高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (7): 20220752.doi: 10.7503/cjcu20220752
任毅1, 阚媛媛2, 孙延娜2(), 李建丰1(
), 高珂2(
)
收稿日期:
2022-12-09
出版日期:
2023-07-10
发布日期:
2023-01-15
通讯作者:
孙延娜,李建丰,高珂
E-mail:ynsun@sdu.edu.cn;ljfpyc@163.com;kegao@sdu.edu.cn
基金资助:
REN Yi1, KAN Yuanyuan2, SUN Yanna2(), LI Jianfeng1(
), GAO Ke2(
)
Received:
2022-12-09
Online:
2023-07-10
Published:
2023-01-15
Contact:
SUN Yanna, LI Jianfeng, GAO Ke
E-mail:ynsun@sdu.edu.cn;ljfpyc@163.com;kegao@sdu.edu.cn
Supported by:
摘要:
石墨炔由拓扑有序的sp和sp2碳原子构成, 具有丰富的碳化学键、 大的共轭体系及优良的化学稳定性等独特优势, 在催化、 能源存储与转换等领域展现出巨大的应用潜力. 本文聚焦石墨炔的可控合成, 综合评述了石墨炔应用于不同类型太阳能电池的研究进展, 讨论了石墨炔材料在提高器件性能方面的作用机制. 最后, 对石墨炔未来在光伏领域应用研究的机遇和挑战进行了展望.
中图分类号:
TrendMD:
任毅, 阚媛媛, 孙延娜, 李建丰, 高珂. 石墨炔在光伏领域的研究进展. 高等学校化学学报, 2023, 44(7): 20220752.
REN Yi, KAN Yuanyuan, SUN Yanna, LI Jianfeng, GAO Ke. Research Progress of Graphdiyne-based Materials in Photovoltaic Applications. Chem. J. Chinese Universities, 2023, 44(7): 20220752.
Fig.1 Graphdiyne⁃based materials in photovoltaic applications[39,43,45]Copyright 2015, Wiley-VCH; Copyright 2020, Wiley-VCH; Copyright 2016, Wiley-VCH.
Fig.2 Synthesis and characterization of graphdiyne⁃based materials(A) Illustration for the synthesis of GDY[49]; (B) SEM image of GDY; (C, D) TEM images of GDY; (E) SAED pattern of GDY; (F, G) XPS spectra of GDY film[50]. (A) Copyright 2017, Wiley-VCH; (B—G) Copyright 2017, American Chemical Society.
Material | Conductivity/(S·m-1) | Band gap/eV | Interlayer spacing/nm | Electron mobility/(cm2·V-1·s-1) | Ref. |
---|---|---|---|---|---|
GDY | 2.52×10-4 | 0.44—1.47 | 0.405 | 10-5 | [ |
GDYO | 6.26×10-5 | 0.376 | [ | ||
Cl⁃GDY | 1.97×10-3 | 0.376 | 9.378×10-4 | [ | |
HsGDY | 1.02×10-3 | 0.75 | 0.419 | [ | |
F⁃GDY | 9.66×10-4 | 2.15 | 0.373 | [ | |
Tra⁃GD | 1.1×10-3 | 1.76 | 0.377 | [ |
Table 1 Performance for different graphdiyne
Material | Conductivity/(S·m-1) | Band gap/eV | Interlayer spacing/nm | Electron mobility/(cm2·V-1·s-1) | Ref. |
---|---|---|---|---|---|
GDY | 2.52×10-4 | 0.44—1.47 | 0.405 | 10-5 | [ |
GDYO | 6.26×10-5 | 0.376 | [ | ||
Cl⁃GDY | 1.97×10-3 | 0.376 | 9.378×10-4 | [ | |
HsGDY | 1.02×10-3 | 0.75 | 0.419 | [ | |
F⁃GDY | 9.66×10-4 | 2.15 | 0.373 | [ | |
Tra⁃GD | 1.1×10-3 | 1.76 | 0.377 | [ |
Fig.3 Application of graphdiyne⁃based materials in OSCs(A) Schematic illustration of OSCs device structure; (B) PCE of devices depicted as standard box plots; (C) chemical structure of GCl; (D) J-V characteristics of devices[43]; (E) the J-V curves of the control and GOMe-treated BHJ and LbL devices: BHJ∶D+A (purple line), BHJ∶D+A+GOMe(1%, mass fraction, blue line), LbL∶D/A(yellow line), and LbL∶D+GOMe(0.5%, mass fraction)/A+GOMe(0.5%, mass fraction)(red line); inset: the diagram of molecule arrangements and possible physical dynamics in the control and GOMe-treated BHJ and LbL films[44].(A—D) Copyright 2020, Wiley-VCH; (E) Copyright 2022, Cell Press.
Material | Strategy | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GCl | Solid additive | 15.61% | 17.32% | [ |
GOMe | Solid additive | 15.15% | 17.18% | [ |
GDYO | Modified hole transport material | 15.7% | 17.5% | [ |
Table 2 Graphdiyne-based materials in OSCs
Material | Strategy | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GCl | Solid additive | 15.61% | 17.32% | [ |
GOMe | Solid additive | 15.15% | 17.18% | [ |
GDYO | Modified hole transport material | 15.7% | 17.5% | [ |
Fig.4 Graphdiyne⁃based materials in the active layer of PSCs(A) Device structure of the PSCs; (B) data obtained from forward bias to short circuit(FB-SC) and from short circuit to forward bias(SC-FB) of the devices with or without GD[85]; (C) schematic illustration of the PSCs; (D) the quantum dots architecture of GD; (E) comparison of the reference and GD QDs-optimized perovskite solar cells for J⁃V characteristics under both reverse and forward scan directions, normalized PCE of the unencapsulated reference and optimized perovskite solar cells after ageing: in air(relative humidity of ca. 45%) for different times(F); after annealing at 80 °C for different times(G); and under continuous UV irradiation(5 mW/cm2) at N2 atmosphere for different times(H)[38].(A, B) Copyright 2018, American Chemical Society; (C—H) Copyright 2018, Wiley-VCH.
Fig.5 Adding graphdiyne to hole transport layer of PSCs[39](A) Schematic diagram of the P3HT hole-transporting material modified with GDY; (B) UV-Vis transmittance spectra of P3HT/GDY; (C) normalized time-resolved PL spectra of P3HT/GDY; (D) J-V characteristics of PSCs; (E) incident-photon-to-current conversion effciency(IPCE) spectra of PSCs.Copyright 2015, Wiley-VCH.
Fig.6 Doping GDY in common PSCs[93](A) Device structure of the perovskite planar heterojunction solar cells; (B) cross-section SEM image of a typical perovskite device with C-PCBSD:GD based ETL; (C) molecule structures of PCBSD and graphdiyne and schematic illustration for the face on stacked C-PCBSD film owing to the π-π stacking interaction(inset) and the J⁃V curves of the champion device under AM 1.5 G illumination of 100 mW/cm2 and in the dark.Copyright 2018, American Chemical Society.
Material | Modified part | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GDY | MAPbI3 | 16.69% | 21.01% | [ |
GDY | FA0.85MA0.15Pb(I0.85Br0.15)3 | 20.06% | 20.55% | [ |
GDY | TiO2 + MAPbI3 + Spiro⁃OMeTAD | 17.17% | 19.89% | [ |
GDY | CH3NH3PbI3 | 16.7% | 18.5% | [ |
N⁃GDY | CH3NH3PbI3 | 19.64% | 22.38% | [ |
GDY | P3HT | 11.11% | 13.17% | [ |
GDY | P3CT⁃K | 16.80% | 19.50% | [ |
GDYO | NiO x | 16.31% | 18.16% | [ |
GDY | Spiro⁃OMeTAD | 19.94% | 22.17% | [ |
GDY | PCBM | 13.6% | 14.8% | [ |
GDY | PCBSD | 17.38% | 20.19% | [ |
GDY | PCBM + ZnO | 16.59% | 20.00% | [ |
GDY | SnO2 | 18.79% | 20.74% | [ |
GDY⁃Tz⁃CH2(CH2)16CH3 | PCBM | 16.24% | 19.26% | [ |
Table 3 Graphdiyne-based materials in PSCs
Material | Modified part | Pre⁃optimized PCE | Optimized PCE | Ref. |
---|---|---|---|---|
GDY | MAPbI3 | 16.69% | 21.01% | [ |
GDY | FA0.85MA0.15Pb(I0.85Br0.15)3 | 20.06% | 20.55% | [ |
GDY | TiO2 + MAPbI3 + Spiro⁃OMeTAD | 17.17% | 19.89% | [ |
GDY | CH3NH3PbI3 | 16.7% | 18.5% | [ |
N⁃GDY | CH3NH3PbI3 | 19.64% | 22.38% | [ |
GDY | P3HT | 11.11% | 13.17% | [ |
GDY | P3CT⁃K | 16.80% | 19.50% | [ |
GDYO | NiO x | 16.31% | 18.16% | [ |
GDY | Spiro⁃OMeTAD | 19.94% | 22.17% | [ |
GDY | PCBM | 13.6% | 14.8% | [ |
GDY | PCBSD | 17.38% | 20.19% | [ |
GDY | PCBM + ZnO | 16.59% | 20.00% | [ |
GDY | SnO2 | 18.79% | 20.74% | [ |
GDY⁃Tz⁃CH2(CH2)16CH3 | PCBM | 16.24% | 19.26% | [ |
Fig.7 Improvement of QDSCs properties with graphdiyne materials[45](A) Schematic illustration of the QDSCs with GD anode buffer layer; (B) high magnification TEM image of dispersed GD; (C) J-V characteristics under simulated AM 1.5 G irradiation.Copyright 2016, Wiley-VCH.
1 | Yahya M., Bouziani A., Ocak C., Seferoğlu Z., Sillanpää M., Dyes Pigm., 2021, 192, 109227 |
2 | Ma X. Q., Process. Chem., 2022, 34(5), 1042 |
马晓清. 化学进展, 2022, 34(5), 1042 | |
3 | Zeng L., Wang L., Qin J., Ren Y., Li H., Lu X., Lu F., Tong J., Li J., Opt. Mater., 2023, 136, 113404 |
4 | Liu J., Liu X., Chen C., Wang Q., Li H., Ren Y., Shen H., Lu X., Yang C., Tong J., Li J., Opt. Mater., 2023, 135, 113288 |
5 | Tang J., Liu H., Zhitomirsky D., Hoogland S., Wang X., Furukawa M., Levina L., Sargent E. H., Nano Lett., 2012, 12(9), 4889—4894 |
6 | Xue R., Zhang J., Li Y., Li Y., Small, 2018, 14(41), 1801793 |
7 | Wu T., Qin Z., Wang Y., Wu Y., Chen W., Zhang S., Cai M., Dai S., Zhang J., Liu J., Zhou Z., Liu X., Segawa H., Tan H., Tang Q., Fang J., Li Y., Ding L., Ning Z., Qi L., Zhang Y., Han L., Nano⁃Micro Lett., 2021, 13(1), 1—18 |
8 | Lee C. P., Li C. T., Ho K. C., Mater. Today, 2017, 20(5), 267—283 |
9 | Yang M., Wei W., Zhou X., Wang Z., Duan C., Energy Mater., 2021, 1(1), 100008 |
10 | Zhang Y., Duan C., Ding L., Sci. Bull., 2020, 65(24), 2040—2042 |
11 | Bai Y., Huang Z., Zhang X., Lu J., Niu X., He Z., Zhu C., Xiao M., Song Q., Wei X., Science, 2022, 378(6621), 747—754 |
12 | Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Nat. Mater., 2022, 21(6), 656—663 |
13 | Ding Y., Mo L. E., Tao L., Ma Y. M., Hu L. H., Huang Y., Fang X. Q., Yao J. X., Xi X. W., Dai S. Y., J. Power Sources, 2014, 272, 1046—1052 |
14 | Neo D. C. J., Cheng C., Stranks S. D., Fairclough S. M., Kim J. S., Kirkland A. I., Smith J. M., Snaith H. J., Assender H. E., Watt A. A. R., Chem. Mater., 2014, 26(13), 4004—4013 |
15 | Kwon S., Kang H., Lee J. H., Lee J., Hong S., Kim H., Lee K., Adv. Energy Mater., 2017, 7(10), 1601496 |
16 | Feng Y. Q., Cui H., Yan G. J., Zhang B., Fine Chem., 2022, 39(9), 1739—1746 |
冯亚青, 崔宏, 严桂俊, 张宝. 精细化工, 2022, 39(9), 1739—1746 | |
17 | Liu Y., Gao Y., He F., Xue Y., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202005 |
18 | Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118(16), 7744—7803 |
19 | Fang Y., Liu Y., Qi L., Xue Y., Li Y., Chem. Soc. Rev., 2022, 51, 2681—2709 |
20 | Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46(19), 3256—3258 |
21 | An J., Zhang H., Qi L., Li G., Li Y., Angew. Chem. Int. Ed., 2022, 61(7), e202113313 |
22 | Zhang C., Li Y., Chem. Res. Chinese Universities, 2021, 37(6), 1149—1157 |
23 | Zheng Z., He F., Xue Y., Li Y., Chem. Res. Chinese Universities, 2022, 38(1), 92—98 |
24 | Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., J. Am. Chem. Soc., 2019, 141(27), 10677—10683 |
25 | Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9(1), 1—10 |
26 | Yu H., Xue Y., Hui L., Zhang C., Fang Y., Liu Y., Chen X., Zhang D., Huang B., Li Y., Natl. Sci. Rev., 2021, 8(8), 213 |
27 | Zhang D., Xue Y., Zheng X., Zhang C., Li Y., Natl. Sci. Rev., 2023, 10, nwac209 |
28 | Hui L., Zhang X., Xue Y., Chen X., Fang Y., Xing C., Liu Y., Zheng X., Du Y., Zhang C., He F., Li Y., J. Am. Chem. Soc., 2022, 144(4), 1921—1928 |
29 | Wang R., Zhang H., Liu Q., Liu F., Han X., Liu X., Li K., Xiao G., Albert J., Lu X., Guo T., Nat. Commun., 2022, 13(1), 1—11 |
30 | Gao Y., Xue Y., He F., Li Y., Proc. Natl. Acad. Sci., 2022, 119(36), e2206946119 |
31 | He F., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202328 |
32 | Zheng X., Xue Y., Zhang C., Li Y., CCS Chem., 2022, doi: 10.31635/ccschem.022.202202189 |
33 | Zhao J. L., Huang C. D., J. Funct. Mater., 2022, 53(8), 8045—8053 |
赵金良, 黄成德. 功能材料, 2022, 53(8), 8045—8053 | |
34 | Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Adv. Mater., 2019, 31(42), 1803202 |
35 | Gao Y., Xue Y., Qi L., Xing C., Zheng X., He F., Li Y., Nat. Commun., 2022, 13(1), 1—11 |
36 | Zhao Y., Yang N., Yu R., Zhang Y., Zhang J., Li Y., Wang D., EnergyChem, 2020, 2(5), 100041 |
37 | Zhu M., Dong Y., Xu J., Zhang B., Feng Y., J. Mater. Sci., 2019, 54(6), 4893—4904 |
38 | Zhang X., Wang Q., Jin Z., Chen Y., Liu H., Wang J., Li Y., Liu S., Adv. Mater. Interfaces, 2018, 5(2), 1701117 |
39 | Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., Li Y., Adv. Energy Mater., 2015, 5(8), 1401943 |
40 | Qiu L., He S., Ono L. K., Qi Y., Adv. Energy Mater., 2020, 10(13), 1902726 |
41 | Luo Z., Liu T., Yan H., Zou Y., Yang C., Adv. Funct. Mater., 2020, 30(46), 2004477 |
42 | Cheng P., Zhan X., Chem. Soc. Rev., 2016, 45(9), 2544—2582 |
43 | Liu L., Kan Y., Gao K., Wang J., Zhao M., Chen H., Zhao C., Jiu T., Jen A. K. Y., Li Y., Adv. Mater., 2020, 32(11), 1907604 |
44 | Sun Y., Nian L., Kan Y., Ren Y., Chen Z., Zhu L., Zhang M., Yin H., Xu H., Li J., Joule, 2022, 6(12), 2835—2848 |
45 | Jin Z., Yuan M., Li H., Yang H., Zhou Q., Liu H., Lan X., Liu M., Wang J., Sargent E. H., Li Y., Adv. Funct. Mater., 2016, 26(29), 5284—5289 |
46 | Li Y., Xu L., Liu H., Li Y., Chem. Soc. Rev., 2014, 43(8), 2572—2586 |
47 | Wu L., Dong Y., Zhao J., Ma D., Huang W., Zhang Y., Wang Y., Jiang X., Xiang Y., Li J., Feng Y., Xu J., Zhang H., Adv. Mater., 2019, 31(14), 1807981 |
48 | Yan H., Guo S., Wu F., Yu P., Liu H., Li Y., Mao L., Angew. Chem. Int. Ed., 2018, 57(15), 3922—3926 |
49 | Liu R., Gao X., Zhou J., Xu H., Li Z., Zhang S., Xie Z., Zhang J., Liu Z., Adv. Mater., 2017, 29(18), 1604665 |
50 | Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., J. Am. Chem. Soc., 2017, 139(8), 3145—3152 |
51 | Zhou W., Shen H., Zeng Y., Yi Y., Zuo Z., Li Y., Li Y., Angew. Chem. Int. Ed., 2020, 59(12), 4908—4913 |
52 | He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy Environ. Sci., 2018, 11(10), 2893—2903 |
53 | He J., Wang N., Cui Z., Du H., Fu L., Huang C., Yang Z., Shen X., Yi Y., Tu Z., Li Y., Nat. Commun., 2017, 8(1), 1—11 |
54 | Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Angew. Chem., 2017, 129(36), 10880—10885 |
55 | Xue Y., Guo Y., Yi Y., Li Y., Liu H., Li D., Yang W., Li Y., Nano Energy, 2016, 30, 858—866 |
56 | Zhang S., Du H., He J., Huang C., Liu H., Cui G., Li Y., ACS Appl. Mater. Interfaces, 2016, 8(13), 8467—8473 |
57 | Gao X., Zhu Y., Yi D., Zhou J., Zhang S., Yin C., Ding F., Zhang S., Yi X., Wang J., Tong L., Han Y., Liu Z., Zhang J., Sci. Adv., 2018, 4(7), 6378 |
58 | Chen S., Pan Q., Li J., Zhao C., Guo X., Zhao Y., Jiu T., Sci. China Mater., 2020, 63(12), 2465—2476 |
59 | Li J., Chen Y., Guo J., Wang F., Liu H., Li Y., Adv. Funct. Mater., 2020, 30(42), 2004115 |
60 | Ma K., Wu J., Wang X., Sun Y., Xiong Z., Dai F., Bai H., Xie Y., Kang Z., Zhang Y., Angew. Chem., 2022, 134(42), e202211094 |
61 | Sakamoto R., Fukui N., Maeda H., Matsuoka R., Toyoda R., Nishihara H., Adv. Mater., 2019, 31(42), 1804211 |
62 | Li L., Zuo Z., Wang F., Gao J., Cao A., He F., Li Y., Adv. Mater., 2020, 32(14), 2000140 |
63 | Ma R., Zhou K., Sun Y., Liu T., Kan Y., Xiao Y., Peña T. A. D., Li Y., Zou X., Xing Z., Matter, 2022, 5(2), 725—734 |
64 | Liu T., Yang T., Ma R., Zhan L., Luo Z., Zhang G., Li Y., Gao K., Xiao Y., Yu J., Joule, 2021, 5(4), 914—930 |
65 | Jiang M., Bai H., Zhi H., Yan L., Woo H. Y., Tong L., Wang J., Zhang F., An Q., Energy Environ. Sci., 2021, 14(7), 3945—3953 |
66 | Chen H., Zhao T., Li L., Tan P., Lai H., Zhu Y., Lai X., Han L., Zheng N., Guo L., He F., Adv. Mater., 2021, 33(37), 2102778 |
67 | Ma L., Zhang S., Zhu J., Wang J., Ren J., Zhang J., Hou J., Nat. Commun., 2021, 12(1), 1—12 |
68 | Shen H., Wan L., Fu Z., Xue L., Liu J., Han S., Du S., Lu F., Li J., Opt. Mater., 2023, 135, 113219 |
69 | Ding Y., Zhang X., Feng H., Ke X., Meng L., Sun Y., Guo Z., Cai Y., Jiao C., Wan X., Li C., Zheng N., Xie Z., Chen Y., ACS Appl. Mater. Interfaces, 2020, 12(24), 27425—27432 |
70 | Gao K., Deng W., Xiao L., Hu Q., Kan Y., Chen X., Wang C., Huang F., Peng J., Wu H., Nano Energy, 2016, 30, 639—648 |
71 | Gao H. H., Sun Y., Wan X., Kan B., Ke X., Zhang H., Li C., Chen Y., Sci. China Mater., 2017, 60(9), 819—828 |
72 | Ye L., Hu H., Ghasemi M., Wang T., Collins B. A., Kim J. H., Jiang K., Carpenter J. H., Li H., Li Z., McAfee T., Zhao J., Chen X., Lai J., Ma T., Bredas J., Yan H., Ade H., Nat. Mater., 2018, 17(3), 253—260 |
73 | Naveed H. B., Zhou K., Ma W., Acc. Chem. Res., 2019, 52(10), 2904—2915 |
