高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (11): 20230309.doi: 10.7503/cjcu20230309
王锋1,2, 陈钰1, 裴鸿艳1, 刘东东1,2, 罗春凤3, 张静1,2,3(), 张立新1,2,3(
)
收稿日期:
2023-07-03
出版日期:
2023-11-10
发布日期:
2023-08-23
通讯作者:
张静
E-mail:jing@syuct.edu.cn;zhanglixin@syuct.edu.cn
作者简介:
张立新, 男, 博士, 教授, 主要从事农药、 医药等功能分子的设计与开发方面的研究. E-mail: zhanglixin@syuct.edu.cn
基金资助:
WANG Feng1,2, CHEN Yu1, PEI Hongyan1, LIU Dongdong1,2, LUO Chunfeng3, ZHANG Jing1,2,3(), ZHANG Lixin1,2,3(
)
Received:
2023-07-03
Online:
2023-11-10
Published:
2023-08-23
Contact:
ZHANG Jing
E-mail:jing@syuct.edu.cn;zhanglixin@syuct.edu.cn
Supported by:
摘要:
为了寻找新型抗菌先导化合物, 采用活性亚结构拼接的方法引入新的活性片段及取代基, 设计合成了27个新型含双酰胺结构的1,2,4-噁二唑类衍生物4a~4c和6a~6x, 经核磁共振氢谱(1H NMR)和高分辨质谱(HRMS)确证其化学结构. 抗菌活性测试结果表明, 当浓度为3.13 mg/L时, 化合物6f, 6i, 6m, 6n和6q对大豆锈病(Phakopsorapachyrhiz)的防效分别为80%, 90%, 80%, 90%和70%, 优于杀菌剂Flufenoxadiazam(30%)和对照药剂苯醚甲环唑(50%); 化合物6i和6n的抗菌活性优异, 当浓度为1.56 mg/L时, 对大豆锈病仍有50%和70%的抗菌活性. 化合物6n在浓度为1.56mg/L时, 对玉米锈病(Pucciniasorghi)具有100%防效的优异抗菌活性. 分子对接模拟结果表明, 化合物6n与组蛋白去乙酰化酶4(HDAC 4)具有多种相互作用, 与PRO-298, LEU-299及 HIS-158号残基形成的氢键作用可能是其抗菌活性优异的重要原因.
中图分类号:
TrendMD:
王锋, 陈钰, 裴鸿艳, 刘东东, 罗春凤, 张静, 张立新. 含双酰胺结构的1,2,4-噁二唑类衍生物的设计、 合成及抗菌活性. 高等学校化学学报, 2023, 44(11): 20230309.
WANG Feng, CHEN Yu, PEI Hongyan, LIU Dongdong, LUO Chunfeng, ZHANG Jing, ZHANG Lixin. Design, Synthesis and Anti-fungal Activity of 1,2,4-Oxadiazole Derivatives Containing Diamide Moiety. Chem. J. Chinese Universities, 2023, 44(11): 20230309.
Compd. | Feature | m.p./℃ | Yield(%) | HRMS*(calcd.), m/z |
---|---|---|---|---|
4a | White solid | 182.9─183.9 | 67.8 | 423.1252(423.1256) |
4b | White solid | 141.3─141.6 | 79.7 | 437.1417(437.1417) |
4c | White solid | 167.5─168.0 | 82.5 | 451.1570(451.1569) |
Table 1 Yields and HRMS data of intermediates 4a─4c
Compd. | Feature | m.p./℃ | Yield(%) | HRMS*(calcd.), m/z |
---|---|---|---|---|
4a | White solid | 182.9─183.9 | 67.8 | 423.1252(423.1256) |
4b | White solid | 141.3─141.6 | 79.7 | 437.1417(437.1417) |
4c | White solid | 167.5─168.0 | 82.5 | 451.1570(451.1569) |
Compd. | 1H NMR(600 MHz), δ |
---|---|
4a | 8.19(d, J=8.5 Hz,2H), 7.99(d, J=8.2 Hz, 2H), 7.72(dd, J=5.7, 3.3 Hz, 1H), 7.53(dd, J=5.7, 3.2 Hz, 1H), 3.62─3.55(m, 2H), 3.49─3.40 (m, 2H), 1.44 (s, 9H) |
4b | 8.19(d, J=8.2 Hz,2H), 8.02(d, J=7.9 Hz,2H), 7.65(s, 1H), 4.92(s, 1H), 3.53(q,J=6.1 Hz, 2H), 3.28(q, J=5.8 Hz, 2H), 1.78─1.70(m, 2H), 1.46(s, 9H) |
4c | 8.17(d, J=8.2 Hz,2H), 7.97(d, J=7.7 Hz,2H), 6.86(s, 1H), 4.69(s, 1H), 3.53(q, J=6.3 Hz, 2H), 3.18(q, J=6.3 Hz, 2H), 1.71─1.66(m, 2H), 1.63─1.58(m, 2H), 1.44(s, 9H) |
Table 2 1H NMR data of intermediates 4a─4c
Compd. | 1H NMR(600 MHz), δ |
---|---|
4a | 8.19(d, J=8.5 Hz,2H), 7.99(d, J=8.2 Hz, 2H), 7.72(dd, J=5.7, 3.3 Hz, 1H), 7.53(dd, J=5.7, 3.2 Hz, 1H), 3.62─3.55(m, 2H), 3.49─3.40 (m, 2H), 1.44 (s, 9H) |
4b | 8.19(d, J=8.2 Hz,2H), 8.02(d, J=7.9 Hz,2H), 7.65(s, 1H), 4.92(s, 1H), 3.53(q,J=6.1 Hz, 2H), 3.28(q, J=5.8 Hz, 2H), 1.78─1.70(m, 2H), 1.46(s, 9H) |
4c | 8.17(d, J=8.2 Hz,2H), 7.97(d, J=7.7 Hz,2H), 6.86(s, 1H), 4.69(s, 1H), 3.53(q, J=6.3 Hz, 2H), 3.18(q, J=6.3 Hz, 2H), 1.71─1.66(m, 2H), 1.63─1.58(m, 2H), 1.44(s, 9H) |
Compd. | Feature | m.p./℃ | Yield(%) | HRMS*(calcd.), m/z |
---|---|---|---|---|
6a | White solid | 169.4─170.2 | 78.8 | 365.0839(365.0837) |
6b | White solid | 156.7─157.2 | 73.0 | 379.0991(379.0994) |
6c | White solid | 159.6─160.1 | 89.6 | 391.0999(391.0994) |
6d | White solid | 136.6─137.1 | 91.5 | 427.0990(427.0994) |
6e | White solid | 155.0─155.4 | 59.8 | 441.1153(441.1150) |
6f | White solid | 185.2─185.7 | 75.5 | 445.0904(445.0900) |
6g | White solid | 145.6─145.9 | 65.0 | 445.0906(445.0900) |
6h | White solid | 168.5─170.0 | 69.2 | 445.0904(445.0900) |
6i | White solid | 196.4─196.6 | 57.5 | 461.0605(461.0604) |
6j | White solid | 226.0─226.7 | 51.5 | 461.0604(461.0604) |
6k | White solid | 165.2─165.6 | 55.5 | 461.0598(461.0604) |
6l | White solid | 175.3─175.9 | 59.7 | 505.0103(505.0099) |
6m | White solid | 185.6─185.8 | 63.3 | 495.0868(495.0868) |
6n | White solid | 178.2─178.9 | 72.6 | 430.1129(430.1127) |
6o | White solid | 168.7─169.2 | 58.7 | 472.0850(472.0845) |
6p | White solid | 164.2─165.0 | 71.8 | 441.1153(441.1150) |
6q | White solid | 169.1─169.9 | 77.2 | 441.1151(441.1150) |
6r | White solid | 157.6─157.9 | 73.3 | 441.1147(441.1150) |
6s | White solid | 189.2─190.9 | 63.3 | 441.1153(441.1150) |
6t | White solid | 165.4─166.9 | 72.6 | 459.1060(459.1056) |
6u | White solid | 168.7─169.2 | 58.7 | 475.0764(475.0761) |
6v | White solid | 164.2─165.0 | 71.8 | 455.1305(455.1307) |
6w | White solid | 169.1─169.9 | 77.2 | 473.1212(473.1213) |
6x | White solid | 157.6─157.9 | 73.3 | 489.0917(489.0917) |
Table 3 Yields and HRMS data of compounds 6a─6x
Compd. | Feature | m.p./℃ | Yield(%) | HRMS*(calcd.), m/z |
---|---|---|---|---|
6a | White solid | 169.4─170.2 | 78.8 | 365.0839(365.0837) |
6b | White solid | 156.7─157.2 | 73.0 | 379.0991(379.0994) |
6c | White solid | 159.6─160.1 | 89.6 | 391.0999(391.0994) |
6d | White solid | 136.6─137.1 | 91.5 | 427.0990(427.0994) |
6e | White solid | 155.0─155.4 | 59.8 | 441.1153(441.1150) |
6f | White solid | 185.2─185.7 | 75.5 | 445.0904(445.0900) |
6g | White solid | 145.6─145.9 | 65.0 | 445.0906(445.0900) |
6h | White solid | 168.5─170.0 | 69.2 | 445.0904(445.0900) |
6i | White solid | 196.4─196.6 | 57.5 | 461.0605(461.0604) |
6j | White solid | 226.0─226.7 | 51.5 | 461.0604(461.0604) |
6k | White solid | 165.2─165.6 | 55.5 | 461.0598(461.0604) |
6l | White solid | 175.3─175.9 | 59.7 | 505.0103(505.0099) |
6m | White solid | 185.6─185.8 | 63.3 | 495.0868(495.0868) |
6n | White solid | 178.2─178.9 | 72.6 | 430.1129(430.1127) |
6o | White solid | 168.7─169.2 | 58.7 | 472.0850(472.0845) |
6p | White solid | 164.2─165.0 | 71.8 | 441.1153(441.1150) |
6q | White solid | 169.1─169.9 | 77.2 | 441.1151(441.1150) |
6r | White solid | 157.6─157.9 | 73.3 | 441.1147(441.1150) |
6s | White solid | 189.2─190.9 | 63.3 | 441.1153(441.1150) |
6t | White solid | 165.4─166.9 | 72.6 | 459.1060(459.1056) |
6u | White solid | 168.7─169.2 | 58.7 | 475.0764(475.0761) |
6v | White solid | 164.2─165.0 | 71.8 | 455.1305(455.1307) |
6w | White solid | 169.1─169.9 | 77.2 | 473.1212(473.1213) |
6x | White solid | 157.6─157.9 | 73.3 | 489.0917(489.0917) |
Compd. | 1H NMR(600 MHz), δ |
---|---|
6a | 8.20(d, J=8.5 Hz, 2H), 7.98(d, J=8.5 Hz, 2H), 7.57(s, 1H), 6.13(s, 1H), 3.68─3.58(m, 2H), 3.58─3.53(m, 2H), 2.04 (s, 3H) |
6b | 8.19(d, J=8.3 Hz, 2H), 7.98(d, J=8.3 Hz, 2H), 7.63(t, J=4.4 Hz, 1H), 6.15(s, 1H), 3.63─3.60(m, 2H), 3.58─3.55 (m, 2H), 2.26(q, J=7.6 Hz, 2H), 1.16(t, J=7.6 Hz, 2H). |
6c | 8.17(d, J=8.2 Hz,2H), 7.97(d, J=8.2 Hz,2H), 6.86(s, 1H), 4.69(s, 1H), 3.65─3.55(m, 4H), 1.71─1.66(m, 2H), 1.63─1.58(m, 2H) |
6d | 8.84(t, J=5.2 Hz, 1H), 8.61(t, J=5.4 Hz, 1H), 8.17(d, J=8.5 Hz, 2H), 8.07(d, J=8.5 Hz, 2H), 7.90─7.80(m, 2H), 7.57─7.49(m, 1H),7.49─7.43(m, 2H), 3.55─3.40(m, 4H) |
6e | 8.73(t, J=5.5 Hz, 1H), 8.20(t, J=5.7 Hz, 1H), 8.16(d, J=8.6 Hz, 2H), 8.04(d, J=8.6 Hz,2H), 7.33─7.21(m, 4H), 7.21─7.16(m, 1H), 3.41(s, 2H), 3.36(q, J=5.7 Hz, 2H), 3.26(q, J=6.0 Hz, 2H) |
6f | 8.78(s, 1H), 8.41(s, 1H), 8.16(d, J=8.2 Hz,2H), 8.06(d, J=8.3 Hz, 2H), 7.64(dt, J=7.8, 3.9 Hz, 1H), 7.56─7.46(m, 1H), 7.31─7.22(m, 2H), 3.48─3.43(m, 4H) |
6g | 8.21(d, J=8.4 Hz, 2H), 7.97(d, J=8.4 Hz, 2H), 7.58─7.52(m, 2H), 7.43(td, J=8.0, 5.5 Hz, 1H), 7.32(s, 1H), 7.22(td, J=8.5, 2.6 Hz, 1H), 7.07(s, 1H), 3.78─3.74(m, 4H) |
6h | 8.82(s, 1H), 8.62(s, 1H), 8.15(d, J=8.3 Hz, 2H), 8.05(d, J=8.4 Hz,2H), 7.95─7.87(m, 2H), 7.28(t, J=8.8 Hz, 2H), 3.51─3.44(m, 4H) |
6i | 8.76(t, J=5.1 Hz, 1H), 8.54(t, J=5.5 Hz, 1H), 8.16(d, J=8.4 Hz,2H), 8.06(d, J=8.4 Hz, 2H), 7.47(td, J=8.0, 1.1 Hz, 2H), 7.43(td, J=7.4, 1.7 Hz,1H), 7.38(td, J=7.4, 1.1 Hz, 1H), 3.50─3.41(m, 4H) |
6j | 8.83(t, J=4.9 Hz, 1H), 8.73(t, J=5.0 Hz, 1H), 8.16(d, J=8.5 Hz,2H), 8.06(d, J=8.6 Hz,2H), 7.88(t, J=1.8 Hz, 1H), 7.80(dt, J=8.0, 1.1 Hz, 1H), 7.60─7.58(m,1H), 7.50(t, J=7.9 Hz,1H), 3.49─3.43(m, 4H) |
6k | 8.83(t, J=5.2Hz,1H), 8.70(t, J=5.3 Hz,1H), 8.15(d, J=8.4 Hz, 2H), 8.05(d, J=8.4 Hz, 2H), 7.89─7.85(m, 2H), 7.57─7.52(m, 2H), 3.50─3.44(m, 4H) |
6l | 8.76(t, J=5.3 Hz,1H), 8.54(t, J=5.6 Hz, 1H), 8.16(d, J=8.3 Hz, 2H), 8.06(d, J=8.3 Hz, 2H), 7.64(d, J=8.0 Hz, 1H), 7.47─7.41(m, 2H), 7.38─7.32(m, 1H),3.52─3.40(m, 4H) |
6m | 8.78(t, J=5.5 Hz,1H), 8.62(t, J=5.1 Hz,1H), 8.17(d, J=8.5 Hz, 2H), 8.07(d,J=8.5 Hz, 2H), 7.77(d,J=7.8 Hz, 1H), 7.73(t, J=7.7 Hz, 1H), 7.64(t, J=7.7 Hz,1H), 7.59(d, J=7.6 Hz, 1H), 3.49─3.41(m, 4H) |
6n | 10.08(s, 1H), 8.83(t, J=5.8 Hz,1H), 8.14(d,J=7.4 Hz,2H), 8.12(d, J=8.5 Hz,2H),7.94(d, J=8.5 Hz, 2H), 7.80─7.76(m, 2H), 7.71─7.67(m, 1H), 3.93(dd, J=6.4, 5.1 Hz, 2H), 3.59(q,J=5.9 Hz, 2H) |
6o | 8.83(t, J=5.6 Hz, 1H), 8.80(t, J=5.3 Hz, 1H),8.18(d, J=8.4 Hz, 2H), 8.09(d, J=8.5 Hz, 2H), 8.03(dd, J=8.0, 1.1 Hz,1H), 7.80(td, J=7.5, 1.0 Hz, 1H), 7.71(dd, J=7.7, 1.3 Hz,1H), 7.69─7.63(m, 1H), 3.51─3.42(m, 4H) |
6p | 8.84(t, J=5.0 Hz,1H), 8.54(t, J=5.3 Hz,1H), 8.18(d, J=8.2 Hz, 2H), 8.09(d, J=8.2 Hz, 2H), 7.78(d, J=7.9 Hz, 2H), 7.28(d, J=7.8 Hz, 2H), 3.49(s, 4H), 2.37(s, 3H). |
6q | 8.82(t, J=5.2 Hz, 1H), 8.57(t, J=5.2 Hz, 1H), 8.17(d, J=8.3 Hz, 2H), 8.09(d, J=8.4 Hz, 2H), 7.69(s, 1H), 7.67─7.62(m, 1H), 7.37─7.32(m, 2H), 3.53─3.44(m, 4H), 2.37(s, 3H) |
6r | 8.84(t, J=5.0 Hz, 1H), 8.54(t, J=5.2 Hz, 1H), 8.18(d, J=8.3 Hz, 2H), 8.09(d, J=8.3 Hz, 2H), 7.78(d, J=8.0 Hz, 2H), 7.28(d, J=7.9 Hz, 2H), 3.51─3.46(m, 4H), 2.36(s, 3H). |
6s | 8.73(t, J=5.6 Hz, 1H), 8.49(t, J=5.6 Hz, 1H), 8.16(d, J=8.5 Hz, 2H), 8.06(d, J=8.6 Hz, 2H), 7.86 ─7.81(m, 2H), 7.54─7.48(m, 2H), 3.41─3.28(m, 4H), 1.86─1.77(m, 2H) |
6t | 8.72(t, J=5.6 Hz, 1H), 8.35(t, J=6.1 Hz, 1H), 8.15(d, J=7.9 Hz, 2H), 8.06(d, J=7.9 Hz, 2H), 7.61(t, J=6.9 Hz, 1H), 7.51(q, J=5.6 Hz, 1H), 7.34─7.23(m, 2H), 3.38─3.32(m, 4H), 1.82─1.78(m, 2H) |
6u | 8.73(s, 1H), 8.47(s, 1H), 8.17(d, J=7.7 Hz, 2H), 8.07(d, J=8.0 Hz, 2H), 7.61─7.29(m, 4H), 3.58─3.18(m, 4H), 1.87─1.71(m, 2H) |
6v | 8.71(t, J=5.5 Hz, 1H), 8.46(t, J=5.6 Hz, 1H), 8.15(d, J=8.4 Hz, 2H), 8.06(d, J=8.5 Hz, 2H), 7.85─7.81(m, 2H), 7.54─7.48(m, 1H), 7.47─7.43(m, 2H), 3.32─3.28(m, 4H), 1.60─1.58(m, 4H) |
6w | 8.72(t, J=5.5 Hz, 1H), 8.31(t, J=5.9 Hz, 1H), 8.16(d, J=8.4 Hz, 2H), 8.06(d, J=8.4 Hz, 2H), 7.58(td, J=7.4, 1.7 Hz, 1H), 7.52─7.49(m, 1H), 7.30─7.23(m, 2H), 3.31─3.24(m, 4H), 1.62─1.56(m, 4H) |
6x | 8.71(d, J=5.7 Hz, 1H), 8.41(d, J=5.9 Hz, 1H), 8.15(d, J=7.9 Hz, 2H), 8.05(d, J=7.9 Hz, 2H), 7.47(d, J=7.8 Hz, 1H), 7.45─7.34(m, 3H), 3.25(q, J=5.8 Hz, 4H), 1.66─1.23(m, 4H) |
Table 4 1H NMR data of midbodies 6a─6x
Compd. | 1H NMR(600 MHz), δ |
---|---|
6a | 8.20(d, J=8.5 Hz, 2H), 7.98(d, J=8.5 Hz, 2H), 7.57(s, 1H), 6.13(s, 1H), 3.68─3.58(m, 2H), 3.58─3.53(m, 2H), 2.04 (s, 3H) |
6b | 8.19(d, J=8.3 Hz, 2H), 7.98(d, J=8.3 Hz, 2H), 7.63(t, J=4.4 Hz, 1H), 6.15(s, 1H), 3.63─3.60(m, 2H), 3.58─3.55 (m, 2H), 2.26(q, J=7.6 Hz, 2H), 1.16(t, J=7.6 Hz, 2H). |
6c | 8.17(d, J=8.2 Hz,2H), 7.97(d, J=8.2 Hz,2H), 6.86(s, 1H), 4.69(s, 1H), 3.65─3.55(m, 4H), 1.71─1.66(m, 2H), 1.63─1.58(m, 2H) |
6d | 8.84(t, J=5.2 Hz, 1H), 8.61(t, J=5.4 Hz, 1H), 8.17(d, J=8.5 Hz, 2H), 8.07(d, J=8.5 Hz, 2H), 7.90─7.80(m, 2H), 7.57─7.49(m, 1H),7.49─7.43(m, 2H), 3.55─3.40(m, 4H) |
6e | 8.73(t, J=5.5 Hz, 1H), 8.20(t, J=5.7 Hz, 1H), 8.16(d, J=8.6 Hz, 2H), 8.04(d, J=8.6 Hz,2H), 7.33─7.21(m, 4H), 7.21─7.16(m, 1H), 3.41(s, 2H), 3.36(q, J=5.7 Hz, 2H), 3.26(q, J=6.0 Hz, 2H) |
6f | 8.78(s, 1H), 8.41(s, 1H), 8.16(d, J=8.2 Hz,2H), 8.06(d, J=8.3 Hz, 2H), 7.64(dt, J=7.8, 3.9 Hz, 1H), 7.56─7.46(m, 1H), 7.31─7.22(m, 2H), 3.48─3.43(m, 4H) |
6g | 8.21(d, J=8.4 Hz, 2H), 7.97(d, J=8.4 Hz, 2H), 7.58─7.52(m, 2H), 7.43(td, J=8.0, 5.5 Hz, 1H), 7.32(s, 1H), 7.22(td, J=8.5, 2.6 Hz, 1H), 7.07(s, 1H), 3.78─3.74(m, 4H) |
6h | 8.82(s, 1H), 8.62(s, 1H), 8.15(d, J=8.3 Hz, 2H), 8.05(d, J=8.4 Hz,2H), 7.95─7.87(m, 2H), 7.28(t, J=8.8 Hz, 2H), 3.51─3.44(m, 4H) |
6i | 8.76(t, J=5.1 Hz, 1H), 8.54(t, J=5.5 Hz, 1H), 8.16(d, J=8.4 Hz,2H), 8.06(d, J=8.4 Hz, 2H), 7.47(td, J=8.0, 1.1 Hz, 2H), 7.43(td, J=7.4, 1.7 Hz,1H), 7.38(td, J=7.4, 1.1 Hz, 1H), 3.50─3.41(m, 4H) |
6j | 8.83(t, J=4.9 Hz, 1H), 8.73(t, J=5.0 Hz, 1H), 8.16(d, J=8.5 Hz,2H), 8.06(d, J=8.6 Hz,2H), 7.88(t, J=1.8 Hz, 1H), 7.80(dt, J=8.0, 1.1 Hz, 1H), 7.60─7.58(m,1H), 7.50(t, J=7.9 Hz,1H), 3.49─3.43(m, 4H) |
6k | 8.83(t, J=5.2Hz,1H), 8.70(t, J=5.3 Hz,1H), 8.15(d, J=8.4 Hz, 2H), 8.05(d, J=8.4 Hz, 2H), 7.89─7.85(m, 2H), 7.57─7.52(m, 2H), 3.50─3.44(m, 4H) |
6l | 8.76(t, J=5.3 Hz,1H), 8.54(t, J=5.6 Hz, 1H), 8.16(d, J=8.3 Hz, 2H), 8.06(d, J=8.3 Hz, 2H), 7.64(d, J=8.0 Hz, 1H), 7.47─7.41(m, 2H), 7.38─7.32(m, 1H),3.52─3.40(m, 4H) |
6m | 8.78(t, J=5.5 Hz,1H), 8.62(t, J=5.1 Hz,1H), 8.17(d, J=8.5 Hz, 2H), 8.07(d,J=8.5 Hz, 2H), 7.77(d,J=7.8 Hz, 1H), 7.73(t, J=7.7 Hz, 1H), 7.64(t, J=7.7 Hz,1H), 7.59(d, J=7.6 Hz, 1H), 3.49─3.41(m, 4H) |
6n | 10.08(s, 1H), 8.83(t, J=5.8 Hz,1H), 8.14(d,J=7.4 Hz,2H), 8.12(d, J=8.5 Hz,2H),7.94(d, J=8.5 Hz, 2H), 7.80─7.76(m, 2H), 7.71─7.67(m, 1H), 3.93(dd, J=6.4, 5.1 Hz, 2H), 3.59(q,J=5.9 Hz, 2H) |
6o | 8.83(t, J=5.6 Hz, 1H), 8.80(t, J=5.3 Hz, 1H),8.18(d, J=8.4 Hz, 2H), 8.09(d, J=8.5 Hz, 2H), 8.03(dd, J=8.0, 1.1 Hz,1H), 7.80(td, J=7.5, 1.0 Hz, 1H), 7.71(dd, J=7.7, 1.3 Hz,1H), 7.69─7.63(m, 1H), 3.51─3.42(m, 4H) |
6p | 8.84(t, J=5.0 Hz,1H), 8.54(t, J=5.3 Hz,1H), 8.18(d, J=8.2 Hz, 2H), 8.09(d, J=8.2 Hz, 2H), 7.78(d, J=7.9 Hz, 2H), 7.28(d, J=7.8 Hz, 2H), 3.49(s, 4H), 2.37(s, 3H). |
6q | 8.82(t, J=5.2 Hz, 1H), 8.57(t, J=5.2 Hz, 1H), 8.17(d, J=8.3 Hz, 2H), 8.09(d, J=8.4 Hz, 2H), 7.69(s, 1H), 7.67─7.62(m, 1H), 7.37─7.32(m, 2H), 3.53─3.44(m, 4H), 2.37(s, 3H) |
6r | 8.84(t, J=5.0 Hz, 1H), 8.54(t, J=5.2 Hz, 1H), 8.18(d, J=8.3 Hz, 2H), 8.09(d, J=8.3 Hz, 2H), 7.78(d, J=8.0 Hz, 2H), 7.28(d, J=7.9 Hz, 2H), 3.51─3.46(m, 4H), 2.36(s, 3H). |
6s | 8.73(t, J=5.6 Hz, 1H), 8.49(t, J=5.6 Hz, 1H), 8.16(d, J=8.5 Hz, 2H), 8.06(d, J=8.6 Hz, 2H), 7.86 ─7.81(m, 2H), 7.54─7.48(m, 2H), 3.41─3.28(m, 4H), 1.86─1.77(m, 2H) |
6t | 8.72(t, J=5.6 Hz, 1H), 8.35(t, J=6.1 Hz, 1H), 8.15(d, J=7.9 Hz, 2H), 8.06(d, J=7.9 Hz, 2H), 7.61(t, J=6.9 Hz, 1H), 7.51(q, J=5.6 Hz, 1H), 7.34─7.23(m, 2H), 3.38─3.32(m, 4H), 1.82─1.78(m, 2H) |
6u | 8.73(s, 1H), 8.47(s, 1H), 8.17(d, J=7.7 Hz, 2H), 8.07(d, J=8.0 Hz, 2H), 7.61─7.29(m, 4H), 3.58─3.18(m, 4H), 1.87─1.71(m, 2H) |
6v | 8.71(t, J=5.5 Hz, 1H), 8.46(t, J=5.6 Hz, 1H), 8.15(d, J=8.4 Hz, 2H), 8.06(d, J=8.5 Hz, 2H), 7.85─7.81(m, 2H), 7.54─7.48(m, 1H), 7.47─7.43(m, 2H), 3.32─3.28(m, 4H), 1.60─1.58(m, 4H) |
6w | 8.72(t, J=5.5 Hz, 1H), 8.31(t, J=5.9 Hz, 1H), 8.16(d, J=8.4 Hz, 2H), 8.06(d, J=8.4 Hz, 2H), 7.58(td, J=7.4, 1.7 Hz, 1H), 7.52─7.49(m, 1H), 7.30─7.23(m, 2H), 3.31─3.24(m, 4H), 1.62─1.56(m, 4H) |
6x | 8.71(d, J=5.7 Hz, 1H), 8.41(d, J=5.9 Hz, 1H), 8.15(d, J=7.9 Hz, 2H), 8.05(d, J=7.9 Hz, 2H), 7.47(d, J=7.8 Hz, 1H), 7.45─7.34(m, 3H), 3.25(q, J=5.8 Hz, 4H), 1.66─1.23(m, 4H) |
Compd. | n | R | Control effect(%) | |||
---|---|---|---|---|---|---|
12.50 mg/L | 6.25 mg/L | 3.13 mg/L | 1.56 mg/L | |||
4a | 2 | Boc | 95 | 50 | 20 | 0 |
4b | 3 | Boc | 96 | 30 | 0 | 0 |
4c | 4 | Boc | 80 | 0 | 0 | 0 |
6a | 2 | CH3 | 20 | 0 | 0 | 0 |
6b | 2 | CH2CH3 | 0 | 0 | 0 | 0 |
6c | 2 | cyclo⁃C3H5 | 90 | 85 | 0 | 0 |
6d | 2 | Ph | 100 | 90 | 30 | 0 |
6e | 2 | Bn | 0 | 0 | 0 | 0 |
6f | 2 | 2⁃F⁃Ph | 98 | 95 | 80 | 35 |
6g | 2 | 3⁃F⁃Ph | 85 | 60 | 50 | 0 |
6h | 2 | 4⁃F⁃Ph | 85 | 40 | 30 | 0 |
