高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220263.doi: 10.7503/cjcu20220263
赵霄朗1,2, 杨梅2, 王江艳2,3(), 王丹1,2,3()
收稿日期:
2022-04-19
出版日期:
2023-01-10
发布日期:
2022-05-10
通讯作者:
王江艳,王丹
E-mail:jywang@ipe.ac.cn;danwang@ipe.ac.cn
基金资助:
ZHAO Xiaolang1,2, YANG Mei2, WANG Jiangyan2,3(), WANG Dan1,2,3()
Received:
2022-04-19
Online:
2023-01-10
Published:
2022-05-10
Contact:
WANG Jiangyan, WANG Dan
E-mail:jywang@ipe.ac.cn;danwang@ipe.ac.cn
Supported by:
摘要:
富锂正极材料因具有较高的理论能量密度, 被视为极具发展潜能的新一代正极材料, 但该材料在循环过程中容量和电压衰减显著, 导致其实际商业应用受阻. 本文综合评述了通过结构设计和表面调控提高富锂正极材料储锂性能的研究进展, 介绍了富锂正极材料的充放电工作机制, 及导致其比容量和电压衰减的原因, 讨论了近年来通过新型结构设计(如构筑蛋黄-蛋壳中空结构、 中空多壳层结构等)和表面调控(如尺寸控制、 暴露晶面控制、 表面尖晶石化、 表面包覆、 表面掺杂等)策略, 抑制富锂正极材料表面氧析出和晶型转变并稳定材料结构, 从而抑制电压和比容量衰减, 有效提高电池的循环寿命和库伦效率的相关研究成果, 最后, 提出了通过结构设计和表面调控提高富锂正极材料电化学性能面临的挑战, 并对未来发展方向进行了展望.
中图分类号:
TrendMD:
赵霄朗, 杨梅, 王江艳, 王丹. 富锂正极材料结构设计和表面调控的研究进展. 高等学校化学学报, 2023, 44(1): 20220263.
ZHAO Xiaolang, YANG Mei, WANG Jiangyan, WANG Dan. Progress in the Structure Design and Surface Manipulation of Lithium-rich Cathode Materials. Chem. J. Chinese Universities, 2023, 44(1): 20220263.
Fig.1 Methods of structural design and surface manipulation improving the performance of lithium⁃rich cathode materialsHoMS: hollow multishelled structure; TM: transition metal.
Fig.3 Average voltage reduction after Mn3+/4+ and Co2+/3+ activated(A)[17], spinel phase appearance after cycling(B)[40], cracks appearance after cycling(C)[33](A) Copyright 2018, Springer Nature; (B) Copyright 2016, the Royal Society of Chemistry; (C) Copyright 2016, American Chemical Society.
Fig.4 Schematic illustration for the synthesis of yolk⁃shell structured Li⁃rich cathodes(A), SEM and TEM(inset) images of YK⁃LMNCO(B), cycle performances and voltage performance(inset) of SM⁃LMNCO and YK⁃LMNCO at 2C(C), cycling test of YK⁃LMNCO at 10C(D)[41]Copyright 2021, Springer.
Fig.5 Schematic illustration for the synthesis of LRLO⁃500@S@C sample(A), TEM image and corresponding EDS mappings of Mn, Ni, Co, O and C elements for LRLO⁃500@S@C(B), cycling performances at 1C(C) and 5C(D)[75](A—D) Copyright 2019, Elsevier.
Fig.6 Rate performance of single crystal particles samples and Nanoscale particle samples(A), discharge capacity retention of samples s—g and cop at 0.1C(B) and 0.2C(C)[90], Co L3 low/high energy peak ratio of the crystal samples(D), first charge⁃discharge profiles of samples at 10 mA/g(E), capacity retention of the half⁃cells cycled between 2.5 V and 4.6 V at 20 mA/g(F)[91](A—C) Copyright 2020, Elsevier; (D—F) Copyright 2017, Wiley⁃VCH.
Fig.7 Schematic illustration of the (001) nanoplates and the (010) nanoplates microstructure of their surfaces(A), discharge capacity at a rate of 6C and cyclability of HTN⁃LNMO compared with CN⁃LNMO and LNMO particles(B)[93], schematic illustration of hierarchical Li1.2Ni0.2Mn0.6O2(C), cycling performance of HSLR materials at a rate of C/10 and the corresponding voltage profile and dQ/dV plots inset)(D)[94](A, B) Copyright 2010, Wiley⁃VCH; (C, D) Copyright 2014, Wiley⁃VCH.
Fig.8 Schematic particles of the pristine LXMO(P⁃LXMO) and ASR conducted LXMO(ASR⁃LXMO)(A), the cycling performance of discharge capacity, voltage, and coulombic inefficiencies cumulant(CIC) of P⁃LXMO and ASR⁃LXMO cathodes within 2.0—4.8 V under 60 mA/g in coin half⁃cells(B)[97]Copyright 2020, Wiley⁃VCH.
Fig.9 Schematic illustration of structural components(A) and HAADF⁃STEM image for M⁃LMNO sample(B), rate capability and extra⁃long cycling life(C) and corresponding discharge medium voltage and coulombic efficiency at a rate of 1C(D)[98]Copyright 2020, Wiley⁃VCH.
Fig.10 Schematic illustration of Li⁃rich with the stabilization effect of novel surface modification(A) and cycle performance of the bare and surface coated Li⁃rich at 60 °C(B)[101]Copyright 2015, Wiley⁃VCH.
Fig.11 TEM images of ZrO2⁃coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2(5%, mass fraction)(A) and ZrO2⁃coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2(1%, mass fraction)(B), cycle performance of bare and ZrO2⁃coated Li⁃rich in the voltage range of 2.0—4.8 V at rates of 0.5C(C) and 0.2C(D)[113]Copyright 2013, Elsevier.
Fig.12 TEM images(A) and schematic illustrations of the formation process of Li⁃rich@C(B), cycle performance at a rate of 0.2C(C) and rate capability at different testing conditions of Li⁃rich(D)[119]Copyright 2014, the Royal Society of Chemistry.
Fig.13 Multifunction protections of PAA binder for LRMO cathode(A), average discharge voltage fading(B) and long⁃term cycling performance charge⁃discharge profiles of the LRMO⁃PAA and LRMO⁃PVDF electrodes(C)[121]Copyright 2020, Wiley⁃VCH.
Fig.14 Schematic process of surface doping and the Nb⁃enhanced surface structure(A), comparison of the electrochemical and thermal performances at a rate of 0.1C of LMR and LMR⁃Nb(B)[124], cycling performances and HAADF⁃STEM images and atomic models(insets) of Zr⁃modified(right) and pristine(left) LMR material after 100 cycles at C/3 between 2.0 and 4.8 V(C), comparison of rate performance of the pristine and Zr⁃modified LMR evaluated at ascending current rates of C/10, C/5, C/3, C/2, 1C, 2C and 3C, respectively(D)[125](A, B) Copyright 2018, Wiley⁃VCH; (C, D) Copyright 2018, American Chemical Society.
1 | Zhu Z., Kushima A., Yin Z., Qi L., Amine K., Lu J., Li J., Nat. Energy, 2016, 1(8), 1—7 |
2 | Perez A. J., Jacquet Q., Batuk D., Iadecola A., Saubanère M., Rousse G., Larcher D., Vezin H., Doublet M. L., Tarascon J. M., Nat. Energy, 2017, 2(12), 954—962 |
3 | He W., Guo W., Wu H., Lin L., Liu Q., Han X., Xie Q., Liu P., Zheng H., Wang L., Yu X., Peng D. L., Adv. Mater., 2021, 33(50), e2005937 |
4 | Li Y., Zhang Z., Han X., Li T., Lin Y. J., CCS Chemistry, 2022, 4(3), 1087—1097 |
5 | De Biasi L., Schwarz B., Brezesinski T., Hartmann P., Janek J., Ehrenberg H., Adv. Mater., 2019, 31(26), e1900985 |
6 | Gent W. E., Lim K., Liang Y., Li Q., Barnes T., Ahn S. J., Stone K. H., McIntire M., Hong J., Song J. H., Li Y., Mehta A., Ermon S., Tyliszczak T., Kilcoyne D., Vine D., Park J. H., Doo S. K., Toney M. F., Yang W., Prendergast D., Chueh W. C., Nat. Commun., 2017, 8(1), 1—12 |
7 | Hu C., J. Electrochem. Soc., 2020, 10936—10954 |
8 | Wang Z. S., Wang H. P., Qi S. A., Wu D. X., Huang J. D., Li X., Wang C. Y., Ma J. M., Ecomat, 2022, e12200 |
9 | Zhao X. Y., Lu Y., Qian Z. F., Wang R. H., Guo Z. P., Ecomat, 2020, 2(3), e12038 |
10 | Fang L. B., Bahlawane N., Sun W. P., Pan H. G., Xu B. B., Yan M., Jiang Y. Z., Small, 2021, 17(37), 2101137 |
11 | An Q. Q., Jiang Y. L., He H., Gao J., Wang P., Jia Z. Y., Chem. Res. Chinese Universities, 2021, 37(6), 1323—1327 |
12 | Zhu R. N., Wang J., Li J., Chem. Res. Chinese Universities, 2021, 37(5), 1031—1043 |
13 | Deng A. Q., Luo Y. C., Xia Y. H., Peng S. H., Ma W. Q., Zhao X. D., Yang Y., Hou X. D., Chem. J. Chinese Universities, 2020, 41(1), 145—154 |
邓安强, 罗永春, 夏元华, 彭思慧, 马伟旗, 赵旭东, 杨洋, 侯晓东. 高等学校化学学报, 2020, 41(1), 145—154 | |
14 | Zhang Z., Han F., Fang J., Zhao C., Li W. J., CCS Chemistry, 2021, 3(1)1—19 |
15 | Blomgren G. E., J. Electrochem. Soc., 2016, 164(1), A5019—A5025 |
16 | Li Q., Yao Z., Lee E., Xu Y., Thackeray M. M., Wolverton C., Dravid V. P., Wu J., Nat. Commun., 2019, 10(1), 1—7 |
17 | Hu E., Yu X., Lin R., Bi X., Lu J., Bak S., Nam K. W., Xin H. L., Jaye C., Fischer D. A., Amine K., Yang X. Q., Nat. Energy, 2018, 3(8), 690—698 |
18 | Zhang L. W., Liu J. Y., Bai L., Wang N., Chem. Res. Chinese Universities, 2021, 37(6), 1289—1295 |
19 | Dou Y. B., Hansen H. A., Xu S. M., Blanchard D., Mater. Chem. Front., 2021, 5(13), 4989—4996 |
20 | Lu Z. H., Macneil D. D., Dahn J. R., Electrochem. Solid St., 2001, 7(12), A503—A506 |
21 | Assat G., Foix D., Delacourt C., Iadecola A., Dedryvere R., Tarascon J. M., Nat. Commun., 2017, 8(1), 2219 |
22 | Assat G., Tarascon J. M., Nat. Energy, 2018, 3(5), 373—386 |
23 | Gou X., Hao Z., Hao Z., Yang G., Yang Z., Zhang X., Yan Z., Zhao Q., Chen J., Adv. Funct. Mater., 2022, 2112088 |
24 | Su Y., Zhao J., Chen L., Li N., Lu Y., Dong J., Fang Y., Chen S., Wu F., Chinese J. Chem., 2021, 39(2), 402—420 |
25 | Cao X., Qiao Y., Jia M., He P., Zhou H., Adv. Energy Mater., 2021, 12(4), 2003972 |
26 | Zheng J., Myeong S., Cho W., Yan P., Xiao J., Wang C., Cho J., Zhang J. G., Adv. Energy Mater., 2016, 7(6), 1601284 |
27 | Pan H., Zhang S., Chen J., Gao M., Liu Y., Zhu T., Jiang Y., Mol. Syst. Des. Eng., 2018, 3(5), 748—803 |
28 | Zuo W., Luo M., Liu X., Wu J., Liu H., Li J., Winter M., Fu R., Yang W., Yang Y., Energy & Environ. Sci., 2020, 13(12), 4450—4497 |
29 | Hu S., Pillai A. S., Liang G., Pang W. K., Wang H., Li Q., Guo Z., Electrochem. Energy Rev., 2019, 2(2), 277—311 |
30 | Li L., Lee K. S., Lu L., Funct. Mater. Lett., 2014, 7(4), 1430002 |
31 | Lan X., Xin Y., Wang L., Hu X., J. Nanopart. Res., 2018, 20(3), 1—38 |
32 | Freire M., Kosova N. V., Jordy C., Chateigner D., Lebedev O. I., Maignan A., Pralong V., Nat. Mater., 2016, 15(2), 173—177 |
33 | Chen C. J., Pang W. K., Mori T., Peterson V. K., Sharma N., Lee P. H., Wu S. H., Wang C. C., Song Y. F., Liu R. S., J. Am. Chem. Soc., 2016, 138(28), 8824—8833 |
34 | Xiao Z., Liu J. D., Fan G. L., Yu M., Liu J. X., Gou X. L., Yuan M. J., Cheng F. Y., Mater. Chem. Front., 2020, 4(6), 1689—1696 |
35 | Schmuch R., Wagner R., Hörpel G., Placke T., Winter M., Nat. Energy, 2018, 3(4), 267—278 |
36 | Sun Y., Liu N., Cui Y., Nat. Energy, 2016, 1(7), 1—12 |
37 | Zheng H., Han X., Guo W., Lin L., Xie Q., Liu P., He W., Wang L., Peng D. L., Mater. Today Energy, 2020, 18, 100518 |
38 | Li Y., Li Z., Chen C., Yang K., Cao B., Xu S., Yang N., Zhao W., Chen H., Zhang M., Pan F., J. Energy Chem., 2021, 61, 368—385 |
39 | Vetter J., Novák P., Wagner M. R., Veit C., Möller K. C., Besenhard J. O., Winter M., Wohlfahrt⁃Mehrens M., Vogler C., Hammouche A., J. Power Sources, 2005, 147(1/2), 269—281 |
40 | Saubanère M., McCalla E., Tarascon J. M., Doublet M. L., Energy Environ. Sci., 2016, 9(3), 984—991 |
41 | Liu Y., Chen Y., Wang J., Wang W., Ding Z., Li L., Zhang Y., Deng Y., Wu J., Chen Y., Nano Res., 2021, 15(4), 3178—3186 |
42 | Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48(3), 908—936 |
43 | Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012, 5(2), 5604—5618 |
44 | Wang J. Y., Yang M., Wang D., Chinese J. Chem., 2022, 40, 1190—1203 |
45 | Mao D., Wan J. W., Wang J. Y., Wang D., Adv. Mater., 2019, 31(38), e1802874 |
46 | Wang G., Lai X. Y., Wang D., J. Nanosci. Nanotechnol., 2013, 13(2), 1423—1426 |
47 | Wang L., Wan J. W., Wang J. Y., Wang D., Small, 2020, 2(1), 2000041 |
48 | Li H., Ma H. R., Yang M., Wang B., Shao H., Wang L., Yu R. B., Wang D., Mater. Res. Bulletin, 2017, 87, 224—229 |
49 | Zhao X. X., Yu R. B., Tang H. J., Mao D., Qi J., Wang B., Zhang Y., Zhao H. J., Hu W. P., Wang D., Adv. Mater., 2017, 29(34), 1700550 |
50 | Li D. W, Zhao X. X., Yu R. B., Wang B., Wang H., Wang D., Inorg. Chem. Front., 2018, 5(3), 535—540 |
51 | Zhao X. X., Wang J. Y., Yu R. B., Wang D., J. Am. Chem. Soc., 2018, 140(49), 17114—17119 |
52 | Jiao C. W., Wang Z. M., Zhao X. X., Wang H., Wang J., Yu R. B., Wang D., Angew. Chem., 2019, 58(4), 996—1001 |
53 | Ren H., Yu R. B., Qi J., Zhang L. J., Jin Q., Wang D., Adv. Mater., 2019, 31(10), e1805754 |
54 | Salhabi E. H. M., Zhao J. L., Wang J. Y., Yang M., Wang B., Wang D., Angew. Chem., 2019, 58(27), 9078—9082 |
55 | Wang C. R., Zhang L., Al Mamun M., Dou Y. H., Liu P. R., Su D. W., Wang G. X., Zhang S. Q., Wang D., Zhao H. J., Adv. Energy Mater., 2019, 9(31), 1900909 |
56 | Zhao J. L., Wang J. Y., Bi R. Y., Yang M., Wan J. W., Jiang H. Y., Gu L., Wang D., Angew. Chem., 2021, 60(49), 25719—25722 |
57 | Li B., Wang J. Y., Bi R. Y., Yang N. L., Wan J. W., Jiang H., Gu L., Du J., Cao A. M., Gao W., Wang D., Adv. Mater., 2022, e2200206 |
58 | Wang J. Y., Tang H. J., Ren H., Yu R. B., Qi J., Mao D., Zhao H. J., Wang D., Adv. Sci., 2014, 1(1), 1400011 |
59 | Dong Z. H., Lai X. Y., Halpert J. E., Yang N. L., Yi L. X., Zhai J., Wang D., Tang Z. Y., Jiang L., Adv. Mater., 2012, 24(8), 1046—1049 |
60 | Dong Z. H., Ren H., Hessel C. M., Wang J. Y., Yu R. B., Jin Q., Yang M., Hu Z. D., Chen Y. F., Tang Z. Y., Zhao H. J., Wang D., Adv. Mater., 2014, 26(6), 905—909 |
61 | Wei Y. Z., Yang N. L., Huang K. K., Wan J. W., You F. F., Yu R. B., Feng S. H., Wang D., Adv. Mater., 2020, 32(44), e2002556 |
62 | Wei Y. Z., Wan J. W., Wang J. Y., Zhang X., Yu R. B., Yang N. L, Wang D., Small, 2021, 17(22), e2005345 |
63 | Wang X. J., Camilleri M., Neurogastroenterol Motil, 2019, 31(11), e13732 |
64 | Zhao D. C., Yang N. L., Xu L. K., Du J., Yang Y., Wang D., Nano Res., 2022, 15(2), 739—757 |
65 | Wang J. Y., Tang H., Zhang L., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y, Zhao H. Y., Wang D., Nat. Energy, 2016, 1(5), 1—9 |
66 | Wang J. Y., Tang H. J., Wang H., Yu R. B., Wang D., Mater. Chem. Front., 2017, 1(3), 414—430 |
67 | Wang J. Y., Cui Y., Wang D., Adv. Mater., 2019, 31(38), e1801993 |
68 | Wang J. Y., Wan J. W., Wang D., Acc. Chem. Res., 2019, 52(8), 2169—2178 |
69 | Wang J. Y., Cui Y., Wang D., Nanoscale Horiz., 2020, 5(9), 1287—1292 |
70 | Wang J. Y., Wan J. W., Yang N. L., Li Q., Wang D., Nat. Rev. Chem., 2020, 4(3), 159—168 |
71 | Zhao J. L., Yang M., Yang N. L., Wang J. Y., Wang D., Chem. Res. Chinese Universities, 2020, 36(3), 313—319 |
72 | Wang J. Y., Wang Z. M., Mao D., Wang D., Sci. China Chem., 2021, 65(1), 7—19 |
73 | Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D., Angew. Chem., 2013, 52(25), 6417—6420 |
74 | Ren H., Yu R. B., Wang J. Y., Jin Q., Yang M., Mao D., Kisailus D., Zhao H. J., Wang D., Nano Lett., 2014, 14(11), 6679—6684 |
75 | Ma Y., Liu P., Xie Q., Zhang G., Zheng H., Cai Y., Li Z., Wang L., Zhu Z. Z., Mai L., Peng D. L., Nano Energy, 2019, 59, 184—196 |
76 | Lei Y., Ni J., Hu Z., Wang Z., Gui F., Li B., Ming P., Zhang C., Elias Y., Aurbach D., Xiao Q., Adv. Energy Mater., 2020, 10(41), 2002506 |
77 | Zhang K., Li B., Zuo Y., Song J., Shang H., Ning F., Xia D., Electrochem. Energy Rev., 2019, 2(4), 606—623 |
78 | Yan J., Liu X., Li B., RSC Adv., 2014, 4(108), 63268—63284 |
79 | Sathiya M., Rousse G., Ramesha K., Laisa C. P., Vezin H., Sougrati M. T., Doublet M. L., Foix D., Gonbeau D., Walker W., Prakash A. S., Ben Hassine M., Dupont L., Tarascon J. M., Nat. Mater., 2013, 12(9), 827—835 |
80 | Nayak P. K., Erickson E. M., Schipper F., Penki T. R., Munichandraiah N., Adelhelm P., Sclar H., Amalraj F., Markovsky B., Aurbach D., Adv. Energy Mater., 2018, 8(8), 1702397 |
81 | Ji X., Xia Q., Xu Y., Feng H., Wang P., Tan Q., J. Power Sources, 2021, 487, 229362 |
82 | Rozier P., Tarascon J. M., J. Electrochem. Soc., 2015, 162(14), A2490—A2499 |
83 | Seo D. H., Lee J., Urban A., Malik R., Kang S., Ceder G., Nat. Chem., 2016, 8(7), 692—697 |
84 | Wang L., Dai A., Xu W., Lee S., Cha W., Harder R., Liu T., Ren Y., Yin G., Zuo P., Wang J., Lu J., Wang J., J. Am. Chem. Soc., 2020, 142(35), 14966—14973 |
85 | Langdon J., Manthiram A., Energy Storage Mater., 2021, 37, 143—160 |
86 | Zou L., Zhao W., Jia H., Zheng J., Li L., Abraham D. P., Chen G., Croy J. R., Zhang J. G., Wang C., Chem. Mater., 2020, 32(7), 2884—2892 |
87 | Zhang F., Lou S., Li S., Yu Z., Liu Q., Dai A., Cao C., Toney M. F., Ge M., Xiao X., Lee W. K., Yao Y., Deng J., Liu T., Tang Y., Yin G., Lu J., Su D., Wang J., Nat. Commun., 2020, 11(1), 3050 |
88 | Logan E. R., Hebecker H., Ma X., Quinn J., HyeJeong Y., Kumakura S., Paulsen J., Dahn J. R., J. Electrochem. Soc., 2020, 167(6), 060530 |
89 | Cha H., Kim J., Lee H., Kim N., Hwang J., Sung J., Yoon M., Kim K., Cho J., Adv. Mater., 2020, 32(39), e2003040 |
90 | Lin S., Wang Z., Lu T., Wang H., Li P., Yang F., Guo Z., J. Alloys Compd., 2020, 822, 153638 |
91 | Kuppan S., Shukla A. K., Membreno D., Nordlund D., Chen G., Adv. Energy Mater., 2017, 7(11), 1602010 |
92 | Fu F., Xu G. L., Wang Q., Deng Y. P., Li X., Li J. T., Huang L., Sun S. G., J. Mater. Chem., 2013, 1(12), 3860 |
93 | Wei G. Z., Lu X., Ke F. S., Huang L., Li J. T., Wang Z. X., Zhou Z. Y., Sun S. G., Adv. Mater., 2010, 22(39), 4364—4367 |
94 | Chen L., Su Y., Chen S., Li N., Bao L., Li W., Wang Z., Wang M., Wu F., Adv. Mater., 2014, 26(39), 6756—6760 |
95 | Ramakrishnan S., Park B., Wu J., Yang W., McCloskey B. D., J. Am. Chem. Soc., 2020, 142(18), 8522—8531 |
96 | Luo D., Ding X., Fan J., Zhang Z., Liu P., Yang X., Guo J., Sun S., Lin Z., Angew. Chem., 2020, 59(51), 23061—23066 |
97 | Zhu Z., Gao R., Waluyo I., Dong Y., Hunt A., Lee J., Li J., Adv. Energy Mater., 2020, 10(35), 2001120 |
98 | Ding X., Luo D., Cui J., Xie H., Ren Q., Lin Z., Angew. Chem., 2020, 59(20), 7778—7782 |
99 | Yin W., Grimaud A., Rousse G., Abakumov A. M., Senyshyn A., Zhang L., Trabesinger S., Iadecola A., Foix D., Giaume D., Tarascon J. M., Nat. Commun., 2020, 11(1), 1252 |
100 | Hua W., Wang S., Knapp M., Leake S. J., Senyshyn A., Richter C., Yavuz M., Binder J. R., Grey C. P., Ehrenberg H., Indris S., Schwarz B., Nat. Commun., 2019, 10(1), 5365 |
101 | Liu W., Oh P., Liu X., Myeong S., Cho W., Cho J., Adv. Energy Mater., 2015, 5(13), 1500274 |
102 | Zhao E., Liu X., Zhao H., Xiao X., Hu Z., Chem. Commun., 2015, 51(44), 9093—9096 |
103 | Zheng J. C., Yang Z., Wang P. B., Tang L. B., An C. S., He Z. J., ACS Appl. Mater. Interfaces, 2018, 10(37), 31324—31329 |
104 | Zheng F., Yang C., Xiong X., Xiong J., Hu R., Chen Y., Liu M., Angew. Chem., 2015, 54(44), 13058—13062 |
105 | Si M., Wang D., Zhao R., Pan D., Zhang C., Yu C., Lu X., Zhao H., Bai Y., Adv. Sci., 2020, 7(3), 1902538 |
106 | Zhang X. D., Shi J. L., Liang J. Y., Yin Y. X., Zhang J. N., Yu X. Q., Guo Y. G., Adv. Mater., 2018, e1801751 |
107 | Neudeck S., Strauss F., Garcia G., Wolf H., Janek J., Hartmann P., Brezesinski T., Chem. Commun., 2019, 55(15), 2174—2177 |
108 | Hall D. S., Gauthier R., Eldesoky A., Murray V. S., Dahn J. R., ACS Appl. Mater. Interfaces, 2019, 11(15), 14095—14100 |
109 | Zhou C. X., Wang P. B., Zhang B., Zheng J. C., Zhou Y. Y., Huang C. H., Xi X. M., J. Electrochem. Soc., 2018, 165(9), A1648—A1655 |
110 | Zhang S., Gu H., Tang T., Du W., Gao M., Liu Y., Jian D., Pan H., ACS Appl. Mater. Interfaces, 2017, 9(39), 33863—33875 |
111 | Hu S., Li Y., Chen Y., Peng J., Zhou T., Pang W. K., Didier C., Peterson V. K., Wang H., Li Q., Guo Z., Adv. Energy Mater., 2019, 9(34), 1901795 |
112 | Wu F., Wang Z., Su Y., Yan N., Bao L., Chen S., J. Power Sources, 2014, 247, 20—25 |
113 | Wang Z., Liu E., Guo L., Shi C., He C., Li J., Zhao N., Surf. Coat. Tech., 2013, 235, 570—576 |
114 | Shi S. J., Tu J. P., Tang Y. Y., Liu X. Y., Zhang Y. Q., Wang X. L., Gu C. D., Electrochim. Acta, 2013, 88, 671—679 |
115 | Zheng J., Gu M., Xiao J., Polzin B. J., Yan P., Chen X., Wang C., Zhang J. G., Chem. Mater., 2014, 26(22), 6320—6327 |
116 | Sun Y. K., Lee M. J., Yoon C. S., Hassoun J., Amine K., Scrosati B., Adv. Mater., 2012, 24(9), 1192—1196 |
117 | Chen D., Zheng F., Li L., Chen M., Zhong X., Li W., Lu L., J. Power Sources, 2017, 341, 147—155 |
118 | Cho W., Kim S. M., Song J. H., Yim T., Woo S. G., Lee K. W., Kim J. S., Kim Y. J., J. Power Sources, 2015, 282, 45—50 |
119 | Song B., Zhou C., Chen Y., Liu Z., Lai M. O., Xue J., Lu L., RSC Adv., 2014, 4(83), 44244—44252 |
120 | Nayak P. K., Grinblat J., Levi M., Aurbach D., Electrochim. Acta, 2014, 137, 546—556 |
121 | Yang J., Li P., Zhong F., Feng X., Chen W., Ai X., Yang H., Xia D., Cao Y., Adv. Energy Mater., 2020, 10(15), 1904264 |
122 | House R. A., Maitra U., Perez⁃Osorio M. A., Lozano J. G., Jin L., Somerville J. W., Duda L. C., Nag A., Walters A., Zhou K. J., Roberts M. R., Bruce P. G., Nature, 2020, 577(7791), 502—508 |
123 | Ku K., Hong J., Kim H., Park H., Seong W. M., Jung S. K., Yoon G., Park K. Y., Kim H., Kang K., Adv. Energy Mat., 2018, 8(21), 1800606 |
124 | Liu S., Liu Z., Shen X., Li W., Gao Y., Banis M. N., Li M., Chen K., Zhu L., Yu R., Wang Z., Sun X., Lu G., Kong Q., Bai X., Chen L., Adv. Energy Mater., 2018, 8(31), 1802105 |
125 | Li X., Zhang K., Mitlin D., Yang Z., Wang M., Tang Y., Jiang F., Du Y., Zheng J., Chem. Mater., 2018, 30(8), 2566—2573 |
[1] | 毕如一, 赵吉路, 王江艳, 于然波, 王丹. 中空多壳层CoFe2O4的制备及锂离子电池性能研究[J]. 高等学校化学学报, 2023, 44(1): 20220453. |
[2] | 黄田野, 杨梅, 王江艳, 张少军, 杜江, 王丹. 铁酸镍/碳复合中空多壳层结构的制备及吸波性能[J]. 高等学校化学学报, 2023, 44(1): 20220276. |
[3] | 李辉阳, 朱思颖, 李莎, 张桥保, 赵金保, 张力. 锂离子电池硅氧化物负极首次库伦效率的影响因素与提升策略[J]. 高等学校化学学报, 2021, 42(8): 2342. |
[4] | 张振, 毛丹, 杨梅, 于然波. 中空多壳层结构在电磁波领域中的应用[J]. 高等学校化学学报, 2021, 42(5): 1395. |
[5] | 巴智晨, 梁大鑫, 谢延军. MXenes复合材料的发展: 界面调控及结构设计[J]. 高等学校化学学报, 2021, 42(4): 1225. |
[6] | 詹舒辉, 赵亚松, 杨乃亮, 王丹. 石墨炔孔结构: 设计、 合成和应用[J]. 高等学校化学学报, 2021, 42(2): 333. |
[7] | 韩慕瑶, 赵丽娜, 孙洁. 硅及硅基负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(12): 3547. |
[8] | 王鹏, 毛丹, 万家炜, 祁琪, 杜江, 王丹. 中空多壳层TiO2填充对环氧树脂复合材料力学性能的影响[J]. 高等学校化学学报, 2021, 42(10): 3218. |
[9] | 陆地,郑春满,陈宇方,李宇杰,张红梅. 以酚醛树脂为碳源原位合成富锂层状相/尖晶石/碳核壳结构正极材料及其电化学性能[J]. 高等学校化学学报, 2020, 41(7): 1684. |
[10] | 孙辉, 赖小勇. 中空多壳层结构材料的制备及气体传感应用研究进展[J]. 高等学校化学学报, 2020, 41(5): 855. |
[11] | 王鹏程, 陆明. 1,3,4,5,7,8-六硝基八氢化二咪唑[4,5-b:4',5'-e]吡嗪-2,6-(1H,3H)-N,N'-二亚硝胺分子结构与性能的量子化学研究[J]. 高等学校化学学报, 2014, 35(3): 596. |
[12] | 刘伟伟, 金子信悟, 方国清, 孙洪丹, 夏丙波, 郑军伟, 李德成. xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)的结构与电化学性能[J]. 高等学校化学学报, 2013, 34(10): 2395. |
[13] | 王绥军, 赵煜娟, 赵春松, 夏定国. 锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2(x=1/5, 1/4, 1/3)的合成及电化学性能[J]. 高等学校化学学报, 2009, 30(12): 2358. |
[14] | 杨华勇, 刘素芬, 傅新. 微型混合器的结构设计及实验研究[J]. 高等学校化学学报, 2004, 25(S1): 31. |
[15] | 赵俊芳, 李楠, 张之佩, 张星辰, 高凤新. 氮笼N12的量子化学研究[J]. 高等学校化学学报, 2002, 23(10): 1944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||