74 | Li W., Xiao Z., Cai J., Smith J. A., Spooner E. L. K., Kilbride R. C., Game O. S., Meng X., Li D., Zhang H., Nano Energy, 2019, 61, 318—326 |
75 | Song J., Zhang M., Yuan M., Qian Y., Sun Y., Liu F., Small Methods, 2018, 2(3), 1700229 |
76 | Jiang M., Bai H. R., Zhi H. F., Sun J. K., Wang J. L., Zhang F., An Q., ACS Energy Lett., 2021, 6(8), 2898—2906 |
77 | Xue L., Liu X., Wang Q., Yang M., Du S., Yang C., Tong J., Xia Y., Li J., Energy Technol., 2022, 10(10), 2200504 |
78 | Liu L., Kan Y., Ran G., Zhao M., Jia Z., Chen S., Wang J., Chen H., Zhao C., Gao K., Zhang W., Jiu T., Sci. China Mater., 2022, 65(10), 2647—2656 |
79 | Wang J. X., Bi Z. N., Liang Z. R., Xu X. Q., Acta Phys. Sin., 2016, 65(5), 058801 |
王军霞, 毕卓能, 梁柱荣, 徐雪青. 物理学报, 2016, 65(5), 058801 | |
80 | Chen S., Shi G., Adv. Mater., 2017, 29(24), 1605448 |
81 | Hadadian M., Smått J. H., Correa B. J. P., Energy Environ. Sci., 2020, 13(5), 1377—1407 |
82 | Gao K., Zhu Z., Xu B., Jo S. B., Kan Y., Peng X., Jen A. K. Y., Adv. Mater., 2017, 29(47), 1703980 |
83 | Gao K., Xu B., Hong C., Shi X., Liu H., Li X., Xie L., Jen A. K. Y., Adv. Energy Mater., 2018, 8(22), 1800809 |
84 | Fu W., Wang J., Zuo L., Gao K., Liu F., Ginger D. S., Jen A. K. Y., ACS Energy Lett., 2018, 3(9), 2086—2093 |
85 | Li J., Jiu T., Chen S., Liu L., Yao Q., Bi F., Zhao C., Wang Z., Zhao M., Zhang G., Xue Y., Lu F., Li Y., Nano Lett., 2018, 18(11), 6941—6947 |
86 | Li H., Zhang R., Li Y., Li Y., Liu H., Shi J., Zhang H., Wu H., Luo Y., Li D., Li Y., Meng Q., Adv. Energy Mater., 2018, 8(30), 1802012 |
87 | Fan W., Zhang S., Xu C., Si H., Xiong Z., Zhao Y., Ma K., Zhang Z., Liao Q., Kang Z., Zhang Y., Adv. Funct. Mater., 2021, 31(34), 2104633 |
88 | Zhang J., Tian J., Fan J., Yu J., Ho W., Small, 2020, 16(13), 1907290 |
89 | Li J., Zhao M., Zhao C., Jian H., Wang N., Yao L., Huang C., Zhao Y., Jiu T., ACS Appl. Mater. Interfaces, 2018, 11(3), 2626—2631 |
90 | Tang J., Zhao M., Cai X., Liu L., Li X., Jiu T., Chem. Res. Chinese Universities, 2021, 37(6), 1309—1316 |
91 | Luan Y., Wang F., Zhuang J., Lin T., Wei Y., Chen N., Zhang Y., Wang F., Yu P., Mao L., Liu H., Wang J., EcoMat, 2021, 3(2), e12092 |
92 | Kuang C., Tang G., Jiu T., Yang H., Liu H., Li B., Luo W., Li X., Zhang W., Lu F., Fang J., Li Y., Nano Lett., 2015, 15(4), 2756—2762 |
93 | Li M., Wang Z. K., Kang T., Yang Y., Gao X., Hsu C. S., Li Y., Liao L. S., Nano Energy, 2018, 43, 47—54 |
94 | Li J., Jiu T., Duan C., Wang Y., Zhang H., Jian H., Zhao Y., Wang N., Huang C., Li Y., Nano Energy, 2018, 46, 331—337 |
95 | Zhang S., Si H., Fan W., Shi M., Li M., Xu C., Zhang Z., Liao Q., Sattar A., Kang Z., Zhang Y., Angew. Chem., 2020, 132(28), 11670—11679 |
96 | Chen Y., Li J., Wang F., Guo J., Jiu T., Liu H., Li Y., Nano Energy, 2019, 64, 103932 |
97 | Ren Y., Zhang D., Suo J., Cao Y., Eickemeyer F. T., Vlachopoulos N., Zakeeruddin S. M., Hagfeldt A., Grätzel M., Nature, 2022, 1—6 |
98 | Gong J., Sumathy K., Qiao Q., Zhou Z., Renewable Sustainable Energy Rev., 2017, 68, 234—246 |
99 | Gong J., Liang J., Sumathy K., Renewable Sustainable Energy Rev., 2012, 16(8), 5848—5860 |
100 | Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Wang D., Adv. Energy Mater., 2015, 5(12), 1500296 |
101 | Pan Z., Rao H., Mora S. I., Bisquert J., Zhong X., Chem. Soc. Rev., 2018, 47(20), 7659—7702 |
[1] | 张亿, 单通, 王焱, 钟洪亮. 以锗为桥接原子的受体材料及其在有机太阳能电池中的应用[J]. 高等学校化学学报, 2023, 44(7): 20230050. |
[2] | 张泽升, 邓宇鑫, 孔令晨, 罗妹, 王新康, 张连杰, 陈军武. 含9,10-二氟二噻吩并吩嗪杂环共轭聚合物的合成及有机太阳能电池性能[J]. 高等学校化学学报, 2023, 44(7): 20230148. |
[3] | 何韦, 陈飞, 李鸿祥, 王嘉宇, 秦家强, 崔宁博, 严岑琪, 程沛. 基于三氟苯甲酸自组装阳极界面层的高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230161. |
[4] | 时宇, 张榴, 国霞, 王阳, 肖海芹, 房进, 周祎, 张茂杰. 聚合物添加剂作为形貌调节剂提升全小分子有机太阳能电池的效率和稳定性[J]. 高等学校化学学报, 2023, 44(7): 20230047. |
[5] | 赵明新, 姚志刚, 刘中原, 徐文婧, 马晓玲, 张福俊. 逐层沉积型有机太阳能电池的研究进展[J]. 高等学校化学学报, 2023, 44(7): 20230120. |
[6] | 韦晚霞, 周先敏, 董馨韵, 刘铁峰, 谢聪, 程靖宇, 陈建平, 陆鑫, 冯凯, 周印华. 交联PEDOT∶F空穴传输层提升柔性有机光伏电池性能的研究[J]. 高等学校化学学报, 2023, 44(7): 20230069. |
[7] | 司文钦, 李腾飞, 林禹泽. 非对称稠环光伏电子受体[J]. 高等学校化学学报, 2023, 44(7): 20230149. |
[8] | 郭赟彤, 陈振宇, 葛子义. 不同卤化端基的非富勒烯受体对有机太阳能电池的影响[J]. 高等学校化学学报, 2023, 44(7): 20230084. |
[9] | 张永倩, 朱小玉, 苗俊辉, 刘俊, 王利祥. 烷基链支化位点对全稠环小分子受体聚集的影响[J]. 高等学校化学学报, 2023, 44(7): 20230068. |
[10] | 张有辉, 杨娜, 段娜, 程毓君, 游诗勇, 吴飞燕, 谌烈. 端基修饰聚合物给体制备高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230169. |
[11] | 方海盛, 梁世洁, 肖承义, 夏冬冬, 李韦伟. 基于刚性连接单元的双缆共轭高分子材料的合成及在单组分有机太阳能电池中的应用[J]. 高等学校化学学报, 2023, 44(7): 20230146. |
[12] | 陈海阳, 李欣琪, 丁俊源, 黄雨婷, 李耀文. 客体增塑剂调控非卤溶剂中聚合物给体预聚集行为制备高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230128. |
[13] | 卞宣昂, 周超, 赵运宣, 张铁锐. 基于水滑石衍生钌催化剂光驱动合成氨的研究[J]. 高等学校化学学报, 2023, 44(6): 20230095. |
[14] | 刘高远, 刘跃含, 赵丽娜, 郭玉鹏. 天冬氨酸调控糖果状碳酸钙的仿生合成及性能[J]. 高等学校化学学报, 2023, 44(6): 20220769. |
[15] | 王锡慧, 唐笑, 刘婷婷, 李艳虹, 荆川, 凌发令, 刘俊, 周贤菊, 姚璐, 周衡, 张家忠. TiO2提高富碳氮化碳的光生电荷存储性能[J]. 高等学校化学学报, 2023, 44(6): 20230028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||