | Park J., Belding L., Yuan L., Mousavi M. P. S., Root S. E., Yoon H. J., Whitesides G. M., J. Am. Chem. Soc., 2021, 143(4), 2156—2163 |
58 | Chen J., Gathiaka S., Wang Z., Thuo M., J. Phys. Chem. C, 2017, 121(43), 23931—23938 |
59 | Li X., Zhou S., Zhao Q., Chen Y., Qi P., Zhang Y., Wang L., Guo C., Chen S., Angew. Chem. Int. Ed., 2023, 62(19), e202216987 |
60 | Sullivan R. P., Morningstar J. T., Castellanos⁃Trejo E., Welker M. E., Jurchescu O. D., Nano Lett., 2023, 23(23), 10864—10870 |
61 | Metzger R. M., Chem. Rev., 2015, 115(11), 5056—5115 |
62 | Kovalchuk A., Egger D. A., Abu⁃Husein T., Zojer E., Terfort A., Chiechi R. C., RSC Adv., 2016, 6(73), 69479—69483 |
63 | Van Dyck C., Ratner M. A., Nano Lett., 2015, 15(3), 1577—1584 |
64 | Guo C., Wang K., Zerah⁃Harush E., Hamill J., Wang B., Dubi Y., Xu B., Nat. Chem., 2016, 8(5), 484—490 |
65 | Capozzi B., Xia J., Adak O., Dell E. J., Liu Z. F., Taylor J. C., Neaton J. B., Campos L. M., Venkataraman L., Nat. Nanotechnol., 2015, 10(6), 522—527 |
66 | Roemer M., Chen X., Li Y., Wang L., Yu X., Cazade P. A., Nickle C., Akter R., Del Barco E., Thompson D., Nijhuis C. A., Nanoscale, 2024, 16, 19683—19691 |
67 | Zhai L., Nguyen G. N., Spinnler C., Ritzmann J., Löbl M. C., Wieck A. D., Ludwig A., Javadi A., Warburton R. J., Nat. Nanotechnol., 2022, 17(8), 829—833 |
68 | Kurizki G., Gordon G., The Quantum Matrix: Henry Bar's Perilous Struggle for Quantum Coherence, Oxford University Press, Oxford, 2020, 44—59 |
69 | Tang C., Huang L., Sangtarash S., Noori M., Sadeghi H., Xia H., Hong W., J. Am. Chem. Soc., 2021, 143(25), 9385—9392 |
70 | Ge L., Hou S., Chen Y., Wu Q., Long L., Yang X., Ji Y., Lin L., Xue G., Liu J., Liu X., Lambert C. J., Hong W., Zheng Y., Chem. Sci., 2022, 13(33), 9552—9559 |
71 | Zhang Y. P., Chen L. C., Zhang Z. Q., Cao J. J., Tang C., Liu J., Duan L. L., Huo Y., Shao X., Hong W., Zhang H. L., J. Am. Chem. Soc., 2018, 140(21), 6531—6535 |
72 | Chen Z. Z., Wu S. D., Lin J. L., Chen L. C., Cao J. J., Shao X., Lambert C. J., Zhang H. L., Adv. Electron. Mater., 2023, 9(2), 2201024 |
73 | Zhu Y., Zhou Y., Ren L., Ye J., Wang H., Liu X., Huang R., Liu H., Liu J., Shi J., Gao P., Hong W., Angew. Chem. Int. Ed., 2023, 62(19), e202302693 |
74 | Li P., Hou S., Alharbi B., Wu Q., Chen Y., Zhou L., Gao T., Li R., Yang L., Chang X., Dong G., Liu X., Decurtins S., Liu S. X., Hong W., Lambert C. J., Jia C., Guo X., J. Am. Chem. Soc., 2022, 144(34), 15689—15697 |
75 | Guo X., Zhu Q., Zhou L., Yu W., Lu W., Liang W., Nat. Commun., 2021, 12(1), 1566 |
76 | Li X., Zheng Y., Zhou Y., Zhu Z., Wu J., Ge W., Zhang Y., Ye Y., Chen L., Shi J., Liu J., Bai J., Liu Z., Hong W., J. Am. Chem. Soc., 2023, 145(39), 21679—21686 |
77 | Chen Z., Grace I. M., Woltering S. L., Chen L., Gee A., Baugh J., Briggs G. A. D., Bogani L., Mol J. A., Lambert C. J., Anderson H. L., Thomas J. O., Nat. Nanotechnol., 2024, 19(7), 986—992 |
78 | Fracasso D., Valkenier H., Hummelen J. C., Solomon G. C., Chiechi R. C., J. Am. Chem. Soc., 2011, 133(24), 9556—9563 |
79 | Zhang Y., Ye G., Soni S., Qiu X., Krijger Theodorus L., Jonkman H. T., Carlotti M., Sauter E., Zharnikov M., Chiechi R. C., Chem. Sci., 2018, 9(19), 4414—4423 |
80 | Guédon C. M., Valkenier H., Markussen T., Thygesen K. S., Hummelen J. C., van der Molen S. J., Nat. Nanotechnol., 2012, 7(5), 305—309 |
81 | Li P. A., Selzer Y., Nat. Commun., 2022, 13(1), 4742 |
82 | Xu X., Wang J., Blankevoort N., Daaoub A., Sangtarash S., Shi J., Fang C., Yuan S., Chen L., Liu J., Yang Y., Sadeghi H., Hong W., Proc. Natl. Acad. Sci. USA, 2022, 119(46), e2211786119 |
83 | Migliore A., Nitzan A., J. Am. Chem. Soc., 2013, 135(25), 9420—9432 |
84 | Schwarz F., Kastlunger G., Lissel F., Egler⁃Lucas C., Semenov S. N., Venkatesan K., Berke H., Stadler R., Lörtscher E., Nat. Nanotechnol., 2016, 11(2), 170—176 |
85 | Guo Y., Yang C., Zhou S., Liu Z., Guo X., Adv. Mater., 2022, 34(36), 2204827 |
86 | Li J., Hou S., Yao Y. R., Zhang C., Wu Q., Wang H. C., Zhang H., Liu X., Tang C., Wei M., Xu W., Wang Y., Zheng J., Pan Z., Kang L., Liu J., Shi J., Yang Y., Lambert C. J., Xie S. Y., Hong W., Nat. Mater., 2022, 21(8), 917—923 |
87 | Carlotti M., Soni S., Kumar S., Ai Y., Sauter E., Zharnikov M., Chiechi R. C., Angew. Chem. Int. Ed., 2018, 57(48), 15681—15685 |
88 | Goswami S., Rath S. P., Thompson D., Hedström S., Annamalai M., Pramanick R., Ilic B. R., Sarkar S., Hooda S., Nijhuis C. A., Martin J., Williams R. S., Goswami S., Venkatesan T., Nat. Nanotechnol., 2020, 15(5), 380—389 |
89 | Goswami S., Goswami S., Venkatesan T., Appl. Phys. Rev., 2020, 7(2), 021303 |
90 | Zhou F., Wu B., Dong H. L., Xu Q. F., He J. H., Li Y. Y., Jiang J., Lu J. M., Adv. Mater., 2017, 29(5), 1604162 |
91 | Chan H., Wong H. L., Ng M., Poon C. T., Yam V. W. W., J. Am. Chem. Soc., 2017, 139(21), 7256—7263 |
92 | Jia C., Migliore A., Xin N., Huang S., Wang J., Yang Q., Wang S., Chen H., Wang D., Feng B., Liu Z., Zhang G., Qu D. H., Tian H., Ratner M. A., Xu H. Q., Nitzan A., Guo X., Science, 2016, 352(6292), 1443 |
93 | Gao C. Y., Cheng L., Jia C. C., Guo X. F., Scientia Sinica Chimica, 2021, 51(3), 1—15 |
高春燕, 程丽, 贾传成, 郭雪峰. 中国科学: 化学, 2021, 51(3), 1—15 | |
94 | Tang C., Zheng J., Ye Y., Liu J., Chen L., Yan Z., Chen Z., Chen L., Huang X., Bai J., Chen Z., Shi J., Xia H., Hong W., iScience, 2020, 23(1), 100770 |
95 | Li J., Shen P., Zhen S., Tang C., Ye Y., Zhou D., Hong W., Zhao Z., Tang B. Z., Nat. Commun., 2021, 12(1), 167 |
96 | Deng D. R., Yuan R. M., Yu P. K., Xue F., Fan X. X., Lei J., Zhang J. L., Lin X. D., Wu Q. H., Fan J. M., Chang J. K., Hong W. J., Zheng M. S., Dong Q. F., Adv. Energy Mater., 2021, 11(33), 2101156 |
97 | Kumar S., van Herpt J. T., Gengler R. Y. N., Feringa B. L., Rudolf P., Chiechi R. C., J. Am. Chem. Soc., 2016, 138(38), 12519—12526 |
98 | Karuppannan S. K., Martín⁃Rodríguez A., Ruiz E., Harding P., Harding D. J., Yu X., Tadich A., Cowie B., Qi D., Nijhuis C. A., Chem. Sci., 2021, 12(7), 2381—2388 |
99 | Yang Z., Cazade P. A., Lin J. L., Cao Z., Chen N., Zhang D., Duan L., Nijhuis C. A., Thompson D., Li Y., Nat. Commun., 2023, 14(1), 5639 |
100 | Liu Y. M., Shi X. L., Wu T., Wu H., Mao Y., Cao T., Wang D. Z., Liu W. D., Li M., Liu Q., Chen Z. G., Nat. Commun., 2024, 15(1), 3426 |
101 | Jang J., He P., Yoon H. J., Acc. Chem. Res., 2023, 56(12), 1613—1622 |
102 | Ismael A., Wang X., Bennett T. L. R., Wilkinson L. A., Robinson B. J., Long N. J., Cohen L. F., Lambert C. J., Chem. Sci., 2020, 11(26), 6836—6841 |
103 | Kang S., Park S., Kang H., Cho S. J., Song H., Yoon H. J., Chem. Commun., 2019, 55(60), 8780—8783 |
104 | Park S., Kang S., Yoon H. J., Nano Lett., 2022, 22(10), 3953—3960 |
105 | Yoon K., Lee S., Kwon C., Won C., Cho S., Lee S., Lee M., Lee J., Lee H., Jang K. I., Kim B., Lee T., Adv. Funct. Mater., 2024, 2407759 |
106 | Mulla R., White A. O., Dunnill C. W., Barron A. R., Energy Adv., 2023, 2(5), 606—614 |
107 | Rathi V., Brajpuriya R., Gupta R., Parmar K. P. S., Kumar A., Energy Adv., 2024, 3(2), 389—412 |
108 | Ould⁃Mohamed M., Ouahrani T., Boufatah R., Morales⁃García Á., Franco R., Badawi M., Errandonea D., ACS Appl. Energy Mater., 2024, 7(15), 6598—6611 |
109 | Yuan L., Jiang L., Zhang B., Nijhuis C. A., Angew. Chem. Int. Ed., 2014, 53(13), 3377—3381 |
110 | Yuan L., Jiang L., Thompson D., Nijhuis C. A., J. Am. Chem. Soc., 2014, 136(18), 6554—6557 |
111 | Hayakawa R., Karimi M. A., Wolf J., Huhn T., Zöllner M. S., Herrmann C., Scheer E., Nano Lett., 2016, 16(8), 4960—4967 |
112 | Dagotto E., Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, Springer, Berlin, 2003, 395—405 |
113 | Xie Z., Shi S., Liu F., Smith D. L., Ruden P. P., Frisbie C. D., ACS Nano, 2016, 10(9), 8571—8577 |
114 | Shi S., Xie Z., Liu F., Smith D. L., Frisbie C. D., Ruden P. P., Phys. Rev. B, 2017, 95(15), 155315 |
115 | Karuppannan S. K., Pasula R. R., Herng T. S., Ding J., Chi X., Barco E. D., Roche S., Yu X., Yakovlev N., Lim S., Nijhuis C. A., J. Phys. Mater., 2021, 4(3), 035003 |
116 | Rampi M. A., Schueller O. J. A., Whitesides G. M., Appl. Phys. Lett., 1998, 72, 1781—1783 |
117 | Akkerman H. B., Naber R. C. G., Jongbloed B., van Hal P. A., Blom P. W. M., de Leeuw D. M., de Boer B., Proc. Natl. Acad. Sci. USA, 2007, 104(27), 11161—11166 |
118 | Du W., Wang T., Chu H. S., Wu L., Liu R., Sun S., Phua W. K., Wang L., Tomczak N., Nijhuis C. A., Nat. Photon., 2016, 10(4), 274—280 |
119 | Zhang A., Zhuang X., Liu J., Huang J., Lin L., Tang Y., Zhao S., Li R., Wang B., Fang B., Hong W., Nat. Catal., 2023, 6, 266—275 |
[1] | 刘天硕, 龙世川, 姚志轶, 师佳, 杨扬, 洪文晶. 基于镓铟合金电极的单分子层电输运研究进展[J]. 高等学校化学学报, 2020, 41(12): 2629. |
[2] | 张志君 张衡益 刘育. 基于24-冠-8大环化合物构筑的人工分子器件和分子机器[J]. 高等学校化学学报, 2011, 32(9): 1913. |
[3] | 向娟, 刘波, 田景华, 吴孙桃, 胡家文, 田中群. 偶氮吡啶分子结的制备、表征及电学性质初步研究[J]. 高等学校化学学报, 2005, 26(7): 1342. |
[4] | 郭继东, 邢巍, 陆天虹, 杨辉. 短杆菌肽在十八烷基硫醇自组装单层膜上的通道行为[J]. 高等学校化学学报, 2002, 23(5): 958. |
[5] | 王俊, 曾百肇, 方程, 周性尧. 表面活性剂作用下谷胱甘肽单分子膜的离子门响应[J]. 高等学校化学学报, 2000, 21(10): 1552. |
[6] | 崔晓丽, 蒋殿录, 李俊新, 刁鹏, 童汝亭, 王心葵. 硫醇在金电极上的SA单分子层膜的电化学研究[J]. 高等学校化学学报, 1999, 20(5): 800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||