高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220343.doi: 10.7503/cjcu20220343

• 研究论文 • 上一篇    下一篇

钴单原子的双重限域制备策略及高效CO2电还原性能

吴玉1, 李轩1, 杨恒攀2(), 何传新2()   

  1. 1.中国科学技术大学化学物理系, 合肥微尺度物质科学国家实验室, 合肥 230026
    2.深圳大学化学与环境工程学院, 深圳功能高分子重点实验室, 深圳 518071
  • 收稿日期:2022-05-15 出版日期:2022-09-10 发布日期:2022-07-08
  • 通讯作者: 杨恒攀,何传新 E-mail:hpyang@szu.edu.cn;hecx@szu.edu.cn
  • 基金资助:
    国家自然科学基金(U21A20312)

Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide

WU Yu1, LI Xuan1, YANG Hengpan2(), HE Chuanxin2()   

  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    2.Shenzhen Key Laboratory for Functional Polymer,College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen 518071,China
  • Received:2022-05-15 Online:2022-09-10 Published:2022-07-08
  • Contact: YANG Hengpan,HE Chuanxin E-mail:hpyang@szu.edu.cn;hecx@szu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(U21A20312)

摘要:

将锌钴双掺杂的金属有机框架(MOFs)纳米颗粒(ZnCo-ZIF)与聚丙烯腈(PAN)混溶形成前驱体溶液, 通过静电纺丝与高温热化学反应, 获得了一种多孔碳纳米纤维负载的钴单原子催化剂(A-Co@PCFs). 高温热解时, 聚丙烯腈分解碳化形成碳纳米纤维主体, MOFs纳米颗粒结构坍塌伴随锌组分的挥发, 在纤维表面形成了丰富的多级孔结构. 由于碳纳米纤维和孔道结构的双重限域作用, 使钴组分不能聚集成钴纳米颗粒, 而是形成高度分散的钴单原子. 电化学测试结果表明, 该钴单原子催化剂可将CO2电还原为CO, 在-0.66 V(vs. RHE)下, CO的法拉第效率可达94%. 并且经过60 h的耐久性测试, 其催化性能没有明显的性能衰减, 显示出较高的稳定性. A-Co@PCFs的高活性与高稳定性可归因于材料的多孔结构和高度分散的钴原子, 这也使其具有代替贵金属催化剂的可能性.

关键词: 静电纺丝, 碳纳米纤维, 双重限域, 单原子, 二氧化碳还原

Abstract:

In this manuscript, zinc, cobalt co-doped metal organic frameworks(MOFs) nanoparticles(ZnCo-ZIF) were mixed with polyacrylonitrile(PAN) to form a precursor solution. After electrospinning and high temperature pyrolysis, a porous carbon nanofiber supported single-atom cobalt catalyst(A-Co@PCF) was obtained. During high-temperature pyrolysis, polyacrylonitrile decomposed and carbonized to form the main body of carbon nanofibers. The collapse of MOFs nanoparticle structure and the volatilization of zinc components created the hierarchically porous structure throughout the nanofibers. Due to the double confinement of carbon nanofibers and pore structure, cobalt components cannot aggregate into cobalt nanoparticles, but cobalt components generate highly dispersed cobalt single atoms. Electrochemical tests show that the cobalt monoatomic catalyst can successfully reduce carbon dioxide to carbon monoxide, and the Faraday efficiency of carbon monoxide can reach 94% at ?0.66 V(vs. RHE) cathode potential. And after 60 h of durability test, its catalytic performance has no obvious performance attenuation, showing high stability. The high activity and stability of A-Co@PCFs can be attributed to the porous structure of the material and highly dispersed cobalt atoms, which also makes it possible to replace precious metal catalysts. In addition, this method also provides a reference for the synthesis of other transition metal single-atom catalysts.

Key words: Electrospinning, Carbon nanofiber, Double-confinement, Single atom, Carbon dioxide reduction

中图分类号: 

TrendMD: