高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220487.doi: 10.7503/cjcu20220487
• 综合评述 • 上一篇
收稿日期:
2022-07-19
出版日期:
2022-09-10
发布日期:
2022-08-12
通讯作者:
刘潇康,丁韬,姚涛
E-mail:liuxk@ustc.edu.cn;dingtao@ustc.edu.cn;yaot@ustc.edu.cn
基金资助:
WANG Sicong, PANG Beibei, LIU Xiaokang(), DING Tao(
), YAO Tao(
)
Received:
2022-07-19
Online:
2022-09-10
Published:
2022-08-12
Contact:
LIU Xiaokang,DING Tao,YAO Tao
E-mail:liuxk@ustc.edu.cn;dingtao@ustc.edu.cn;yaot@ustc.edu.cn
Supported by:
摘要:
X射线吸收精细谱学(XAFS)技术是从20世纪80年代开始逐渐发展起来的一种材料表征技术, 具有对中心吸收原子的局域结构和化学环境敏感的特征, 非常适合表征单原子催化剂. 本文从XAFS技术的原理和特点出发, 深入探讨了该技术在电催化水分解、 燃料电池阴极反应和二氧化碳电化学还原等多个单原子催化应用场景下的独特作用, 并展望了XAFS技术在单原子电催化领域的未来发展与应用前景, 以期为更深入明确的单原子催化剂结构表征和电催化机理描述提供指导.
中图分类号:
TrendMD:
汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用. 高等学校化学学报, 2022, 43(9): 20220487.
WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis. Chem. J. Chinese Universities, 2022, 43(9): 20220487.
Fig.3 Schematic layout of the ion chamber in a total electron detection mode[28]Copyright 1998, Institute of High Energy Physics Chinese Academy of Sciences.
Fig.6 Illustration of the near?free Pt electrocatalyst for HER[22](A) HAADF-STEM image of single-atom Pt; (B) in situ XANES spectra of Pt L3-edge during HER process; (C) detailed analysis of XANES spectra; (D) EXAFS fitting spectra obtained at different cathodic voltage.Copyright 2020, Springer-Nature.
Fig.7 Identification of single?atom Co active sites during HER process[36](A) In situ XANES spectra of Co K-edge during HER process; (B) normalized difference spectra of Co K-edge XANES; (C) fitted average oxidation state of Co obtained from XANES; (D) the first-shell fitting of EXAFS spectra. Inserts are the corresponding geometric configurations. Grey, blue, red, purple, and cyan balls represent C, N, O, H and Co atoms, respectively.Copyright 2019, Springer-Nature.
Fig.8 Illustration of the series M?NHGFs[40](A) The preparation route to M-NHGFs; (B) Fourier transformed magnitudes of the experimental K-edge EXAFS signals of M-NHGFs along with reference samples; (C) atomic structure characterizations of M-NHGFs by ADF-STEM.Copyright 2018, Springer-Nature.
Fig.9 Illustration of single?atom Ru electrocatalyst for OER[41](A) HAADF-STEM image of single-atom Ru; (B) magnified image of (A); (C) in situ SR-IR spectra of Ru-N-C catalyst; (D) Operando EXAFS spectra and first-shell fitting curves for Ru-N-C at different applied voltages from the open circuit condition to 1.5 V during OER; (E) Operando XANES spectra for Ru-N-C during OER; (F) schematic of the whole OER mechanism on Ru-N-C catalyst in the acidic electrolyte. The balls in gray, blue, red, white, and light green represent C, N, O, H, and Ru atoms, respectively.Copyright 2019, Springer-Nature.
Fig.10 Illustration of the high?loaded single?atom Fe catalyst[48](A) Cartoon illustrating the synthetic approach for the Fe-NC catalyst with a high Fe loading; (B, C) Fe K-edge EXAFS analysis of Fe-NCU(B) and Fe-NC?-DCDA(C); (D, E) 57Fe cryo M?ssbauer spectra measured at 5?K of Fe-NCU(D) and Fe-NCΔ-DCDA(E).Copyright 2022, Springer-Nature.
Fig.11 Illustration of (Fe,Co)/NC catalyst[49](A) Fe L-edge XANES spectra of (Fe,Co)/N-C and FePc; (B) experimental 57Fe M?ssbauer transmission spectra measured at 298 K for (Fe,Co)/N-C, and fittings with spectral components; (C) N K-edge XAS spectra of Fe SAs/N-C, Co SAs/N-C, and (Fe,Co)/N-C; (D) comparison between K-edge XANES experimental spectrum of (Fe,Co)/N-C(black dashed line) and theoretical spectrum calculated with depicted structure(solid red line); (E) corresponding Fe K-edge EXAFS fittings of (Fe,Co)/N-C; (F) proposed architectures of Fe-Co dual sites; (G) preparation of (Fe,Co)/N-C.Copyright 2017, American Chemical Society.
Fig.12 Illustration of Ni dinuclear site catalyst(Ni DSC)[20](A) Operando XANES spectra recorded at the Ni K-edge of Ni DSC at different applied potentials; (B) operando EXAFS spectra recorded at the Ni K-edge of Ni DSC at different applied potentials and their least-squares curve-fitting analysis; (C) comparison between the Ni K-edge XANES experimental spectra(solid lines) and the theoretical spectra(dashed lines) calculated with the depicted structures (insert).Copyright 2021, American Chemical Society.
Fig.13 The in situ XAFS analysis of Cu1/Au catalyst[53](A) The least-squares curve-fitting analysis of operando EXAFS spectra at the Cu K-edge; (B) corresponding Re[k3χ(k)] oscillations; (C) Cu K-edge XANES experimental spectra of the sample under ex situ condition and -0.6 V and the calculated spectra for Cu atoms at the corner, edge, (100) plane, and (111) plane and corresponding configurations; (D) schematic for the coordination number of Cu atoms at different sites; (E) schematic for the surface migration of single Cu atoms under working conditions.Copyright 2020, American Chemical Society.
1 | Peng Y., Lu B., Chen S., Adv Mater., 2018, 30(48), e1801995 |
2 | Qiao B. T., Wang A. Q., Yang X. F, Lawrence F. A., Jiang Z., Gui Y. T., Liu J. Y., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641 |
3 | Chen Y. J., Ji S. F., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2(7), 1242—1264 |
4 | Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65—81 |
5 | Shan J., Li M., Allard L. F., Lee S., Flytzani⁃Stephanopoulos M., Nature, 2017, 551, 605—608 |
6 | Wei S. Q., Sun Z. H., Pan Z. Y., Yan W. S., Zhong W. J., He B., Xie Z., Wei Z., Journal of University of Science and Technology of China, 2007, 37(4/5), 426—440 |
韦世强, 孙治湖, 潘志云, 闫文盛, 钟文杰, 贺博, 谢治, 韦正. 中国科学技术大学学报. 2007, 37(4/5), 426—440 | |
7 | Meirer F., Weckhuysen B. M., Nat. Rev. Mater., 2018, 3, 324—340 |
8 | Guda A. A., Guda S. A., Lomachenko K. A., Soldatov M. A., Pankin I. A., Soldatov A. V., Braglia L., Bugaev A. L., Martini A., Signorile M., Groppo E., Piovano A., Borfecchia E., Lamberti C., Catal. Today, 2019, 336, 3—21 |
9 | Bazin D., Rehr J., J. Phys. Chem. B, 2003, 107, 12398—12402 |
10 | Rehr J., Ankudinov A., Coord. Chem. Rev., 2005, 249, 131—140 |
11 | Wang Y., Li J., Zhang S., Ma J. Y., Wang L. H., Wei X. J., Huang Y. Y., Jiang Z., Mater. China, 2017, 36(3), 188—193 |
王宇, 李炯, 张硕, 马静远, 汪丽华, 魏向军, 黄宇营, 姜政. 中国材料进展, 2017, 36(3), 188—193 | |
12 | Fricke H., Phys. Rev., 1920, 16(3), 202—215 |
13 | Hertz G., Z., Phys., 1920, 3, 19—23 |
14 | Bianconi A., Incoccia L., Stipcich S., EXAFS and Near Edge Structure, Springer⁃Verlay, Berlin, 1983 |
15 | Müller O., Nachtegaal M., Just J., Luetzenkirchen⁃Hecht D., Frahm R., J. Synchrotron Radiat., 2016, 23(1), 260—266 |
16 | Kantor I., Labiche J. C., Collet E., Siron L., Thevenin J. J., Ponchut C., Borrel J., Mairs T., Marini C., Strohm C., Mathon O., Pascarelli P., J. Synchrotron Radiat., 2014, 21(6), 1240—1246 |
17 | Borfecchia E., Garino C., Gianolio D., Salassa L., Gobetto R., Lamberti C., Catal. Today, 2014, 229, 34—45 |
18 | Sun Z. H., Liu Q. H., Yao T., Yan W. S., Wei S. Q., Sci. China: Mater., 2015, 58(4), 313—341 |
19 | Janis T., Beatriz R., Chem. Rev., 2021, 121(2), 882—961 |
20 | Ding T., Liu X. K., Tao Z. N., Liu T. Y., Chen T., Zhang W., Shen X. Y., Liu D., Wang S. C., Pang B. B., Wu D., Cao L. L., Wang L., Liu T., Li Y. F., Sheng H. T., Zhu M. Z., Yao T., J. Am. Chem. Soc., 2021, 143(30), 11317—11324 |
21 | Mei B. B., Liu C., Sun F. F., Lu S. Y., Du X. L., Li X. P., Song F., Xu W. L., Jiang Z., ACS Catal., 2022, 12(14), 8676—8686 |
22 | Fang S., Zhu X. R., Liu X. K., Gu J., Liu W., Wang D. H., Zhang W., Lin Y., Lu J. L., Wei S. Q., Li Y. F., Yao T., Nat. Commun., 2020, 11, 1029 |
23 | Yang J., Fu W. Z., Chen C. Q., Chen W. Y., Huang W. G., Yang R. O., Kong Q. Q., Zhang B. Y., Zhao J. X., Chen C. M., Luo J., Yang F., Duan X, Z., Jiang Z., Qin Y., ACS Catal., 2021, 11(7), 4146—4156 |
24 | Tyson T. A., Hodgson K. O., Natoli C. R.,Benfatto M., Phys. Rev. B, 1992, 46(10), 5997—6019 |
25 | Ankudinov A. L., Ravel B., Rehr J. J., Conradson S.D., Phys. Rev. B, 1998, 58(12), 7565—7576 |
26 | Koningsberger D. C., Prins R., X⁃ray Absorption: Principles, Applications, Techniques of EXAFS, SESAFS, and XANES, John Wily, New York, 1988 |
27 | Sun Z. H., Yan W. S., Yao T., Liu Q. H., Xie Y., Wei S. Q., Dalton Trans., 2013, 42, 13779—13801 |
28 | Liu T., Hu T. D., Xie Y. N., Annual Report of Beijing Synchrotron Radiation Facility, 1998, 1, 103—106 |
刘涛, 胡天斗, 谢亚宁. 北京同步辐射装置年报, 1998, 1, 103—106 | |
29 | Friebel D., Louie M. W., Bajdich M., Sanwald K. E., Cai Y., Wise A. M., Cheng M. J., Sokaras D., Weng T. C., Alonso⁃Mori R., Davis R. C., Bargar J. R., Nørskov J. K., Nilsson A., Bell A. T., J. Am. Chem. Soc., 2015, 137(3), 1305—1313 |
30 | Zhang W., He P., Wang C., Ding T., Chen T., Liu X. K., Cao L. L., Huang T. M., Shen X. Y., Oleg A. U., Aram L. B., Lin Y., Yao T., J. Mater. Chem. A, 2020, 8(48), 25970—25977 |
31 | Ishiguro N., Tada M., Catal. Lett., 2018, 148, 1597—1609 |
32 | Majed C., Ahmed H. Z., Chem. Phys. Chem., 2009, 10(1), 28—43 |
33 | Zhang J. Q., Zhao Y. F., Guo X., Chen C., Dong C. L., Liu R. S., Han C. P., Li Y. D., Gogotsi Y., Wang G. X., Nat. Catal., 2018, 1, 985—992 |
34 | Lin L. L., Zhou W., Gao R., Yao S. Y., Zhang X., Xu W. Q., Zheng S. J., Zheng J., Yu Q. L., Li Y. W., Shi C., Wen X. D., Ma D., Nature, 2017, 544, 80—83 |
35 | Cheng N. C., Stambula S., Wang D., Banis N. M., Liu J., Riese A., Xiao B. W., Li R. Y., Sham T. K., Liu L. M., Botton G.A., Sun X. L., Nat. Commun., 2016, 7, 13638 |
36 | Cao L. L., Luo Q. Q., Liu W., Lin Y., Liu X. K., Cao Y. J., Zhang W., Wu Y. E., Yang J. L., Yao T., Wei S. Q., Nat. Catal., 2019, 2, 134—141 |
37 | Symes M. D., Cronin L., Nat. Chem., 2013, 5, 403 |
38 | Ermete A., ACS Catal., 2014, 4(5), 1426—1440 |
39 | Spoeri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., Strasser P., Angew. Chem. Int. Ed., 2017, 56(22), 5994—6021 |
40 | Fei H. L., Dong J. C., Feng Y. X., Allen C.S., Wan C. Z., Volosskiy B., Li M. F., Zhao Z. P., Wang Y. L., Sun H. T., An P. F., Chen W. X., Guo Z. Y., Lee C., Chen D. L., Shakir I., Liu M. J., Hu T. D., Li Y. D., Kirkland A. I., Duan X. F., Huang Y., Nat. Catal., 2018, 1, 63—72 |
41 | Cao L. L., Luo Q. Q., Chen J. J., Wang L., Lin Y., Wang H. J., Liu X. K., Shen X. Y., Zhang W., Liu W., Qi Z. M., Jiang Z., Yang J. L., Yao T., Nat. Commun., 2019, 10, 4849 |
42 | Wilson A., Kleen G., Papageorgopoulos D., Fuel Cell System Cost⁃2017(DOE Hydrogen and Fuel Cells Program), 2017 |
43 | Yang S., Tak Y. J., Kim J., Soon A., Lee H., ACS Catal., 2017, 7, 1301—1307 |
44 | Jaouen F., Proietti E., Lefevre M., Chenitz R., Dodelet J. P., Wu G., Chung H. T., Johnston C. M., Energy Environ. Sci., 2011, 4, 114—130 |
45 | Jaouen F., Coutard N., Strasser P., Kucernak A., Johnson Matthey Technol. Rev., 2018, 62(2), 231—255 |
46 | Chung H. T., Cullen D. A., Higgins D., Sneed B. T., Holby E. F., More K. L., Zelenay P., Science, 2017, 357(6350), 479—484 |
47 | Yang S., Li X. W., Tan T. Y., Mao J. N., Xu Q., Liu M. H., Miao Q. Y., Mei B. B., Qiao P. Z., Gu S. Q., Sun F. F., Ma J. Y., Zeng G. F., Jiang Z., Appl. Catal. B: Environ., 2022, 307, 121147 |
48 | Mehmood A., Gong M. J., Jaouen F., Roy A., Zitolo A., Khan A., Sougrati M. T., Primbs M., Bonastre A. M., Fongalland D., Drazic G., Strasser P., Kucernak A., Nat. Catal., 2018, 5, 311—323 |
49 | Wang J., Huang Z. Q., Liu W., Chang C. R., Tang H. L., Li Z. H., Chen W. X., Jia C. J., Yao T., Wei S. Q., Wu Y. E., Li Y. D., J. Am. Chem. Soc., 2017, 139(48), 17281—17284 |
50 | Ren W. H., Tan X., Yang W. F., Jia C., Xu S. M., Wang K. X., Smith S. C., Angew. Chem. Int. Ed., 2019, 58(21), 6972—6976 |
51 | Ju W., Bagger A., Hao G. P., Varela A. S., Sinev I., Bon V., Roldan Cuenya B., Kaskel S., Rossmeisl J., Strasser P., Nat. Commun., 2017, 8, 944 |
52 | Kim D., Xie C. L., Becknell N., Yu Y., Karamad M., Chan K., Crumlin E.J., Nørskov J. K., Yang P. D., J. Am. Chem. Soc., 2017, 139(24), 8329—8336 |
53 | Liu X. K., Ao C. C., Shen X. Y., Wang L., Wang S. C., Cao L. L., Zhang W., Dong J. J., Bao J., Ding T., Zhang L. D., Yao T., Nano Lett., 2020, 20(11), 8319—8325 |
54 | Velasco⁃Velez J. J., Wu C. H., Pascal T. A., Wan L. F., Guo J., Prendergast D., Salmeron M., Science, 2014, 346, 831—834 |
[1] | 张玲玲 董欢欢 何祥喜 李丽 李林 吴星樵 侴术雷. 中空碳材料用于钠离子电池负极的研究进展[J]. 高等学校化学学报, 0, (): 20220620. |
[2] | 王鹏飞, 富文豪, 孙少妮, 曹学飞, 袁同琦. 纤维素纳米晶模板法制备多级孔炭材料及其电化学性能[J]. 高等学校化学学报, 0, (): 20220497. |
[3] | 李琳, 齐丰莲, 邱丽莉, 孟子晖. 基于六边形磁纳米片构建动态非晶态光学结构图案[J]. 高等学校化学学报, 2022, 43(8): 20220123. |
[4] | 陈玮琴, 吕佳敏, 余申, 刘湛, 李小云, 陈丽华, 苏宝连. 有机杂化介孔Beta分子筛的合成及在苯甲醇烷基化反应中的应用[J]. 高等学校化学学报, 2022, 43(6): 20220086. |
[5] | 王红宁, 黄丽, 清江, 马腾洲, 蒋伟, 黄维秋, 陈若愚. 香蒲基生物炭的活化及对VOCs吸附的应用[J]. 高等学校化学学报, 2022, 43(4): 20210824. |
[6] | 闫文卿, 张则尧, 李彦. 碳纳米管透明导电薄膜的可控制备[J]. 高等学校化学学报, 2022, 43(3): 20210626. |
[7] | 孟祥龙, 杨歌, 郭海玲, 刘晨光, 柴永明, 王纯正, 郭永梅. 纳米分子筛的合成及硫化氢吸附性能[J]. 高等学校化学学报, 2022, 43(3): 20210687. |
[8] | 朱兆田, 李圣凯, 宋明慧, 蔡芯琪, 宋志灵, 陈龙, 陈卓. 多功能金属石墨纳米囊的生物医学应用进展[J]. 高等学校化学学报, 2021, 42(9): 2701. |
[9] | 柳扬, 李清波, 孙杰, 赵显. Ga对在AlN衬底上直接生长石墨烯的远程催化[J]. 高等学校化学学报, 2021, 42(7): 2271. |
[10] | 周洁琼, 黄艳, 张志凌, 庞代文, 田智全. 水溶性近红外Ⅱ区荧光Ag2Te量子点的合成[J]. 高等学校化学学报, 2021, 42(6): 2072. |
[11] | 王红宁, 黄丽, 宋夫交, 朱婷, 黄维秋, 钟璟, 陈若愚. 中空碳纳米球的制备及VOCs吸附性能[J]. 高等学校化学学报, 2021, 42(6): 1704. |
[12] | 丁辉, 周旋旋, 张子慧, 夏坤林, 赵云鹏. 无溶剂法大量制备高效红光碳点及其在白光器件中的应用[J]. 高等学校化学学报, 2021, 42(6): 2080. |
[13] | 张振, 毛丹, 杨梅, 于然波. 中空多壳层结构在电磁波领域中的应用[J]. 高等学校化学学报, 2021, 42(5): 1395. |
[14] | 夏嘉豪, 许华平. 含 硒 表 界 面 化 学[J]. 高等学校化学学报, 2021, 42(4): 997. |
[15] | 黄大朋, 于浩海, 张怀金. MXenes材料的光学特性及相关研究进展[J]. 高等学校化学学报, 2021, 42(2): 397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||