高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220325.doi: 10.7503/cjcu20220325

• 展望 • 上一篇    下一篇

聚合物单原子光催化剂的载流子分离和表面反应机制

滕镇远1(), 张启涛2, 苏陈良2()   

  1. 1.九州工业大学工学部应用化学科, 北九州 804? 8550,日本
    2.深圳大学微纳光电子学研究院, 教育部二维材料光电科技国际合作联合实验室, 深圳 518000
  • 收稿日期:2022-05-11 出版日期:2022-09-10 发布日期:2022-07-15
  • 通讯作者: 滕镇远,苏陈良 E-mail:zy.teng@foxmail.com;chmsuc@szu.edu.cn
  • 基金资助:
    国家自然科学基金(21805191);广东省基础与应用基础研究基金(2020A1515010982);深圳市科创委基础研究项目(JCYJ20200812122947002)

Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts

TENG Zhenyuan1(), ZHANG Qitao2, SU Chenliang2()   

  1. 1.Department of Applied Chemistry,Faculty of Engineering,Kyushu Institute of Technology,Kitakyushu 804? 8550,Japan
    2.International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of;Education,Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China
  • Received:2022-05-11 Online:2022-09-10 Published:2022-07-15
  • Contact: TENG Zhenyuan,SU Chenliang E-mail:zy.teng@foxmail.com;chmsuc@szu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21805191);the Guangdong Basic and Applied Basic Research Foundation, China(2020A1515010982);the Shenzhen Science and Technology Program, China(JCYJ20200812122947002)

摘要:

近10年来, 研究者制备了大量的单原子催化剂(SACs), 其在光、 电、 热等催化体系中展现出优异的催化性能及较高的实用性和经济性. 光催化过程的独特性使其在催化本质上明显不同于热催化和电催化过程, 即处于激发态的电子和空穴参与反应, 而非基态的价电子. 本文首先探讨了有机聚合半导体与传统无机金属化合物半导体的区别, 指出聚合物半导体介电常数通常较小且光生电子与空穴的中心距离过短(计算上通常 <1 nm), 导致其界面处几乎不存在明显的能带弯曲. 将金属离子引入聚合物半导体的骨架中可以有效引入给体-受体对, 在提高载流子分离效率的同时延长其寿命. 在高效聚合物基单原子光催化剂的设计过程中, 引入单原子金属位点后的激发态电荷分布及捕获态电子对反应的驱动力是决定催化剂整体性能的关键因素. 时间-空间双因子布局分析法和瞬态吸收光谱可为研究者提供相关信息. 随着人工智能的进一步发展, 建立回归精度接近或达到密度泛函理论水准的能量函数, 从而反推激发态下体系的能量变化, 有望为光催化反应的激发特性与反应活性建立可靠的联系. 此外, 配体和溶剂化效应在今后的研究中也应被仔细考虑.

关键词: 聚合物, 单原子催化剂, 光催化, 介电性质

Abstract:

In the past decade, a large number of single-atom catalysts(SACs) have been synthesized, and they exhibited excellent catalytic performance as well as high practical and cost advantages in photo-, electro-, thermo- catalysis. The uniqueness of the photocatalytic process determines that it is essentially different from the thermocatalytic and electrocatalytic processes, that is, electrons and holes at the excited state(rather than the valence electrons in the ground state) participate in the reaction. This perspective first discusses the difference between organic polymeric semiconductors and traditional inorganic semiconductors, clarifies that organic polymer semiconductors generally have small relative permittivity and the short distance between photogenerated electrons and holes(computationally, usually<1 nm), resulting in almost absent band bending at the interface of polymetric photocatalysts. The introduction of metal ions into the matrix of organic semiconductors can form efficient donor- acceptor pairs, followed by an increased lifetime of charge carriers and improved carrier separation. In the process of designing high-efficiency polymer single-atom catalysts, the excited state charge distribution after the introduction of single-atom sites and the driving force of trapped electrons on different reactions are crucial to the overall activity of the catalysts. Time-space population analysis for wavefunction analysis and transient absorption spectroscopy can provide useful information for researchers. In the near future, with the further development of artificial intelligence, establishing an energy function with a regression accuracy close to or reaching the density functional theory level to invert the energy change of the system in the excited state is expected to establish a reliable connection between the excitation property and the activity of the photocatalytic reaction. Furthermore, the role of ligands and solvation should also be carefully considered in future studies.

Key words: Polymer, Single-atom catalyst, Photocatalysis, Dielectric property

中图分类号: 

TrendMD: