高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (1): 188.doi: 10.7503/cjcu20200406
所属专题: 分子筛功能材料 2021年,42卷,第1期
马超1,2,3,刘晓娜1,2,乜晨阳1,2,陈陆4,田鹏1,徐弘毅5,郭鹏,刘中民1
收稿日期:
2020-06-30
出版日期:
2021-01-10
发布日期:
2021-01-12
基金资助:
MA Chao1,2,3, LIU Xiaona1,2, NIE Chenyang1,2, CHEN Lu4, TIAN Peng1, XU Hongyi5(), GUO Peng1(
), LIU Zhongmin1
Received:
2020-06-30
Online:
2021-01-10
Published:
2021-01-12
Contact:
XU Hongyi,GUO Peng
E-mail:Hongyi.xu@mmk.su.se;pguo@dicp.ac.cn
Supported by:
摘要:
分子筛是一类具有规则孔道或笼结构的晶态微孔材料, 在吸附、 分离和催化中都表现出了优异的性能. 为了探索其结构与性质的关系, 在原子尺度上研究分子筛的微观结构是十分必要的. 本综述介绍了一系列与X射线晶体学和电子晶体学相关的表征技术(倒易空间和正空间)在分子筛结构表征中的应用. 随后, 基于分子筛的结构表征方法和化学组成, 对2007年之后发现的85种新分子筛进行了系统总结, 对其中9种具有独特合成方法或结构特征的分子筛进行了详细介绍.
中图分类号:
TrendMD:
马超, 刘晓娜, 乜晨阳, 陈陆, 田鹏, 徐弘毅, 郭鹏, 刘中民. X射线晶体学和电子晶体学在分子筛结构表征中的应用. 高等学校化学学报, 2021, 42(1): 188.
MA Chao, LIU Xiaona, NIE Chenyang, CHEN Lu, TIAN Peng, XU Hongyi, GUO Peng, LIU Zhongmin. Applications of X-ray and Electron Crystallography in Structural Investigations of Zeolites. Chem. J. Chinese Universities, 2021, 42(1): 188.
Fig.2 An RSS approach facilitating the targeted synthesis of DNL?6 and SAPO?42(A); in the as?made FER zeolite(blue: Al or Si atom, red: O atom), unprotonated pyridine located in the fer cage(B) and 10?ring channel(C), respectively; Na+ ion is in the 10?ring channel only(D); in the pyridine? adsorbed sample, the protonated pyridine is occluded in the 10?ring channel and forms hydrogen bonding with framework oxygen O2(E)[16]Copyright 2017, Royal Society of Chemistry.
Fig.3 Schematic illustration of RED method(A)[36]; HRTEM images of a thin edge(B) and broken crystal piece(C) of Beta?TEAOH[23]; low magnification TEM image of ZSM?57?Na(D); HRTEM images of the highlighted orange area(E) and isolated fragment from the same sample(F)[27](A) First, 2D electron diffraction pattern was collected at each combined tilt angle. Then, 3D electron diffraction data was reconstructed and processed. Finally, the structure model can be solved. Copyright 2013, Wiley?Blackwell; (B, C) The stacking sequences of 12?ring channels are marked in the images.The inserts are FFT patterns of the thin area of the images. Copyright 2015, Springer Nature; (D, E, F) Copyright 2019, Wiley?VCH.
Fig.4 Schematic illustration of STEM system(A)[42]; HAADF image of site?isolated Pt atoms in KLTL zeolite in the oxidized sample(B)[6]; iDPC images of the surface terminations from the [010] direction in the ZSM?5(C—F); iDPC image of the (010) interfaces between ZSM?5 particles(G); iDPC image of the PX?adsorbed ZSM?5 from the [010] direction(H)[12] and iDPC image of Mo/ZSM?5(I)[14](A) The inner is the segmented detector for iDPC imaging, while the outer is the HAADF detector.Copyright 2020, American Association for the Advancement of Science; (B) White features in dashed blue circles indicate Pt atoms.Copyright 2014, Wiley?VCH; (C―H) Copyright 2019, Wiley?VCH; (I) Copyright 2020, Wiley?VCH.
Code | Material | Structure determination | Code | Material | Structure determination |
---|---|---|---|---|---|
*?SVY | SSZ?70a | Modelling+HRTEM+PXRD | *PCS | IPC?6a | Modelling+PXRD |
CSV | CIT?7a | RED+PXRD | *SFV | SSZ?57a | PXRD |
IFY | ITQ?50a | PXRD | *MRE | ZSM?48a | Modelling+HRTEM+PXRD |
OKO | IPC?2a | Modelling+PXRD | ?SVR | SSZ?74a | PXRD+HRTEM |
PCR | IPC?4a | Modelling+PXRD | *STO | SSZ?31a | Modelling+HRTEM+PXRD |
― | IDM?1a | cRED+PXRD[ | ― | ECNU?36a | 3DEDT+HRTEM+PXRD[ |
― | NUD?5a | SXRD[ | ― | NUD?6a | SXRD[ |
ETV | EMM?37b | cRED | MWF | ZSM?25b | RED+PXRD |
― | PST?20b | RED+PXRD[ | ― | PST?25b | RED+PXRD[ |
― | PST?26b | SAED+PXRD[ | ― | PST?28b | SAED+PXRD[ |
PWN | PST?29b | SXRD+PXRD | *?EWT | EMM?23b | RED+PXRD |
MRT | ZSM?43b | RED+PXRD | *?ITN | ITQ?39b | HRTEM |
PTY | PST?30b | PXRD | *?SSO | SSZ?61b | Modelling+HRTEM+PXRD |
PWO | PST?21b | PXRD | EEI | SSZ?45b | RED+PXRD |
PWW | PST?22b | PXRD | SFW | SSZ?52b | PXRD+HRTEM |
YFI | YNU?5b | PXRD | LTJ | Linde type Jb | PXRD |
ETL | EU?12b | PXRD | LTF | LZ?135b | PXRD |
EWO | ECNU?21c | cRED | ITG | ITQ?38c | Modelling+HRTEM+PXRD |
?SYT | SYSU?3c | cRED | ITT | ITQ?33c | PXRD |
SOV | SCM?15c | RED+PXRD | SVV | SSZ?77c | PXRD |
*UOE | IM?18c | RED+PXRD | ?ITV | ITQ?37c | PXRD |
*CTH | CIT?13c | RED+PXRD | IRR | ITQ?44c | PXRD |
SOR | SCM?14c | RED+PXRD | UWY | IM?20c | PXRD |
?IFT | ITQ?53c | RED+PXRD | ITR | ITQ?34c | PXRD |
?IFU | ITQ?54c | RED+PXRD | UOS | IM?16c | PXRD |
IRN | ITQ?49c | PXRD | IWS | ITQ?26c | SAED+PXRD |
POS | PKU?16c | RED+PXRD | SOF | SU?15c | SXRD |
UOV | IM?17c | RED+PXRD | STW | SU?32c | SXRD |
?IRY | ITQ?40c | SXRD+PXRD | ― | NUD?1c | SXRD[ |
EWS | EMM?26d | RED+PXRD | MVY | MCM?70d | PXRD |
IFW | ITQ?52d | PXRD | SFS | SSZ?56d | PXRD |
SEW | SSZ?82d | PXRD | SSF | SSZ?65d | PXRD |
JSR | GaGeO?JU64e | SXRD | BOF | UCSB?15e | SXRD |
BOZ | Be?10e | SXRD | BSV | UCSB?7e | SXRD |
JST | GaGeO?CJ63e | SXRD | SBN | UCSB?9e | SXRD |
PUN | PKU?9e | SXRD | JOZ | LSJ?10e | SXRD |
AVE | AlPO?78f | PXRD | IFO | ITQ?51f | RED+PXRD |
POR | PST?14f | cRED+PXRD | JSN | CoAPO?CJ69f | SXRD |
SWY | STA?20f | SAED+PXRD | JSW | CoAPO?CJ62f | SXRD |
PSI | PST?6f | RED+PXRD | NPT | Oxonitridophosphate?2f | PXRD |
JNT | JU?92?300f | SXRD | SAF | STA?15f | PXRD |
AFV | ZnAlPO?57f | PXRD | JRY | CoAPO?CJ40f | SXRD |
AVL | ZnAlPO?59f | PXRD |
Table 1 Eighty-five novel zeolites discovered since 2007
Code | Material | Structure determination | Code | Material | Structure determination |
---|---|---|---|---|---|
*?SVY | SSZ?70a | Modelling+HRTEM+PXRD | *PCS | IPC?6a | Modelling+PXRD |
CSV | CIT?7a | RED+PXRD | *SFV | SSZ?57a | PXRD |
IFY | ITQ?50a | PXRD | *MRE | ZSM?48a | Modelling+HRTEM+PXRD |
OKO | IPC?2a | Modelling+PXRD | ?SVR | SSZ?74a | PXRD+HRTEM |
PCR | IPC?4a | Modelling+PXRD | *STO | SSZ?31a | Modelling+HRTEM+PXRD |
― | IDM?1a | cRED+PXRD[ | ― | ECNU?36a | 3DEDT+HRTEM+PXRD[ |
― | NUD?5a | SXRD[ | ― | NUD?6a | SXRD[ |
ETV | EMM?37b | cRED | MWF | ZSM?25b | RED+PXRD |
― | PST?20b | RED+PXRD[ | ― | PST?25b | RED+PXRD[ |
― | PST?26b | SAED+PXRD[ | ― | PST?28b | SAED+PXRD[ |
PWN | PST?29b | SXRD+PXRD | *?EWT | EMM?23b | RED+PXRD |
MRT | ZSM?43b | RED+PXRD | *?ITN | ITQ?39b | HRTEM |
PTY | PST?30b | PXRD | *?SSO | SSZ?61b | Modelling+HRTEM+PXRD |
PWO | PST?21b | PXRD | EEI | SSZ?45b | RED+PXRD |
PWW | PST?22b | PXRD | SFW | SSZ?52b | PXRD+HRTEM |
YFI | YNU?5b | PXRD | LTJ | Linde type Jb | PXRD |
ETL | EU?12b | PXRD | LTF | LZ?135b | PXRD |
EWO | ECNU?21c | cRED | ITG | ITQ?38c | Modelling+HRTEM+PXRD |
?SYT | SYSU?3c | cRED | ITT | ITQ?33c | PXRD |
SOV | SCM?15c | RED+PXRD | SVV | SSZ?77c | PXRD |
*UOE | IM?18c | RED+PXRD | ?ITV | ITQ?37c | PXRD |
*CTH | CIT?13c | RED+PXRD | IRR | ITQ?44c | PXRD |
SOR | SCM?14c | RED+PXRD | UWY | IM?20c | PXRD |
?IFT | ITQ?53c | RED+PXRD | ITR | ITQ?34c | PXRD |
?IFU | ITQ?54c | RED+PXRD | UOS | IM?16c | PXRD |
IRN | ITQ?49c | PXRD | IWS | ITQ?26c | SAED+PXRD |
POS | PKU?16c | RED+PXRD | SOF | SU?15c | SXRD |
UOV | IM?17c | RED+PXRD | STW | SU?32c | SXRD |
?IRY | ITQ?40c | SXRD+PXRD | ― | NUD?1c | SXRD[ |
EWS | EMM?26d | RED+PXRD | MVY | MCM?70d | PXRD |
IFW | ITQ?52d | PXRD | SFS | SSZ?56d | PXRD |
SEW | SSZ?82d | PXRD | SSF | SSZ?65d | PXRD |
JSR | GaGeO?JU64e | SXRD | BOF | UCSB?15e | SXRD |
BOZ | Be?10e | SXRD | BSV | UCSB?7e | SXRD |
JST | GaGeO?CJ63e | SXRD | SBN | UCSB?9e | SXRD |
PUN | PKU?9e | SXRD | JOZ | LSJ?10e | SXRD |
AVE | AlPO?78f | PXRD | IFO | ITQ?51f | RED+PXRD |
POR | PST?14f | cRED+PXRD | JSN | CoAPO?CJ69f | SXRD |
SWY | STA?20f | SAED+PXRD | JSW | CoAPO?CJ62f | SXRD |
PSI | PST?6f | RED+PXRD | NPT | Oxonitridophosphate?2f | PXRD |
JNT | JU?92?300f | SXRD | SAF | STA?15f | PXRD |
AFV | ZnAlPO?57f | PXRD | JRY | CoAPO?CJ40f | SXRD |
AVL | ZnAlPO?59f | PXRD |
Fig.5 CBUs of ITQ?29(d4r, sod, and lta) and ITQ?50(d4r, sti, sod, and ify)(A) and different 8?ring channels of ITQ?50 viewed along [110] and [001] directions(B)Bridging O atoms have been omitted for clarity(blue: Si atom).
Fig.6 Building layer(pst?21 layer) nonjointly comprising bre CBUs(A); PST?21 and PST?22 structures viewed along the c?axis(B); the building layer(bre_L1 layer) nonjointly comprising bre CBUs are stacked PST?30 structure with 8?ring and 10?ring channels viewed along the c? and a?axis(C)Bridging O atoms have been omitted for clarity(blue: Al or Si atom). (B) The building layers in PST?21 and PST?22 are stacked in sequences AAAA… and AAtAAt… along the a?axis, respectively.
Fig.7 Framework representations of cross?sections of RHO?G1 to RHO?G8 in the RHO familyBridging O atoms have been omitted for clarity(blue: Al or Si atom).
Fig.8 Condense layer of EMM?26(A); 3D framework generated by connecting the adjacent layers, which are related by a mirror perpendicular to the a?axis(B) and location of the OSDA in the cavity of EMM?26(C)Oxygen atoms have been omitted for clarity.(A) fer and mor CUBs are highlighted in red and yellow, respectively.
Fig.9 ac?plane of SCM?14(A), 3D framework of SOR(B), ac?plane of SCM?15(C) and 3D framework of SOV(D)Oxygen, germanium and non?framework atoms have been omitted for clarity.
1 | International Zeolite Association’s Structure Commission, http://www.iza⁃structure.org/index.htm |
2 | Guo P., Yan N. N., Wang L., Zou X. D., Cryst. Growth Des., 2017, 17(12), 6821—6835 |
3 | Tian P., Wei Y. X., Ye M., Liu Z. M., ACS Catal., 2015, 5(3), 1922—1938 |
4 | Su X., Tian P., Fan D., Xia Q. H., Yang Y., Xu S. T., Zhang L., Zhang Y., Wang D. H., Liu Z. M., ChemSusChem, 2013, 6(5), 911—918 |
5 | Yan N. N., Wang L., Liu X. N., Wu P. F., Sun T. T., Xu S. T., Han J. F., Guo P., Tian P., Liu Z. M., J. Mater. Chem. A, 2018, 6(47), 24186—24193 |
6 | Kistler J. D., Chotigkrai N., Xu P. H., Enderle B., Praserthdam P., Chen C. Y., Browning N. D., Gates B. C., Angew. Chem. Int. Ed., 2014, 53(34), 8904—8907 |
7 | Gao Z. H., Chen F. J., Xu L., Sun L., Xu Y., Du H. B., Chem. Eur. J., 2016, 22(40), 14367—14372 |
8 | Jo D. H., Park G. T., Shin J. H., Hong S. B., Angew. Chem. Int. Ed., 2018, 57(8), 2199—2203 |
9 | Guo P., Shin J. H., Greenaway A. G., Min J. G., Su J., Choi H. J., Liu L. F., Cox P. A., Hong S. B., Wright P. A., Zou X. D., Nature, 2015, 524(7563), 74—78 |
10 | Guo P., Strohmaier K., Vroman H., Afeworki M., Ravikovitch P. I., Paur C. S., Sun J. L., Burton A., Zou X. D., Inorg. Chem. Front., 2016, 3(11), 1444—1448 |
11 | Zhang C. Q., Kapaca E., Li J. Y., Liu Y. L., Yi X. F., Zheng A. M., Zou X. D., Jiang J. X., Yu J. H., Angew. Chem. Int. Ed., 2018, 57(22), 6486—6490 |
12 | Shen B. Y., Chen X., Cai D. L., Xiong H., Liu X., Meng C. G., Han Y., Wei F., Adv. Mater., 2020, 32(4), 1906103 |
13 | Gramm F., Baerlocher C., McCusker L. B., Warrender S. J., Wright P. A., Han B., Hong S. B., Liu Z., Ohsuna T., Terasaki O., Nature, 2006, 444(7115), 79—81 |
14 | Liu L. M., Wang N., Zhu C. Z., Liu X. N., Zhu Y. H., Guo P., Alfilfil L., Dong X. L., Zhang D. L., Han Y., Angew. Chem. Int. Ed., 2020, 59(2), 819—825 |
15 | Bae J., Cho J., Lee J. H., Seo S. M., Hong S. B., Angew. Chem. Int. Ed., 2016, 55(26), 7369—7373 |
16 | Wang L., Xu H. Y., Yan N. N., Correll S., Xu S. T., Guo P., Tian P., Liu Z. M., CrystEngComm, 2018, 20(6), 699—702 |
17 | Lee H., Shin J. H., Choi W., Choi H. J., Yang T. M., Zou X. D., Hong S. B., Chem. Mater., 2018, 30(19), 6619—6623 |
18 | Kapaca E., Burton A., Terefenko E., Vroman H., Weston S. C., Kochersperger M., Afeworki M., Paur C., Koziol L., Ravikovitch P., Xu H. Y., Zou X. D., Willhammar T., Inorg. Chem., 2019, 58(19), 12854—12858 |
19 | Willhammar T., Sun J. L., Wan W., Oleynikov P., Zhang D. L., Zou X. D., Moliner M., Gonzalez J., Martínez C., Rey F., Corma A., Nature Chem., 2012, 4(3), 188—194 |
20 | Luo Y., Smeets S., Peng F., Etman A. S., Wang Z. D., Sun J. L., Yang W. M., Chem. Eur. J., 2017, 23(66), 16829—16834 |
21 | Luo Y., Smeets S., Wang Z. D., Sun J. L., Yang W. M., Chem. Eur. J., 2019, 25(9), 2184—2188 |
22 | Jordá J. L., Rey F., Sastre G., Valencia S., Palomino M., Corma A., Segura A., Errandonea D., Lacomba R., Manjón F. J., Gomis Ó., Kleppe A. K., Jephcoat A. P., Amboage M., Rodríguez⁃Velamazán J. A., Angew. Chem. Int. Ed., 2013, 52(40), 10458—10462 |
23 | Tong M. Q., Zhang D. L., Fan W. B., Xu J., Zhu L. K., Guo W., Yan W. F., Yu J. H., Qiu S. L., Wang J. G., Deng F., Xu R. R., Sci. Rep., 2015, 5(1), 11521 |
24 | Jo D. H., Hong S. B., Angew. Chem. Int. Ed., 2019, 58(39), 13845—13848 |
25 | Shin J. H., Xu H. Y., Seo S., Guo P., Min J. G., Cho J., Wright P. A., Zou X. D., Hong S. B., Angew. Chem. Int. Ed., 2016, 55(16), 4928—4932 |
26 | Sun J. L., Bonneau C., Cantín Á., Corma A., Díaz⁃Cabañas M. J., Moliner M., Zhang D. L., Li M. R., Zou X. D., Nature, 2009, 458(7242), 1154—1157 |
27 | Wang L., Yan N. N., Liu X. N., Zhao X. B., Shen M. K., Liu L. F., Tian P., Guo P., Liu Z. M., Chem. Eur. J., 2019, 25(4), 1029—1036 |
28 | Yan N. N., Ma C., Cao Y., Liu X. N., Cao L., Guo P., Tian P., Liu Z. M., Small, 2020, 16(33), 2000902 |
29 | Bunaciu A. A., Udriştioiu E. G., Aboul⁃Enein H. Y., Crit. Rev. Anal. Chem., 2015, 45(4), 289—299 |
30 | Oszlányi G., Sütő A., Acta Cryst., 2004, 60(2), 134—141 |
31 | Patterson A. L., Phys. Rev., 1934, 46(5), 372—376 |
32 | STOE, https://www.stoe.com/product/stoe⁃stadi⁃p/ |
33 | Su X., Tian P., Li J. Z., Zhang Y., Meng S. H., He Y. L., Fan D., Liu Z. M., Micropor. Mesopor. Mater., 2011, 144(1—3), 113—119 |
34 | The Nobel Prize in Physics, https://www.nobelprize.org/prizes/physics/ |
35 | Zhang D. L., Oleynikov P., Hovmöller S., Zou X. D., Z. Kristallogr., 2010, 225(2/3), 94—102 |
36 | Wan W., Sun J. L., Su J., Hovmöller S., Zou X. D., J. Appl. Cryst., 2013, 46(6), 1863—1873 |
37 | Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 2007, 107(6/7), 507—513 |
38 | Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 2008, 108(8), 763—772 |
39 | Gemmi M., La Placa M. G. I., Galanis A. S., Rauch E. F., Nicolopoulos S., J. Appl. Cryst., 2015, 48(3), 718—727 |
40 | Wang B., Rhauderwiek T., Inge A. K., Xu H. Y., Yang T. M., Huang Z. H., Stock N., Zou X. D., Chem. Eur. J., 2018, 24(66), 17429—17433 |
41 | Xu H. Y., Lebrette H., Clabbers M. T. B., Zhao J. J., Griese J. J., Zou X. D., Högbom M., Sci. Adv., 2019, 5(8), eaax4621 |
42 | De Graaf S., Momand J., Mitterbauer C., Lazar S., Kooi B. J., Sci. Adv., 2020, 6(5), eaay4312 |
43 | Lazić I., Bosch E. G. T., Lazar S., Ultramicroscopy, 2016, 160, 265—280 |
44 | Villaescusa L. A., Li J., Gao Z. H., Sun J. L., Camblor M. A., Angew. Chem. Int. Ed., 2020, 59(28), 11283—11286 |
45 | Jiao M. C., Huang J., Xu H., Jiang J. G., Guan Y. J., Ma Y. H., Wu P., Angew. Chem. Int. Ed., 2020, 59(39), 17291—17296 |
46 | Zi W. W., Gao Z. H., Zhang J., Lv J. H., Zhao B. X., Jiang Y. F., Du H. B., Chen F. J., Micropor. Mesopor. Mater., 2019, 290, 109654 |
47 | Zi W. W., Gao Z. H., Zhang J., Zhao B. X., Cai X. S., Du H. B., Chen F. J., Angew. Chem. Int. Ed., 2020, 59(10), 3948—3951 |
48 | Chen F. J., Xu Y., Du H. B., Angew. Chem. Int. Ed., 2014, 53(36), 9592—9596 |
[1] | 姚伊婷, 吕佳敏, 余申, 刘湛, 李昱, 李小云, 苏宝连, 陈丽华. 等级孔微孔-介孔Fe2O3/ZSM-5中空分子筛催化材料的制备及催化苄基化性能[J]. 高等学校化学学报, 2022, 43(8): 20220090. |
[2] | 陈玮琴, 吕佳敏, 余申, 刘湛, 李小云, 陈丽华, 苏宝连. 有机杂化介孔Beta分子筛的合成及在苯甲醇烷基化反应中的应用[J]. 高等学校化学学报, 2022, 43(6): 20220086. |
[3] | 李志光, 齐国栋, 徐君, 邓风. Sn-Al-β分子筛酸性在葡萄糖转化反应中作用的固体NMR研究[J]. 高等学校化学学报, 2022, 43(6): 20220138. |
[4] | 李加富, 张凯, 王宁, 孙启明. 分子筛限域单原子金属催化剂的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220032. |
[5] | 孟祥龙, 杨歌, 郭海玲, 刘晨光, 柴永明, 王纯正, 郭永梅. 纳米分子筛的合成及硫化氢吸附性能[J]. 高等学校化学学报, 2022, 43(3): 20210687. |
[6] | 魏李娜, 彭莉, 朱锋, 顾鹏飞, 顾学红. 中空纤维Au-CeZr/FAU催化膜的制备及在富氢气氛CO选择性氧化反应中的应用[J]. 高等学校化学学报, 2022, 43(10): 20220175. |
[7] | 李海勃, 肖长发, 江龙, 黄云, 淡宜. MCM-41分子筛负载氯化铝催化丙烯酸甲酯与1-辛烯共聚[J]. 高等学校化学学报, 2021, 42(9): 2974. |
[8] | 李奕川, 朱国富, 王宇, 柴永明, 刘晨光, 何盛宝. 基底表面性质与前驱液化学环境对原位定向构筑钛硅分子筛膜的影响[J]. 高等学校化学学报, 2021, 42(9): 2934. |
[9] | 罗强强, 金少青, 孙洪敏, 杨为民. 液相酸溶液后补钛合成Ti-MWW分子筛[J]. 高等学校化学学报, 2021, 42(9): 2742. |
[10] | 张旭, 阙家乾, 侯月新, 吕佳敏, 刘湛, 雷坤皓, 余申, 李小云, 陈丽华, 苏宝连. 等级孔介孔-微孔TS-1分子筛单晶的合成及催化氯丙烯环氧化性能[J]. 高等学校化学学报, 2021, 42(8): 2529. |
[11] | 王磊, 孙毯毯, 闫娜娜, 马超, 刘晓娜, 田鹏, 郭鹏, 刘中民. 利用适用于SAPO-34的有机结构导向剂合成SSZ-13分子筛[J]. 高等学校化学学报, 2021, 42(6): 1716. |
[12] | 李健, 于明明, 孙源, 冯文华, 冯兆池, 吴剑峰. 水溶液pH对甲烷低温氧化制备甲醇的影响[J]. 高等学校化学学报, 2021, 42(3): 776. |
[13] | 王冶, 张晓思, 孙丽婧, 李冰, 刘琳, 杨淼, 田鹏, 刘仲毅, 刘中民. 有机硅烷辅助合成特殊形貌SAPO分子筛[J]. 高等学校化学学报, 2021, 42(3): 683. |
[14] | 王勇, 董彪, 孙娇, 董德录, 孙连坤. 基于分子筛模板的银/硅铝无定形结构复合材料的合成及光谱性质[J]. 高等学校化学学报, 2021, 42(10): 3233. |
[15] | 闻嘉丽, 张钧豪, 姜久兴. 超大孔分子筛, 十年再回顾[J]. 高等学校化学学报, 2021, 42(1): 101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||