6i | 2 | 2⁃Cl⁃Ph | 98 | 95 | 90 | 50 |
6j | 2 | 3⁃Cl⁃Ph | 30 | 0 | 0 | 0 |
6k | 2 | 4⁃Cl⁃Ph | 90 | 20 | 0 | 0 |
6l | 2 | 2⁃Br⁃Ph | 70 | 50 | 20 | 0 |
6m | 2 | 2⁃CF3⁃Ph | 98 | 90 | 80 | 0 |
6n | 2 | 2⁃CN⁃Ph | 98 | 95 | 90 | 70 |
6o | 2 | 2⁃NO2⁃Ph | 70 | 50 | 20 | 0 |
6p | 2 | 2⁃CH3⁃Ph | 60 | 20 | 0 | 0 |
6q | 2 | 3⁃CH3⁃Ph | 100 | 95 | 70 | 10 |
6r | 2 | 4⁃CH3⁃Ph | 100 | 90 | 40 | 0 |
6s | 3 | Ph | 50 | 20 | 0 | 0 |
6t | 3 | 2⁃F⁃Ph | 96 | 92 | 50 | 0 |
6u | 3 | 2⁃Cl⁃Ph | 90 | 70 | 20 | 0 |
6v | 4 | Ph | 60 | 30 | 0 | 0 |
6w | 4 | 2⁃F⁃Ph | 95 | 70 | 60 | 10 |
6x | 4 | 2⁃Cl⁃Ph | 90 | 50 | 40 | 0 |
Flufenoxadiazam | — | — | 100 | 100 | 30 | 0 |
Difenoconazole * | — | — | 100 | 95 | 50 | 15 |
Azoxystrobin * | — | — | 100 | 100 | 100 | 100 |
Table 5 Control effect(%) of target compounds 4a─4c and 6a─6x against Soybean rust
Compd. | n | R | Control effect(%) | |||
---|---|---|---|---|---|---|
12.50 mg/L | 6.25 mg/L | 3.13 mg/L | 1.56 mg/L | |||
4a | 2 | Boc | 95 | 50 | 20 | 0 |
4b | 3 | Boc | 96 | 30 | 0 | 0 |
4c | 4 | Boc | 80 | 0 | 0 | 0 |
6a | 2 | CH3 | 20 | 0 | 0 | 0 |
6b | 2 | CH2CH3 | 0 | 0 | 0 | 0 |
6c | 2 | cyclo⁃C3H5 | 90 | 85 | 0 | 0 |
6d | 2 | Ph | 100 | 90 | 30 | 0 |
6e | 2 | Bn | 0 | 0 | 0 | 0 |
6f | 2 | 2⁃F⁃Ph | 98 | 95 | 80 | 35 |
6g | 2 | 3⁃F⁃Ph | 85 | 60 | 50 | 0 |
6h | 2 | 4⁃F⁃Ph | 85 | 40 | 30 | 0 |
6i | 2 | 2⁃Cl⁃Ph | 98 | 95 | 90 | 50 |
6j | 2 | 3⁃Cl⁃Ph | 30 | 0 | 0 | 0 |
6k | 2 | 4⁃Cl⁃Ph | 90 | 20 | 0 | 0 |
6l | 2 | 2⁃Br⁃Ph | 70 | 50 | 20 | 0 |
6m | 2 | 2⁃CF3⁃Ph | 98 | 90 | 80 | 0 |
6n | 2 | 2⁃CN⁃Ph | 98 | 95 | 90 | 70 |
6o | 2 | 2⁃NO2⁃Ph | 70 | 50 | 20 | 0 |
6p | 2 | 2⁃CH3⁃Ph | 60 | 20 | 0 | 0 |
6q | 2 | 3⁃CH3⁃Ph | 100 | 95 | 70 | 10 |
6r | 2 | 4⁃CH3⁃Ph | 100 | 90 | 40 | 0 |
6s | 3 | Ph | 50 | 20 | 0 | 0 |
6t | 3 | 2⁃F⁃Ph | 96 | 92 | 50 | 0 |
6u | 3 | 2⁃Cl⁃Ph | 90 | 70 | 20 | 0 |
6v | 4 | Ph | 60 | 30 | 0 | 0 |
6w | 4 | 2⁃F⁃Ph | 95 | 70 | 60 | 10 |
6x | 4 | 2⁃Cl⁃Ph | 90 | 50 | 40 | 0 |
Flufenoxadiazam | — | — | 100 | 100 | 30 | 0 |
Difenoconazole * | — | — | 100 | 95 | 50 | 15 |
Azoxystrobin * | — | — | 100 | 100 | 100 | 100 |
Compd. | Cpm a | Cpm a | Cr a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 mg/L | 6.25 mg/L | 0.39 mg/L | 100 mg/L | 6.25 mg/L | 0.39 mg/L | 6.25 mg/L | 1.56 mg/L | 0.39 mg/L | |||
6n | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 0 | ||
Flufenoxadiazam | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 50 | ||
Fluxapyroxad b | 100 | 100 | 98 | — c | — | — | — | — | — | ||
Fenaminstrobin b | — c | — | — | 100 | 100 | 100 | — | — | — | ||
Azoxystrobin b | — | — | — | — | — | — | 100 | 100 | 100 |
Table 6 Control effect(%) of compound 6n
Compd. | Cpm a | Cpm a | Cr a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 mg/L | 6.25 mg/L | 0.39 mg/L | 100 mg/L | 6.25 mg/L | 0.39 mg/L | 6.25 mg/L | 1.56 mg/L | 0.39 mg/L | |||
6n | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 0 | ||
Flufenoxadiazam | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 50 | ||
Fluxapyroxad b | 100 | 100 | 98 | — c | — | — | — | — | — | ||
Fenaminstrobin b | — c | — | — | 100 | 100 | 100 | — | — | — | ||
Azoxystrobin b | — | — | — | — | — | — | 100 | 100 | 100 |
1 | Li D. D., Zhang S. S., Song Z. H., Wang G. T., Li S. K., Eur. J. Med. Chem., 2017, 136, 114—121 |
2 | Wang L. L., Li C., Zhang Y. Y., Qiao C. H., Ye Y. H., J. Agr. Food Chem., 2013, 61(36), 8632—8640 |
3 | Price C. L., Parker J. E., Warrilow A. G. S., Kelly D. E., Kelly S. L., Pest Manag. Sci., 2015, 71(8), 1054—1058 |
4 | Li Q., Zhang X. M., J. Agriculture, 2018, 8(4), 23—27 |
李琼, 张晓明. 农学学报, 2018, 8(4), 23—27 | |
5 | Wingter C., Fehr M., In Recent Highlights in the Discovery and Optimization of Crop Protection Products, Elsevier, Amsterdam, 2021, 401—423 |
6 | Gao J., Zhou M. G., Modern Agrochemicals, 2022, 21(5), 7—12, 33 |
高静, 周明国. 现代农药, 2022, 21(5), 7—12, 33 | |
7 | Liu M. Z., Pei H. Y., Zhang J., Zhang L. X., Modern Agrochemicals, 2020, 19(6), 11—21 |
刘梦竹, 裴鸿艳, 张静, 张立新. 现代农药, 2020, 19(6), 11—21 | |
8 | Nazir M., Abbasi M. A., Aziz⁃ur⁃Rehman, Siddiqui S. Z., Khan K. M., Kanwal, Salar U., Shahid M., Ashraf M., Lodhi M. A., Khan F. A., Bioorg. Chem., 2018, 81, 253—263 |
9 | Cui J. G., Pang L. P., Liu C., Sheng H. B., Gan C. F., Zhan J. Y., Liu X. L., Pang C. L., Huang Y. M., Chemical Reagents, 2018, 40(7), 612—622 |
崔建国, 庞丽萍, 刘畅, 盛海兵, 甘春芳, 展军颜, 刘晓兰, 庞春玲, 黄燕敏. 化学试剂, 2018, 40(7), 612—622 | |
10 | Liu B., Xu X. N., Zhu Z. J., Tong H. J., Zhang Y. M., Tang W. Q., Chem. Bull., 2021, 84(4), 383—387, 399 |
刘斌, 徐小娜, 朱周静, 仝红娟, 张彦民, 唐文强. 化学通报, 2021, 84(4), 383—387, 399 | |
11 | Huang T. H., Tu H. Y., Liu M., Hou C. J., Zhang A. D.,Chin. J. Org. Chem., 2011, 31(6), 891—896 |
黄统辉, 涂海洋, 刘名, 侯昌健, 张爱东. 有机化学, 2011, 31(6), 891—896 | |
12 | Shi J. M.,Huo J. Q., Zhang Z., Zhang J. L., Chin. J. Pesticide Sci., 2016, 18(4), 530—534 |
时佳妹, 霍静倩, 张哲, 张金林. 农药学学报, 2016, 18(4), 530—534 | |
13 | Oliveira V. S., Pimenteira C., da Silva⁃Alves D. C. B., Leal L. L. L., Neves⁃Filho R. A. W., Navarro D. M. A. F., Santos G. K. N., Dutra K. A., dos Anjos J. V., Soares T. A., Bioorg. Med. Chem., 2013, 21(22), 6996—7003 |
14 | Xie S. S., He J. G., Zhang M., Hou S., Zhang B. J., Ding X. F., Hu Z., Sun R. F., Agrochemicals, 2020, 59(5), 332—338 |
谢世爽, 贺建国, 张萌, 侯帅, 张北京, 丁晓帆, 胡展, 孙然锋. 农药, 2020, 59(5), 332—338 | |
15 | Tian K. Q., Liu X. X., Wang J., Zhang P., Chemical Reagents, 2015, 37(7), 608—612 |
田克情, 刘晓欣, 王娇, 张萍. 化学试剂, 2015, 37(7), 608—612 | |
16 | Zhang L. T., Su J. Y., Xu X. Y., Chin. J. Org. Chem., 2021, 41(9), 3539—3549 |
章乐天, 苏嘉媛, 徐晓勇. 有机化学, 2021, 41(9), 3539—3549 | |
17 | Zhang J., Jin C. F., Zhang Y. J., Chin. J. Org. Chem., 2014, 34(4), 662—680 |
张霁, 金传飞, 张英俊. 有机化学, 2014, 34(4), 662—680 | |
18 | Wieja A., Winter C., Rosenbaum C., Kremzow⁃Graw D., Roehl F., Rheinheimer J., Poonoth M., Terteryan V., Haden E., Escribano C. A., Achenbach J. H., Mentzel T.,Wiebe C., Use of Substituted Oxadiazoles for Combating Phytopathogenic Fungi, WO2015185485⁃A1, 2015⁃12⁃10 |
19 | Brunet S., Desbordes P., Ducerf S., Dufoyr J., Goertz A., Gourgues M., Hilt E., Naud S., Rebstock A., Thomas V., Vernay A., Villalba F., Gortz A., Fungicidal Oxadiazoles, WO2019155066⁃A1, 2019⁃8⁃15 |
20 | Quintero P. M. A., Terteryan⁃Seiser V., Grammenos W., Wiebe C., Montag J., Coquiller M., Neumann T., Fungicidal Mixture Comprising Substituted 3⁃phenyl-5⁃(trifluoromethyl)⁃1,2,4⁃oxadiazoles, WO2019115511, 2019⁃6⁃20 |
21 | Hoffman T. J., Stierli D., Pitterna T., Beaudegnies R., Rajan R., Microbiocidal Oxadiazoles Derivatives, WO 2019097054⁃A1, 2019⁃ 5⁃23 |
22 | Cai J., Wei H. T., Hong K. H., Wu X. Q., Cao M., Zong X., Li L. S., Sun C. L., Chen J. Q., Ji M., Eur. J. Med. Chem., 2015, 96, 1—13 |
23 | Benassi A., Doria F., Pirota V., Int. J. Mol. Sci., 2020, 21(22), 8692 |
24 | Good J. A. D., Silver J., Nunez⁃Otero C., Bahnan W., Krishnan K. S., Salin O., Engstrom P., Svensson R., Artursson P., Gylfe A., Bergstrom S., Almqvist F., J. Med. Chem., 2016, 59(5), 2094—2108 |
25 | Wang P. Y., Shao W. B., Xue H. T., Fang H. S., Zhou J., Wu Z. B., Song B. A., Yang S., Res. Chem. Intermed., 2017, 43(11), 6115—6130 |
26 | Xu Q. B., Liang P. B., Lu H. Z., Jin S. H., Dong Y. H., Zhang J. J., Chin. J. Org. Chem., 2021, 41(8), 3116—3125 |
许庆博, 梁培博, 路慧哲, 金淑惠, 董燕红, 张建军. 有机化学, 2021, 41(8), 3116—3125 | |
27 | Zhang H. Y., Liu M. Y., Yan G., Shi D. Q., Chin. J. Appl. Chem., 2016, 33(6), 668—676 |
张瀚匀, 刘曼赟, 严刚, 石德清. 应用化学, 2016, 33(6), 668—676 | |
28 | Li L., Li M., Chai B. S., Yang J. C., Song Y. Q., Liu C. L., Chem. J. Chinese Universities, 2016, 37(9), 1649—1654 |
李林,李淼, 柴宝山, 杨吉春, 宋玉泉, 刘长令. 高等学校化学学报, 2016, 37(9), 1649—1654 | |
29 | Wang F., Liu D. D., Zhu C., Zhang J., Zhang L. X., Agrochemicals, 2022, 61(5), 326—328 |
王锋, 刘东东, 朱晨, 张静,张立新. 农药, 2022, 61(5), 326—328 |
[1] | 杨威, 刘佳琦, 唐翠曼, 仉昊楠, 王兵兵, 孙钟, 徐小惠. 铜催化醇与氨基吡啶在有氧条件下合成酰胺[J]. 高等学校化学学报, 2023, 44(8): 20230029. |
[2] | 杨颖楠, 孙启明. EAB分子筛的合成及在甲醇制烯烃反应中的应用[J]. 高等学校化学学报, 2023, 44(8): 20230119. |
[3] | 冯瑞沁, 方云, 樊晔, 夏咏梅. 金纳米花的简易合成及催化硼氢化钠还原对硝基酚性能[J]. 高等学校化学学报, 2023, 44(8): 20230027. |
[4] | 任毅, 阚媛媛, 孙延娜, 李建丰, 高珂. 石墨炔在光伏领域的研究进展[J]. 高等学校化学学报, 2023, 44(7): 20220752. |
[5] | 刘金露, 郭嘉禹, 华佳, 李光华, 施展, 冯守华. 一种酰胺基Cu-MOF的构筑与吸附性能研究[J]. 高等学校化学学报, 2023, 44(6): 20220746. |
[6] | 刘高远, 刘跃含, 赵丽娜, 郭玉鹏. 天冬氨酸调控糖果状碳酸钙的仿生合成及性能[J]. 高等学校化学学报, 2023, 44(6): 20220769. |
[7] | 卞宣昂, 周超, 赵运宣, 张铁锐. 基于水滑石衍生钌催化剂光驱动合成氨的研究[J]. 高等学校化学学报, 2023, 44(6): 20230095. |
[8] | 张潇然, 郑建云, 吕艳红, 王双印. 绿色路径C-N偶联合成尿素的最新研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220717. |
[9] | 李瑞松, 苗政培, 李静, 田新龙. 中空贵金属纳米材料氧还原催化的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220730. |
[10] | 曹舒杰, 李泓君, 管文丽, 任梦田, 周传政. 硫代磷酸酯寡聚核苷酸的立体控制合成研究进展[J]. 高等学校化学学报, 2023, 44(3): 20220304. |
[11] | 林俊旭, 习志威, 李志平, 王迎春. 钯催化炔丙醇与叔丁基异腈选择性合成吡咯并呋喃衍生物和氨基甲酸酯[J]. 高等学校化学学报, 2023, 44(2): 20220473. |
[12] | 陈伟, 兰雨欣, 金彦西, 陈阳, 吴润, 储承文, 高焉凤. 新型螺环四氢喹啉衍生物的设计、合成及抑菌活性[J]. 高等学校化学学报, 2023, 44(10): 20230179. |
[13] | 戚刚刚, 孟祥举. 中国沸石分子筛基础研究近年来的突破性进展[J]. 高等学校化学学报, 2023, 44(10): 20230227. |
[14] | 韩东阳, 任宇祥, 杨子毅, 黄赫, 郑基深. 分裂内含肽: 一种高效的无痕多肽片段连接工具[J]. 高等学校化学学报, 2023, 44(10): 20230188. |
[15] | 邹莹莹, 张超琪, 袁玲, 刘超, 余承忠. 金属-有机框架衍生中空超级结构的研究进展: 合成与应用[J]. 高等学校化学学报, 2023, 44(1): 20220613. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||