高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (7): 20220222.doi: 10.7503/cjcu20220222
黄孝舜, 马海英, 柳淑娟, 王斌, 王红利, 钱波, 崔新江(), 石峰(
)
收稿日期:
2022-04-09
出版日期:
2022-07-10
发布日期:
2022-05-10
通讯作者:
崔新江,石峰
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
基金资助:
HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang(), SHI Feng(
)
Received:
2022-04-09
Online:
2022-07-10
Published:
2022-05-10
Contact:
CUI Xinjiang,SHI Feng
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
Supported by:
摘要:
二氧化碳直接利用较为困难, 因此先将其转化为环碳酸酯等二氧化碳衍生物, 进而间接转化为其它化学品是实现二氧化碳资源化利用的重要手段之一, 具有良好的应用前景. 本文综合评述了二氧化碳转化为环碳酸酯继而间接利用的近期研究进展, 重点介绍了环碳酸酯的加氢反应、 醇解反应和氨解反应中的均相和多相催化体系, 对反应机理进行了阐述, 并展望了该领域仍待解决的问题和发展前景.
中图分类号:
TrendMD:
黄孝舜, 马海英, 柳淑娟, 王斌, 王红利, 钱波, 崔新江, 石峰. 二氧化碳间接转化制化学品的研究进展. 高等学校化学学报, 2022, 43(7): 20220222.
HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals. Chem. J. Chinese Universities, 2022, 43(7): 20220222.
Year | Catalyst | Reaction condition | EC conv.(%) | MeOH sel.(%) | EG sel.(%) | Stability/h | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PH2/MPa | Solvent | |||||||
2012 | Ru?PNP | 140 | 0.5 | 5 | THF | 99 | 99 | 99 | — | [ |
2016 | Ru?NHC | 130 | 12 | 5 | 1,4?Dioxane | 99 | 42 | 92 | — | [ |
2017 | Ru?NHC | 140 | 24 | 5 | THF | 99 | 90 | 99 | — | [ |
2018 | Mn?PNN | 110 | 50 | 5 | Toluene | 99 | 99 | 99 | — | [ |
2015 | CuCr2O4 | 180 | 12 | 5 | THF | 99 | 60 | 92 | 48 | [ |
2015 | Cu?SiO2?PG | 160 | 10 | 6 | THF | 99 | 95 | 97 | 80 | [ |
2015 | Cu/HMS | 180 | — | 3 | 1,4?Dioxane | 99 | 74 | 99 | 100 | [ |
2018 | Cu/SiO2?β?P | 180 | 4 | 5 | THF | 53 | 61 | 99 | 20 | [ |
2018 | Cu/MCM?41 | 180 | — | 3 | 1,4?Dioxane | 98 | 71 | 96 | 60 | [ |
2021 | Cu?MoO x /SiO2 | 180 | — | 4 | 1,4?Dioxane | 99 | 89 | 99 | 150 | [ |
Table 1 Catalytic system of EC hydrogenation
Year | Catalyst | Reaction condition | EC conv.(%) | MeOH sel.(%) | EG sel.(%) | Stability/h | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PH2/MPa | Solvent | |||||||
2012 | Ru?PNP | 140 | 0.5 | 5 | THF | 99 | 99 | 99 | — | [ |
2016 | Ru?NHC | 130 | 12 | 5 | 1,4?Dioxane | 99 | 42 | 92 | — | [ |
2017 | Ru?NHC | 140 | 24 | 5 | THF | 99 | 90 | 99 | — | [ |
2018 | Mn?PNN | 110 | 50 | 5 | Toluene | 99 | 99 | 99 | — | [ |
2015 | CuCr2O4 | 180 | 12 | 5 | THF | 99 | 60 | 92 | 48 | [ |
2015 | Cu?SiO2?PG | 160 | 10 | 6 | THF | 99 | 95 | 97 | 80 | [ |
2015 | Cu/HMS | 180 | — | 3 | 1,4?Dioxane | 99 | 74 | 99 | 100 | [ |
2018 | Cu/SiO2?β?P | 180 | 4 | 5 | THF | 53 | 61 | 99 | 20 | [ |
2018 | Cu/MCM?41 | 180 | — | 3 | 1,4?Dioxane | 98 | 71 | 96 | 60 | [ |
2021 | Cu?MoO x /SiO2 | 180 | — | 4 | 1,4?Dioxane | 99 | 89 | 99 | 150 | [ |
Year | Catalyst | Reaction condition | Conv.(%) | Sel.(%) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | P/MPa | ||||||
2002 | Montmorillonite: Ni?Na?Li | 150 | 4 | — | 71.2 | 92.7 | — | [ |
2004 | n?Bu2N?MCM?41 | 150 | 3 | — | 42 | — | — | [ |
2006 | Amberlyst A?21 | 120 | — | — | 96 | — | — | [ |
2007 | MgO?CeO2(molar fraction | 150 | 3 | 0.2 MPa N2 | 64 | 95 | — | [ |
of Ce:24.4%) | ||||||||
2009 | Au/CeO2 | 140 | 6 | — | 40 | 47 | 4 | [ |
2010 | KF/Al2O3 | 80 | 4 | — | 70.9 | 98.1 | — | [ |
2011 | THA?MS41 | 180 | 4 | — | 78.4 | — | 4 | [ |
2011 | ZnO?Y2O3 | 65 | 1 | — | 55 | 98 | 6 | [ |
2013 | MgO@meso?SiO2 | 140 | — | — | 90 | — | — | [ |
2014 | CeO2?meso?400 | 140 | 2 | 0.6 MPa CO2 | 76 | 96 | 5 | [ |
2015 | HT?10 La?C | 60 | 4 | — | 73.8 | 100 | 6 | [ |
2015 | Zn?g?C3N4 | 160 | 4 | — | 84.2 | 98.9 | 5 | [ |
2017 | MgO/g?C3N4 | 140 | 4 | — | 81 | 87 | 4 | [ |
2017 | Mg3Fe0.85Ce0.15 LDHs | 70 | 3 | — | 87 | 100 | 7 | [ |
2017 | NiAl?CO3 LDHs | 90 | 4 | — | 83 | 81 | 3 | [ |
2018 | Ca?Al?F- | 60 | 2 | — | 65.9 | 95.3 | — | [ |
2018 | SrO/CeO2 | 150 | 5 | — | 82 | 87 | 4 | [ |
2017 | CeO2?R | 140 | 3 | 0.6 MPa N2 | 87.5 | 81.1 | 5 | [ |
2019 | Fe?Mn double metal cyanide | 140 | 3 | — | 49.4 | 96.1 | 4 | [ |
(molar ratio of Fe/Mn=1∶8) | ||||||||
2019 | GO?[Ap?im]OH | — | 4 | — | 94.5 | 99.9 | 6 | [ |
2021 | Poly(urea?IL)?5% | 110 | 6 | — | 82 | 97.5 | 5 | [ |
Table 2 Catalytic system of transesterification reaction between cyclic carbonate and alcohol
Year | Catalyst | Reaction condition | Conv.(%) | Sel.(%) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | P/MPa | ||||||
2002 | Montmorillonite: Ni?Na?Li | 150 | 4 | — | 71.2 | 92.7 | — | [ |
2004 | n?Bu2N?MCM?41 | 150 | 3 | — | 42 | — | — | [ |
2006 | Amberlyst A?21 | 120 | — | — | 96 | — | — | [ |
2007 | MgO?CeO2(molar fraction | 150 | 3 | 0.2 MPa N2 | 64 | 95 | — | [ |
of Ce:24.4%) | ||||||||
2009 | Au/CeO2 | 140 | 6 | — | 40 | 47 | 4 | [ |
2010 | KF/Al2O3 | 80 | 4 | — | 70.9 | 98.1 | — | [ |
2011 | THA?MS41 | 180 | 4 | — | 78.4 | — | 4 | [ |
2011 | ZnO?Y2O3 | 65 | 1 | — | 55 | 98 | 6 | [ |
2013 | MgO@meso?SiO2 | 140 | — | — | 90 | — | — | [ |
2014 | CeO2?meso?400 | 140 | 2 | 0.6 MPa CO2 | 76 | 96 | 5 | [ |
2015 | HT?10 La?C | 60 | 4 | — | 73.8 | 100 | 6 | [ |
2015 | Zn?g?C3N4 | 160 | 4 | — | 84.2 | 98.9 | 5 | [ |
2017 | MgO/g?C3N4 | 140 | 4 | — | 81 | 87 | 4 | [ |
2017 | Mg3Fe0.85Ce0.15 LDHs | 70 | 3 | — | 87 | 100 | 7 | [ |
2017 | NiAl?CO3 LDHs | 90 | 4 | — | 83 | 81 | 3 | [ |
2018 | Ca?Al?F- | 60 | 2 | — | 65.9 | 95.3 | — | [ |
2018 | SrO/CeO2 | 150 | 5 | — | 82 | 87 | 4 | [ |
2017 | CeO2?R | 140 | 3 | 0.6 MPa N2 | 87.5 | 81.1 | 5 | [ |
2019 | Fe?Mn double metal cyanide | 140 | 3 | — | 49.4 | 96.1 | 4 | [ |
(molar ratio of Fe/Mn=1∶8) | ||||||||
2019 | GO?[Ap?im]OH | — | 4 | — | 94.5 | 99.9 | 6 | [ |
2021 | Poly(urea?IL)?5% | 110 | 6 | — | 82 | 97.5 | 5 | [ |
Year | Catalyst | Reaction condition | Disubstituted ureas yield(%) | Stability | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PN2/MPa | Solvent | Reactant | |||||
2005 | CaO | 100 | 3 | — | — | Propylamine | 68 | 3 | [ |
2005 | CaO | 100 | 3 | — | — | Butylamine | 78 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Cyclohexylamine | 59 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Benzylamine | 55 | 3 | [ |
2007 | MgO | 80 | 6 | — | — | Ethanolamine | 83 | 4 | [ |
2007 | MgO | 80 | 6 | — | — | Ethylenediamine | 85 | 4 | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Propylamine | 87 | — | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Butylamine | 93 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Cyclohexylamine | 83 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Benzylamine | 76 | — | [ |
2006 | K2CO3 | 80 | 5 | — | DMF | Ethanolamine | 93 | — | [ |
2009 | DABCO | 100 | 5 | 0.1 | — | Benzylamine | 95 | — | [ |
Table 3 Catalytic system of transesterification reaction between EC and amine
Year | Catalyst | Reaction condition | Disubstituted ureas yield(%) | Stability | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PN2/MPa | Solvent | Reactant | |||||
2005 | CaO | 100 | 3 | — | — | Propylamine | 68 | 3 | [ |
2005 | CaO | 100 | 3 | — | — | Butylamine | 78 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Cyclohexylamine | 59 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Benzylamine | 55 | 3 | [ |
2007 | MgO | 80 | 6 | — | — | Ethanolamine | 83 | 4 | [ |
2007 | MgO | 80 | 6 | — | — | Ethylenediamine | 85 | 4 | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Propylamine | 87 | — | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Butylamine | 93 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Cyclohexylamine | 83 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Benzylamine | 76 | — | [ |
2006 | K2CO3 | 80 | 5 | — | DMF | Ethanolamine | 93 | — | [ |
2009 | DABCO | 100 | 5 | 0.1 | — | Benzylamine | 95 | — | [ |
1 | Novotnik B., Nandy A., Venkatesan S. V., Radovic J. R., De la Fuente J., Nejadi S., Silva R. C., Kouris A., Thangadurai V., Bryant S., Karan K., Shor R., Strous M., Larter S. R., Rev. Environ. Sci. Bio., 2020, 19(1), 217—240 |
2 | Hook M., Tang X., Energy Policy, 2013, 52, 797—809 |
3 | Hansen J., Kharecha P., Sato M., Masson⁃Delmotte V., Ackerman F., Beerling D. J., Hearty P. J., Hoegh⁃Guldberg O., Hsu S. L., Parmesan C., Rockstrom J., Rohling E. J., Sachs J., Smith P., Steffen K., Van Susteren L., von Schuckmann K., Zachos J. C., Plos One, 2013, 8(12), e81648 |
4 | Bilgili F., Renew. Sust. Energ. Rev., 2012, 16(7), 5349—5354 |
5 | Jansen E., Christensen J. H., Dokken T., Nisancioglu K. H., Vinther B. M., Capron E., Guo C. C., Jensen M. F., Langen P. L., Pedersen R. A., Yang S. T., Bentsen M., Kjaer H. A., Sadatzki H., Sessford E., Stendel M., Nat. Clim. Chang., 2020, 10(8), 714—721 |
6 | Chen L., He Z., Du J., Yang J., Zhu X., Acta Prataculturae Sinica, 2015, 24(11), 183—194 |
7 | Xia J. Y., Chen J. Q., Piao S. L., Ciais P., Luo Y. Q., Wan S. Q., Nat. Geosci., 2014, 7(3), 173—180 |
8 | Gao K. S., Zhang Y., Hader D. P., J. Appl. Phycol., 2018, 30(2), 743—759 |
9 | van den Bergh J., Nat. Clim. Chang., 2017, 7(2), 107—112 |
10 | Liu L. Q., Liu C. X., Sun Z. Y., Renew. Sust. Energ. Rev., 2011, 15(6), 2895—2903 |
11 | Nicholls R. J., Cazenave A., Science, 2010, 328(5985), 1517—1520 |
12 | Zhao H. X., Wu S. H., Jiang L. G., J. Appl. Ecol., 2007, 18(2), 445—450 |
13 | Barnett T. P., Adam J. C., Lettenmaier D. P., Nature, 2005, 438(7066), 303—309 |
14 | Wang J., Rodrigues J. F. D., Hu M., Behrens P., Tukker A., Renew. Sust. Energ. Rev., 2019, 116, 109433 |
15 | Zhang L., Gan M., Wang Y., Fu X., Liu S., Li X., Ther. Power Gen., 2021, 50(1), 24—32 |
16 | Noh S., Trans. Korean Hydrogen New Energy Soc., 2019, 30(4), 297—302 |
17 | Mosaffa A. H., Farshi L. G., Energ. Convers. Manage., 2020, 207, 112542 |
18 | Meng Q. S., Han J. T., Kong L. J., Liu H., Zhang T., Yu Z. T., Int. J. Hydrog. Energy, 2017, 42(7), 4673—4678 |
19 | Liu J., Chen H. S., Xu Y. J., Wang L., Tan C. Q., Renew. Energ., 2014, 64, 43—51 |
20 | Ahmed R., Liu G. J., Yousaf B., Abbas Q., Ullah H., Ali M. U., J. Clean. Prod., 2020, 242, 118409 |
21 | Gonzalez⁃Salazar M. A., Int. J. Greenh. Gas Con., 2015, 34, 106—116 |
22 | Sharifian R., Wagterveld R. M., Digdaya I. A., Xiang C., Vermaas D. A., Energy Environ. Sci., 2021, 14(2), 781—814 |
23 | Shen X. H., Du H. B., Mullins R. H., Kommalapati R. R., Energy Technol., 2017, 5(6), 822—833 |
24 | Wang J. Y., Yang Y., Jia Q. M., Shi Y. Z., Guan Q. Q., Yang N., Ning P., Wang Q., ChemSusChem, 2019, 12(10), 2055—2082 |
25 | Wang W. J., Zhouab M., Yuan D. Q., J. Mater. Chem. A, 2017, 5(4), 1334—1347 |
26 | Yamada H., Polym. J., 2021, 53(1), 93—102 |
27 | Zhao H. Y., Luo X. N., Zhang H. J., Sun N. N., Wei W., Sun Y. H., Greenh. Gases, 2018, 8(1), 11—36 |
28 | Wang X., Zhu L., Zhuo Y., Zhu Y., Wang S., ACS Sustain. Chem. Eng., 2019, 7(17), 14647—14660 |
29 | Dai X. C., Wang B., Wang A. Q., Shi F., Chinese J. Catal., 2019, 40(8), 1141—1146 |
30 | Zheng Y., Zhang W., Li Y., Chen J., Yu B., Wang J., Zhang L., Zhang J., Nano Energy, 2017, 40, 512—539 |
31 | Ling L. L., Yang W., Yan P., Wang M., Jiang H. L., Angew. Chem. Int. Ed., 2022, e20211639 |
32 | Zhang Z., Yin H., Yu G., He S., Kang J., Liu Z., Cheng K., Zhang Q., Wang Y., J. Catal., 2021, 395, 350—361 |
33 | Wu Q., Shen C., Rui N., Sun K., Liu C. J., J. CO2 Util., 2021, 53, 101720 |
34 | Fan T., Liu H., Shao S., Gong Y., Li G., Tang Z., J. Phys. Chem. Lett., 2021, 12(43), 10486—10496 |
35 | Das A., Mandal S. C., Pathak B., Catal. Sci. Technol., 2021, 11(4), 1375—1385 |
36 | Badoga S., Martinelli M., Gnanamani M. K., Koh Y., Shafer W. D., Catal. Commun., 2021, 152, 106284 |
37 | Pan Y., Guan C., Li H., Chakraborty P., Zhou C., Huang K. W., Dalton Trans., 2019, 48(34), 12812—12816 |
38 | Xiong Z., Kuang C. C., Lin K. Y., Lei Z., Chen X., Gong B., Yang J., Zhao Y., Zhang J., Xia B., Wu J. C. S., J. CO2 Util., 2018, 24, 500—508 |
39 | Schneck F., Schendzielorz F., Hatami N., Finger M., Wuertele C., Schneider S., Angew. Chem. Int. Ed., 2018, 57(44), 14482—14487 |
40 | Song B., Qin A., Tang B. Z., Cell Rep., 2022, 3(2), 100719 |
41 | Atsbha T. A., Yoon T., Seongho P., Lee C. J., J. CO2 Util., 2021, 44, 101413 |
42 | Zhao X., Yang S., Ebrahimiasl S., Arshadi S., Hosseinian A., J. CO2 Util., 2019, 33, 37—45 |
43 | Arshadi S., Banaei A., Ebrahimiasl S., Monfared A., Vessally E., RSC Adv., 2019, 9(34), 19465—19482 |
44 | Wang H., Xin Z., Li Y., Topics Curr. Chem., 2017, 375(2), 46 |
45 | Olajire A. A., J. CO2 Util., 2013, 3/4, 74—92 |
46 | North M., Pasquale R., Young C., Green Chem., 2010, 12(9), 1514—1539 |
47 | Wang X. G., Li L. Q., Tang L., Gao Z., Liu Z. Y., Chem. Eng. Prog., 2006, 25(6), 613—618 |
48 | Fujita S., Arai M., J. Japan Pet. Inst., 2005, 48(2), 67—75 |
49 | Leitner W., Angew. Chem. Int. Ed., 1995, 34(20), 2207—2221 |
50 | Kunkes E. L., Studt F., Abild⁃Pedersen F., Schlögl R., Behrens M., J. Catal., 2015, 328, 43—48 |
51 | Xie S. Q., Zhang W. L., Lan X. Y., Lin H. F., ChemSusChem, 2020, 13(23), 6141—6159 |
52 | Wang J., Li G., Li Z., Tang C., Feng Z., An H., Liu H., Liu T., Li C., Sci. Adv., 2017, 3(10), e1701290 |
53 | Witoon T., Chalorngtham J., Dumrongbunditkul P., Chareonpanich M., Limtrakul J., Chem. Eng. J., 2016, 293, 327—336 |
54 | Naik S. P., Ryu T., Bui V., Miller J. D., Drinnan N. B., Zmierczak W., Chem. Eng. J., 2011, 167(1), 362—368 |
55 | Kusama H., Okabe K., Sayama K., Arakawa H., Catal. Today, 1996, 28(3), 261—266 |
56 | Leino E., Mäki⁃Arvela P., Eta V., Murzin D. Y., Salmi T., Mikkola J. P., Appl. Catal. A: Gen., 2010, 383(1/2), 1—13 |
57 | Schaffner B., Schaffner F., Verevkin S. P., Borner A., Chem. Rev., 2010, 110( 8), 4554—4581 |
58 | Dang H. T., Kang G. J., Yoo E. S., Hong J., Choi J. S., Kim H. S., Chung H. Y., Jung J. H., Bioorg. Med. Chem., 2011, 19(4), 1520—1527 |
59 | Cui X., Dai X., Surkus A. E., Junge K., Kreyenschulte C., Agostini G., Rockstroh N., Beller M., Chinese J. Catal., 2019, 40(11), 1679—1685 |
60 | Honda M., Tamura M., Nakao K., Suzuki K., Nakagawa Y., Tomishige K., ACS Catal., 2014, 4(6), 1893—1896 |
61 | Gao J., Zhong S. H., Prog. Chem., 2002, 14(2), 107—112 |
62 | Du Z., Yao J., Zen Y., Wang Y., Wang G., Nat. Prod. Rep., 2003, 28(4), 22—29 |
63 | Zhou W., Ma Z. Y., Shi D. C., Li Z., Zhang D. S., Nat. Prod. Rep., 2009, 34(2), 70—78 |
64 | Shen W., Liu D., Liu X., Modern Chem. Ind., 2012, 32(7), 34—38,40 |
65 | Ajiro H., Haramiishi Y., Chanthaset N., Akashi M., Polym. J., 2016, 48(7), 751—760 |
66 | Tominaga Y., Polym. J., 2017, 49(3), 291—299 |
67 | Chaudhari M. I., Muralidharan A., Pratt L. R., Rempe S. B., Topics Curr. Chem., 2018, 376(2), 7 |
68 | Xing L., Zheng X., Schroeder M., Alvarado J., Cresce A. V. W., Xu K., Li Q., Li W., ACC. Chem. Res., 2018, 51(2), 282—289 |
69 | Chu J., Chang J., Luo Z., Hou M., Li Q., Chem. Eng. Prog., 2021, 40(1), 195—204 |
70 | Gao Y., Yang Y., Li A., Wang M., Lyu J., Wang Y., Ma X., Proc. Chinese Soc. Electr. Eng., 2021, 41(4), 1217—1226 |
71 | Behrens M., Schlögl R., Z. Anorg. Allg. Chem., 2013, 639(15), 2683—2695 |
72 | Razali N. A. M., Lee K. T., Bhatia S., Mohamed A. R., Renew. Sust. Energ. Rev., 2012, 16(7), 4951—4964 |
73 | Han Z. B., Rong L. C., Wu J., Zhang L., Wang Z., Ding K. L., Angew. Chem. Int. Ed., 2012, 51(52), 13041—13045 |
74 | Wu X., Ji L., Ji Y., Elageed E. H. M., Gao G. H., Catal. Commun., 2016, 85, 57—60 |
75 | Chen J., Zhu H., Chen J., Le Z. G., Tu T., Chem. Asian. J., 2017, 12(21), 2809—2812 |
76 | Kumar A., Janes T., Espinosa⁃Jalapa N. A., Milstein D., Angew. Chem. Int. Ed. Engl., 2018, 57(37), 12076—12080 |
77 | Lian C., Ren F. M., Liu Y. X., Zhao G. F., Ji Y. J., Rong H. P., Jia W., Ma L., Lu H. Y., Wang D. S., Li Y. D., Chem. Commun., 2015, 51(7), 1252—1254 |
78 | Liu H., Huang Z., Han Z., Ding K., Liu H., Xia C., Chen J., Green Chem., 2015, 17(8), 4281—4290 |
79 | Chen X., Cui Y. Y., Wen C., Wang B., Dai W. L., Chem. Commun., 2015, 51(72), 13776—13778 |
80 | Zhang C., Wang L., Liu J., Yang Y., He P., Cao Y., Chen J., Li H., ChemCatChem, 2018, 10(20), 4617—4628 |
81 | Deng F. L., Li N., Tang S. Y., Liu C. J., Yue H. R., Liang B., Chem. Eng. J., 2018, 334, 1943—1953 |
82 | Song T., Qi Y., Jia A., Ta N., Lu J., Wu P., Li X., J. Catal., 2021, 399, 98—110 |
83 | Balaraman E., Gunanathan C., Zhang J., Shimon L. J. W., Milstein D., Nat. Chem., 2011, 3(8), 609—614 |
84 | Rui N., Zhang F., Sun K., Liu Z., Xu W., Stavitski E., Senanayake S. D., Rodriguez J. A., Liu C. J., ACS Catal., 2020, 10(19), 11307—11317 |
85 | Tamura M., Kitanaka T., Nakagawa Y., Tomishige K., ACS Catal., 2016, 6(1), 376—380 |
86 | Tuteja J., Choudhary H., Nishimura S., Ebitani K., ChemSusChem, 2014, 7(1), 96—100 |
87 | Chen W., Song T. Y., Tian J. X., Wu P., Li X. H., Catal. Sci. Technol., 2019, 9(23), 6749—6759 |
88 | Bhanage B. M., Fujita S. I., He Y., Ikushima Y., Shirai M., Torii K., Arai M., Catal. Lett., 2002, 83(3/4), 137—141 |
89 | Feng X. J., Lu X. B., He R., Appl. Catal. A: Gen., 2004, 272(1/2), 347—352 |
90 | Dhuri S. M., Mahajani V. V., J. Chem. Technol. Biot., 2006, 81(1), 62—69 |
91 | Abimanyu H., Kim C. S., Ahn B. S., Yoo K. S., Catal. Lett., 2007, 118(1/2), 30—35 |
92 | Juárez R., Corma A., García H., Green Chem., 2009, 11(7), 949—952 |
93 | Murugan C., Bajaj H. C., Jasra R. V., Catal. Lett., 2010, 137(3/4), 224—231 |
94 | Kim D. W., Lim D. O., Cho D. H., Koh J. C., Park D. W., Catal. Today, 2011, 164(1), 556—560 |
95 | Wang L., Wang Y., Liu S., Lu L., Ma X., Deng Y., Catal. Commun., 2011, 16(1), 45—49 |
96 | Cui Z. M., Chen Z., Cao C. Y., Song W. G., Jiang L., Chem. Commun., 2013, 49(54), 6093—6095 |
97 | Xu J., Long K. Z., Wu F., Xue B., Li Y. X., Cao Y., Appl. Catal. A: Gen., 2014, 484, 1—7 |
98 | Unnikrishnan P., Srinivas D., J. Mol. Catal. A: Chem., 2015, 398, 42—49 |
99 | Xu J., Long K. Z., Wang Y., Xue B., Li Y. X., Appl. Catal. A: Gen., 2015, 496, 1—8 |
100 | Xu J., Chen Y., Ma D., Shang J. K., Li Y. X., Catal. Commun., 2017, 95, 72—76 |
101 | Nivangune N. T., Ranade V. V., Kelkar A. A., Catal. Lett., 2017, 147(10), 2558—2569 |
102 | Gandara⁃Loe J., Jacobo⁃Azuara A., Silvestre⁃Albero J., Sepúlveda⁃Escribano A., Ramos⁃Fernández E. V., Catal. Today, 2017, 296, 254—261 |
103 | Liao Y., Li F., Pu Y., Wang F., Dai X., Zhao N., Xiao F., RSC Adv., 2018, 8(2), 785—791 |
104 | Kumar P., Kaur R., Verma S., Srivastava V. C., Mishra I. M., Fuel, 2018, 220, 706—716 |
105 | Zheng H., Hong Y., Xu J., Xue B., Li Y. X., Catal. Commun., 2018, 106, 6—10 |
106 | Song Z., Subramaniam B., Chaudhari R. V., ACS Sustain. Chem. Eng., 2019, 7(6), 5698—5710 |
107 | Zhang W. H., Zhou Y. C., Du C. H., Gao M., Liu S. S., Liu P., Li Y. X., React. Kinet. Mech. Cat., 2019, 127(2), 715—726 |
108 | Hu H., Wang X., Chen B., Gao G., ChemCatChem, 2021, 13(18), 3945—3952 |
109 | Huang S., Yan B., Wang S., Ma X., Chem. Soc. Rev., 2015, 44(10), 3079—3116 |
110 | Cui H., Wang T., Wang F., Gu C., Wang P., Dai Y., J. Supercrit. Fluid., 2004, 30(1), 63—69 |
111 | Ju H. Y., Manju M. D., Kim K. H., Park S. W., Park D. W., Korean J. Chem. Eng., 2007, 24(5), 917—919 |
112 | De Filippis P., Scarsella M., Borgianni C., Pochetti F., Energy Fuels, 2006, 20(1), 17—20 |
113 | Yang L., Yang X., Zhou R., J. Phys. Chem. C, 2016, 120(5), 2712—2723 |
114 | Song J. H., Jun J. O., Kang K. H., Han S. J., Yoo J., Park S., Kim D. H., Song I. K., J. Nanosci. Nanotechno., 2016, 16(10), 10810—10815 |
115 | Su D. S., Thomas A., ChemSusChem, 2010, 3(2), 120 |
116 | Kumar P., Srivastava V. C., Mishra I. M., Energy Fuels, 2015, 29(4), 2664—2675 |
117 | Srivastava R., Srinivas D., Ratnasamy P., J. Catal., 2006, 241(1), 34—44 |
118 | Saada R., AboElazayem O., Kellici S., Heil T., Morgan D., Lampronti G. I., Saha B., Appl. Catal. B, 2018, 226, 451—462 |
119 | Fujita S. I., Bhanage B. M., Kanamaru H., Arai M., J. Mol. Catal. A: Chem., 2005, 230(1), 43—48 |
120 | Jagtap S. R., Patil Y. P., Fujita S. I., Arai M., Bhanage B. M., Appl. Catal. A: Gen., 2008, 341(1), 133—138 |
121 | Jagtap S. R., Patil Y. P., Panda A. G., Bhanage B. M., Synth. Commun., 2009, 39(12), 2093—2100 |
122 | Xiao L. F., Xu L.W., Xia C. G., Green Chem., 2007, 9(4), 369—372 |
123 | Gong H., Yang N. F., Deng G. J., Xu G. Y., Chem. Lett., 2009, 38(6), 584—585 |
124 | Gong J. L., Yue H. R., Zhao Y. J., Zhao S., Zhao L., Lv J., Wang S. P., Ma X. B., J. Am. Chem. Soc., 2012, 134(34), 13922—13925 |
125 | He Z., Lin H. Q., He P., Yuan Y. Z., J. Catal., 2011, 277(1), 54—63 |
126 | Huang Y., Ariga H., Zheng X. L., Duan X. P., Takakusagi S., Asakura K., Yuan Y. Z., J. Catal., 2013, 307, 74—83 |
127 | Li M. M. J., Zheng J. W., Qu J., Liao F. L., Raine E., Kuo W. C. H., Su S. S., Po P., Yuan Y. Z., Tsang S. C. E., Sci. Rep., 2016, 6, 8 |
128 | Wang Y. N., Duan X. P., Zheng J. W., Lin H. Q., Yuan Y. Z., Ariga H., Takakusagi S., Asakura K., Catal. Sci. Technol., 2012, 2(8), 1637—1639 |
129 | Zheng J. W., Huang L. L., Cui C. H., Chen Z. C., Liu X. F., Duan X. P., Cao X. Y., Yang T. Z., Zhu H. P., Shi K., Du P., Ying S. W., Zhu C. F., Yao Y. G., Guo G. C., Yuan Y. Z., Xie S. Y., Zheng L. S., Science, 2022, 376(6590), 288—292 |
[1] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[2] | 吴玉, 李轩, 杨恒攀, 何传新. 钴单原子的双重限域制备策略及高效CO2电还原性能[J]. 高等学校化学学报, 2022, 43(9): 20220343. |
[3] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[4] | 何鸿锐, 夏文生, 张庆红, 万惠霖. 羟基氧化铟团簇与二氧化碳和甲烷作用的密度泛函理论研究[J]. 高等学校化学学报, 2022, 43(8): 20220196. |
[5] | 崔伟, 赵德银, 白文轩, 张晓东, 余江. CO2在非质子溶剂与铁基离子液体复合体系中的吸收[J]. 高等学校化学学报, 2022, 43(8): 20220120. |
[6] | 郭志强, 杨博如, 席婵娟. 硼氢化试剂在二氧化碳还原官能化反应中的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220199. |
[7] | 周紫璇, 杨海艳, 孙予罕, 高鹏. 二氧化碳加氢制甲醇多相催化剂研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220235. |
[8] | 张昕昕, 许狄, 王艳秋, 洪昕林, 刘国亮, 杨恒权. CO2加氢制低碳醇CuFe基催化剂中的Mn助剂效应[J]. 高等学校化学学报, 2022, 43(7): 20220187. |
[9] | 丁杨, 王万辉, 包明. 多孔骨架固定分子催化剂催化CO2加氢制备甲酸研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220309. |
[10] | 彭奎霖, 李桂林, 江重阳, 曾少娟, 张香平. 电解液调控CO2电催化还原性能微观机制的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220238. |
[11] | 张振, 邓煜, 张琴芳, 余达刚. 可见光促进二氧化碳参与的羧基化反应[J]. 高等学校化学学报, 2022, 43(7): 20220255. |
[12] | 王丽君, 李欣, 洪崧, 詹新雨, 王迪, 郝磊端, 孙振宇. 调节氧化镉-炭黑界面高效电催化CO2还原生成CO[J]. 高等学校化学学报, 2022, 43(7): 20220317. |
[13] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[14] | 王征文, 高凤翔, 曹瀚, 刘顺杰, 王献红, 王佛松. 基于二氧化碳共聚物的紫外光固化高分子材料的制备与性能[J]. 高等学校化学学报, 2022, 43(7): 20220236. |
[15] | 宋德文, 汪明旺, 王亚旎, 焦振梅, 宁汇, 吴明铂. 二氧化碳电还原制草酸研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||