高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220323.doi: 10.7503/cjcu20220323
收稿日期:
2022-05-11
出版日期:
2022-09-10
发布日期:
2022-06-11
通讯作者:
黄小青
E-mail:hxq006@xmu.edu.cn
基金资助:
YAO Qing1,2, YU Zhiyong1,2, HUANG Xiaoqing1()
Received:
2022-05-11
Online:
2022-09-10
Published:
2022-06-11
Contact:
HUANG Xiaoqing
E-mail:hxq006@xmu.edu.cn
Supported by:
摘要:
基于电化学反应的能源储存与转化技术为全球能源结构的转型提供了一条绿色、 可持续的途径, 高效的电催化剂在其中扮演着重要的角色. 得益于在物理、 化学性质上的独特优势, 单原子催化剂在电催化能源转化方面展现出巨大的应用前景. 本文综合评述了单原子催化剂的合成及其能源电催化应用的研究进展, 介绍了单原子催化剂的常见表征手段, 总结了单原子催化剂的合成方法(湿化学法、 高温热解法、 原子沉积法、 电化学沉积法等), 并介绍了该类材料在氧还原、 二氧化碳电还原、 电解水及氮气电还原反应中的研究进展, 重点探讨了催化剂微观结构与其性能之间的关系, 最后, 对单原子能源电催化领域所面临的挑战进行了总结, 并对该领域未来的发展方向进行了展望.
中图分类号:
TrendMD:
姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展. 高等学校化学学报, 2022, 43(9): 20220323.
YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts. Chem. J. Chinese Universities, 2022, 43(9): 20220323.
Fig.1 AC?STEM(A) and enlarged images of Fe?N/P?C?700 and EELS atomic spectra from the bright dots shown by the yellow circles(B), EDS elemental mappings of Fe?N/P?C?700(C)[46], FT?EXAFS spectra of Ir1/CN and iridium powder(D), XANES of Ir1/CN, iridium powder, and IrO2(E), iridium L3?edge XANES spectra of Ir1/CN at various potentials during the potentiostatic FAOR(F)[52], reconstructed APT data for a region containing Fe?CN(G) with a 2D contour plot of C atomic concentration(H) and the corresponding reconstruction for a region of 40 nm×40 nm×80 nm surrounding a CNT(I), side and top view of CNT planes(J)[53], DRIFTS CO chemisorption of the xPd?Ni/SiO2 samples(x=5, 10, and 20) at the CO saturation coverage(K)[54]The dark blue, gray, and red balls in (K) are Pd, C, and O atom, respectively. Scale bar: 0.01. (A—C) Copyright 2020, American Chemical Society; (D—F) Copyright 2020, Springer Nature; (G—J) Copyright 2019, Springer Nature;(K) Copyright 2019, Springer Nature.
Fig.2 Schematic illustration of the preparation and model structure of the atomically dispersed noble metal catalysts[65]Five atomically dispersed noble metal(Ru, Rh, Pd, Ir, and Pt) catalysts were prepared on the meso_S?C supports with high metal loading of up to 10%(mass fraction). Copyright 2019, American Association for the Advancement of Science.
Fig.3 Strategy for the preparation of UHD?SACs(A), metal loadings achieved in this study on NC, PCN and CeO2 supports(B), photograph of the robotic synthesis platform and assignment of tools to unit operations(C), flowsheet of the synthesis protocol(D), comparison of metal content achieved by automated and manual synthesis of Ni1/NC catalysts(E)[66](D) T is the temperature and t is the time.Copyright 2021, Springer Nature.
Fig.4 Formation of Co SAs/N?C(A)[42], scheme of the formation of Ni SAs/N?C(B)[72], formation of Ir0.06Co2.94O4(C)[74](A) Copyright 2016, Wiley?VCH; (B) Copyright 2017, American Chemical Society; (C) Copyright 2021, American Chemical Society.
Fig.5 Illustration for the synthesis(A) and representative aberration?corrected HAADF?STEM image of Pt1/NCNS(B)[79], illustration of Co ALD process on Pt1/NCNS(C)[81], schematic illustration of the synthesis of BP confined SACs via ALD(D)[82](C) The white, brown, blue, orange, and silver spheres represent H, C, N, Co, and Pt, respectively.(A, B) Copyright 2021, Wiley?VCH; (C) Copyright 2021. Springer Nature; (D) Copyright 2021, Wiley?VCH.
Fig.6 Schematic of cathodic(A) and anodic(B) deposition of Ir species, normalized XANES(C) and EXAFS(D) spectra at the Ir L3?edge for cathode?Ir1/Co(OH)2 and anode?Ir1/Co(OH)2[86], the mechanism of site?specific UPD(E, F)[87](C, D) Ir powder, IrCl3, and IrO2 were used as references. (E, F) The site?specific UPD enables the energetically favorable deposition of single?atom metal on the chalcogen sites, and then automatically terminates the sequential aggregation of metal atoms (A—D) Copyright 2020, Springer Nature; (E, F) Copyright 2020, Springer Nature.
Fig.7 HAADF?STEM image of Pt1.1/BPdefect showing the dense distribution of Pt atoms on carbon(A), RDE polarization curves of BP, Pt1.1/BP, Pt1.1/BPdefect and the commercial Pt/C(B), free energy diagram for complete O2 reduction on single Pt atom supported on pristine graphene(g?Pt), single Pt atom suppor? ted on monovacancy graphene(g?1?Pt), and single Pt atom supported on divacancy graphene(g?2?Pt) substrates in acidic media at 0.83 V, respectively(C)[100], STEM image(D) and the corresponding elemental mappings(E) for the Ru?SSC, EXAFS fitting curve for Ru SSC(F), ORR polarization curves(G), specific activity and mass activity comparison among Ru?SSC, Pt/C, and Fe?SSC(H), TOF(measured at 0.8 V vs. RHE) and E1/2 values of Ru?SSC and other recently reported SSCs(I)[43](A—C) Copyright 2019, Wiley?VCH; (D—I) Copyright 2019, American Chemical Society.
Fig.8 HAADF?STEM image of Fe?N4 SACs with dsite values of 0.5 nm(A), EXAFS spectra for four typical Fe?N4 catalysts with different dsite(B), LSV of the PPy?derived N—C and Fe SACs with different dsite values(C), MA normalized by the total weight of Fe in different samples according to the ICP?MS result(D)[103]Copyright 2021, Springer Nature.
Fig.9 HRTEM(A) and AC?HAADF?STEM(B) images of Mg?C3N4, CO TPD curves(C), FECO at different potentials in H?cell(D), Tafel plots(E), potentials and FECO at different current densities in flow cell(F)[115]Copyright 2021, Wiley?VCH.
Fig.10 HAADF?STEM image of Cu?SA/NPC(A), production rate of CO2 reduction products on Cu?SA/NPC(B), Faradaic efficiency of CO2 reduction products on Cu?SA/NPC(C), stability of Cu?SA/NPC(D), free energy diagrams calculated at a potential of -0.36 V for CO2 reduction to CH3COCH3 on Cu?pyridinic?N4 and Cu?pyrrolic?N4 sites of Cu?SA/NPC (insets: the computational models)(E)[131]Copyright 2020, Springer Nature.
Fig.11 HAADF?STEM image of Ru?N?C(A), the R?space curve?fitting of ex situ Ru?N?C(B), LSV curves of the Ru?N?C and commercial RuO2/C in 0.5?mol/L H2SO4(C), TOF and mass activities for Ru?N?C and RuO2/C(D), plot of current density and Ru dissolved mass ratio for Ru?N?C at 1.49?V in 0.5?mol/L H2SO4(E), free energy diagram for OER on Ru1?N4, O?Ru1?N4 and HO?Ru1?N4(F)[50], HAADF?STEM image of Ir single atoms(G) and corresponding atomic models(H, I), OER LSV curves of Ir?NiO, NiO, and IrO2 catalysts in 1 mol/L KOH(J) and corresponding overpotentials at 10 mA /cm2(K)[137](B) Insert shows the structure of the Ru site in Ru?N?C. The balls in gray, blue, and light green represent C, N, and Ru atoms, respectively. (A—F) Copyright 2019, Springer Nature; (G—K) Copyright 2020, American Chemical Society.
Fig.12 SEM image of Rh SAC?CuO NAs/CF(A), AC HAADF?STEM image of Rh SAC?CuO NAs(B), structure illustration of Rh?CuO(C), OER(D), HER(E) and overall water splitting performance(F) of different electrocatalysts[139], AC HAADF?STEM image of SA In?Pt NWs(G), HER performance(H) of different electrocatalysts and corresponding overpotentials and mass activities(I)[140](A—F) Copyright 2020, American Chemical Society; (G—I) Copyright 2020, Wiley?VCH.
Fig.13 HAADF?STEM image of Ru@ZrO2/NC after tuning color contrast(A), FEs(B) and partial current densities of NH3(C) over Ru@NC, Ru@C, Ru@ZrO2/NC and Ru@ZrO2/C, the long?term durability test at 0.21 V over Ru@ZrO2/NC at ca. 10 ℃(D), results of DFT calculation(E, F)[145], atomic structure model of FeSA?NO?C(G), FEs(H) and NH3 yield rates(I) of FeSA?NO?C?800, FeSA?NO?C?900, FeSA?NO?C?1000 and FeSA?NO?C?900 without SiO2[146](A—F) Copyright 2018, Elsevier; (G—I) Copyright 2021, Wiley‐VCH.
1 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science, 2017, 355(6321), eaad4998 |
2 | Kibsgaard J., Chorkendorff I., Nat. Energy, 2019, 4(6), 430—433 |
3 | Lewis N. S., Science, 2016, 351(6271), aad1920 |
4 | Chu S., Majumdar A., Nature, 2012, 488(7411), 294—303 |
5 | Yang Z. G., Zhang J. L., Kintner⁃Meyer M. C. W., Lu X. C., Choi D. W., Lemmon J. P., Liu J., Chem. Rev., 2011, 111(5), 3577—3613 |
6 | Morales⁃Guio C. G., Cave E. R., Nitopi S. A., Feaster J. T., Wang L., Kuhl K. P., Jackson A., Johnson N. C., Abram D. N., Hatsukade T., Hahn C., Jaramillo T. F., Nat. Catal., 2018, 1(10), 764—771 |
7 | Jin H. Y., Guo C. X., Liu X., Liu J. L., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118(13), 6337—6408 |
8 | Zhu D. D., Liu J. L., Qiao S. Z., Adv. Mater., 2016, 28(18), 3423—3452 |
9 | Ma Z., Cano Z. P., Yu A. P., Chen Z. W., Jiang G. P., Fu X. G., Yang L., Wu T. N., Bai Z. Y., Lu J., Angew. Chem. Int. Ed., 2020, 59(42), 18334—18348 |
10 | Esposito D., Nat. Catal., 2019, 2(1), 5 |
11 | Zou X., Zhang Y., Chem. Soc. Rev., 2015, 44(15), 5148—5180 |
12 | Montoya J. H., Tsai C., Vojvodic A., Norskov J. K., ChemSusChem, 2015, 8(13), 2180—2186 |
13 | Guo W. H., Zhang K. X., Liang Z. B., Zou R. Q., Xu Q., Chem. Soc. Rev., 2019, 48(24), 5658—5716 |
14 | Roger I., Shipman M. A., Symes M. D., Nat. Rev. Chem., 2017, 1, 0003 |
15 | Ren S. X., Joulie D., Salvatore D., Torbensen K., Wang M., Robert M., Berlinguette C. P., Science, 2019, 365(6451), 367—369 |
16 | Tian X., Zhao P., Sheng W., Adv. Mater., 2019, 31(31), 1808066 |
17 | Jiang H., Luo R., Li Y., Chen W., EcoMat, 2022, e12199 |
18 | Li K., Chen W., Mater. Today Energy, 2021, 20, 100638 |
19 | Wen Y., Chen P., Wang L., Li S., Wang Z., Abed J., Mao X., Min Y., Dinh C. T., Luna P., Huang R., Zhang L., Wang L., Wang L., Nielsen R. J., Li H., Zhuang T., Ke C., Voznyy O., Hu Y., Li Y., Goddard W. A., Zhang B., Peng H., Sargent E. H., J. Am. Chem. Soc., 2021, 143(17), 6482—6490 |
20 | Zhou Y., Xie Z., Jiang J., Wang J., Song X., He Q., Ding W., Wei Z., Nat. Catal., 2020, 3(5), 454—462 |
21 | Zhao D., Zhuang Z., Cao X., Zhang C., Peng Q., Chen C., Li Y., Chem. Soc. Rev., 2020, 49(7), 2215—2264 |
22 | Dunn B., Kamath H., Tarascon J. M., Science, 2011, 334(6058), 928—935 |
23 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J. Y., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
24 | Li X. N., Yang X. F., Huang Y. Q., Zhang T., Liu B., Adv. Mater., 2019, 31(50), 1902031 |
25 | Guo W. X., Wang Z. Y., Wang X. Q., Wu Y., Adv. Mater., 2021, 33(34), 2004287 |
26 | Wang J., Li Z. J., Wu Y., Li Y. D., Adv. Mater., 2018, 30(48), 1801649 |
27 | Cheng N. C., Zhang L., Doyle⁃Davis, K., Sun X. L., Electrochem. Energy Rev., 2019, 2(4), 539—573 |
28 | Chen F., Jiang X. Z., Zhang L. L., Lang R., Qiao B. T., Chin. J. Catal., 2018, 39(5), 893—898 |
29 | Zhu C. Z., Fu S. F., Shi Q. R., Du D., Lin Y. H., Angew. Chem. Int. Ed., 2017, 56(45), 13944—13960 |
30 | Chu C. H., Huang D. H., Gupta S., Weon S., Niu J. F., Stavitski E., Muhich C., Kim J. H., Nat. Commun., 2021, 12, 5179 |
31 | Guan J. Q., Bai X., Tang T. M., Nano Res., 2022, 15(2), 818—837 |
32 | Maiti K., Maiti S., Curnan M. T., Kim H. J., Han J. W., Adv. Energy Mater., 2021, 11(38), 2101670 |
33 | Hannagan R. T., Giannakakis G., Reocreux R., Schumann J., Finzel J., Wang Y. C., Michaelides A., Deshlahra P., Christopher P., Science, 2021, 372(6549), 1444—1447 |
34 | Chen Y. J., Ji S. F., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2(7), 1242—1264 |
35 | Zhai P. L., Xia M. Y., Wu Y. Z., Zhang G. H., Gao J. F., Zhang B., Cao S. Y., Zhang Y. T., Li Z. W., Fan Z. Z., Wang C., Zhang X. M., Miller J. T., Sun L. C., Hou J. G., Nat. Commun., 2021, 12, 4587 |
36 | Fang S., Zhu X. R., Liu X. K., Gu J., Liu W., Wang D. H., Zhang W., Lin Y., Lu J. L., Wei S. Q., Li Y. F., Yao T., Nat. Commun., 2020, 11, 1029 |
37 | Zheng X. B., Li P., Dou S. X., Sun W. P., Pan H. G., Wang D. S., Li Y. D., Energy Environ. Sci., 2021, 14(5), 2809—2858 |
38 | Han J., Bian J., Sun C., Research, 2020, 9512763 |
39 | Kou Z. K., Zang W. J., Ma Y. Y., Pan Z. H., Mu S. C., Gao X. R., Tang B. S., Xiong M., Zhao X. J., Cheetham A. K., Zheng L. R., Wang J., Nano Energy, 2020, 67, 104288 |
40 | Pu Z., Amiinu I. S., Cheng R., Wang P., Zhang C., Mu S., Zhao W., Su F., Zhang G., Liao S., Sun S., Nano Micro Lett., 2020, 12(1), 21 |
41 | Pelletier J. D. A., Basset J. M., Acc. Chem. Res., 2016, 49(4), 664—677 |
42 | Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55(36), 10800—10805 |
43 | Xiao M., Gao L., Wang Y., Wang X., Zhu J., Jin Z., Liu C., Chen H., Li G., Ge J., He Q., Wu Z., Chen Z., Xing W., J. Am. Chem. Soc., 2019, 141(50), 19800—19806 |
44 | Zhang Z. Y., Zhao X. X., Xi S. B., Zhang L. L., Chen Z. X., Zeng Z. P., Huang M., Yang H. B., Liu B., Adv. Energy Mater., 2020, 10(48), 2002896 |
45 | Zhao Y., Ling T., Chen S., Jin B., Vasileff A., Jiao Y., Song L., Luo J., Qiao S. Z., Angew. Chem. Int. Ed., 2019, 58(35), 12252—12257 |
46 | Yuan K., Lutzenkirchen⁃Hecht D., Li L., Shuai L., Li Y., Cao R., Qiu M., Zhuang X., Leung M. K. H., Chen Y., Scherf U., J. Am. Chem. Soc., 2020, 142(5), 2404—2412 |
47 | Mao J., He C. T., Pei J., Liu Y., Li J., Chen W., He D., Wang D., Li Y., Nano Lett., 2020, 20(5), 3442—3448 |
48 | Shen R., Chen W., Peng Q., Lu S., Zheng L., Cao X., Wang Y., Zhu W., Zhang J., Zhuang Z., Chen C., Wang D., Li Y., Chem, 2019, 5(8), 2099—2110 |
49 | Yang S., Kim J., Tak Y. J., Soon A., Lee H., Angew. Chem. Int. Ed., 2016, 55(6), 2058—2062 |
50 | Cao L., Luo Q., Chen J., Wang L., Lin Y., Wang H., Liu X., Shen X., Zhang W., Liu W., Qi Z., Jiang Z., Yang J., Yao T., Nat. Commun., 2019, 10, 4849 |
51 | Han A., Zhang Z., Yang J., Wang D., Li Y., Small, 2021, 17(16), 2004500 |
52 | Li Z., Chen Y., Ji S., Tang Y., Chen W., Li A., Zhao J., Xiong Y., Wu Y., Gong Y., Yao T., Liu W., Zheng L., Dong J., Wang Y., Zhuang Z., Xing W., He C. T., Peng C., Cheong W. C., Li Q., Zhang M., Chen Z., Fu N., Gao X., Zhu W., Wan J., Zhang J., Gu L., Wei S., Hu P., Luo J., Li J., Chen C., Peng Q., Duan X., Huang Y., Chen X. M., Wang D., Li Y., Nat. Chem., 2020, 12(8), 764—772 |
53 | Jiang K., Back S., Akey A. J., Xia C., Hu Y., Liang W., Schaak D., Stavitski E., Norskov J. K., Siahrostami S., Wang H., Nat. Commun., 2019, 10, 3997 |
54 | Wang H., Luo Q., Liu W., Lin Y., Guan Q., Zheng X., Pan H., Zhu J., Sun Z., Wei S., Yang J., Lu J., Nat. Commun., 2019, 10, 4998 |
55 | Gu H., Liu X., Liu X., Ling C., Wei K., Zhan G., Guo Y., Zhang L., Nat. Commun., 2021, 12, 5422 |
56 | Li Q., Li Z., Zhang Q., Zheng L., Yan W., Liang X., Gu L., Chen C., Wang D., Peng Q., Li Y., Nano Res., 2020, 14(5), 1435—1442 |
57 | Zhao L., Zhang Y., Huang L. B., Liu X. Z., Zhang Q. H., He C., Wu Z. Y., Zhang L. J., Wu J. P., Yang W. L., Gu L., Hu J. S., Wan L. J., Nat. Commun., 2019, 10,1278 |
58 | Yao Y. G., Huang Z. N., Xie P. F., Wu L. P., Ma L., Li T. Y., Pang Z. Q., Jiao M. L., Liang Z. Q., Gao J. L., He Y., Kline D. J., Zachariah M. R., Wang C. M., Lu J., Wu T. P., Li T., Wang C., Shahbazian R., Hu L. B., Nat. Nanotech., 2019, 14(9), 851—857 |
59 | Huang K., Zhang L., Xu T., Wei H. H., Zhang R. Y., Zhang X. Y., Ge B. H., Lei M., Ma J. Y., Liu L. M., Wu H., Nat. Commun., 2019, 10, 606 |
60 | He X. H., He Q., Deng Y. C., Peng M., Chen H. Y., Zhang Y., Yao S. Y., Zhang M. T., Xiao D. Q., Ma D., Ge B. H., Ji H. B., Nat. Commun., 2019, 10, 3663 |
61 | Wu J. B., Xiong L. K., Zhao B. T., Liu M. L., Huang L., Small Methods, 2020, 4(2), 1900540 |
62 | Li Z. J., Wang D. H., Wu Y., Li Y. D., Nat. Sci. Rev., 2018, 5(5), 673—689 |
63 | Zhang F. F., Zhu Y. L., Lin Q., Zhang L., Zhang X. W., Wang H. T., Energy Environ. Sci., 2021, 14(5), 2954—3009 |
64 | Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., J. Am. Chem. Soc., 2013, 135(41), 15314—153147 |
65 | Wang L., Chen M. X., Yan Q. Q., Xu S. L., Chu S. Q., Chen P., Lin Y., Liang H. W., Sci. Adv., 2019, 5(10), eaax6322 |
66 | Hai X., Xi S., Mitchell S., Harrath K., Xu H., Akl D. F., Kong D., Li J., Li Z., Sun T., Yang H., Cui Y., Su C., Zhao X., Li J., Perez⁃Ramirez J., Lu J., Nat. Nanotechnol., 2022, 17(2), 174—181 |
67 | Muravev V., Spezzati G., Su Y. Q., Parastaev A., Chiang F. K., Longo A., Escudero C., Kosinov N., Hensen E. J. M., Nat. Catal., 2021, 4(6), 469—478 |
68 | Zou L. L., Wei Y. S., Hou C. C., Li C. X., Xu Q., Small, 2021, 17(16), 2004809 |
69 | Sun T. T., Xu L. B., Wang D. S., Li Y. D., Nano Res., 2019, 12(9), 2067—2080 |
70 | Han A. J., Wang B. Q., Kumar A., Qin Y. J., Jin J., Wang X. H., Yang C., Dong B., Jia Y., Liu J. F., Sun X. M., Small Methods, 2019, 3(9), 1800471 |
71 | Zhang E. H., Wang T., Yu K., Liu J., Chen W. X., Li A., Rong H. P., Lin R., Ji S. F., Zheng X. S., Wang Y., Zheng L. R., Chen C., Wang D. S., Zhang J. T., Li Y. D., J. Am. Chem. Soc., 2019, 141(42), 16569—16573 |
72 | Zhao C., Dai X., Yao T., Chen W., Wang X., Wang J., Yang J., Wei S., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139(24), 8078—8081 |
73 | Yang T., Fan S., Li Y., Zhou Q., Chem. Eng. J., 2021, 419, 129590 |
74 | Shan J., Ye C., Chen S., Sun T., Jiao Y., Liu L., Zhu C., Song L., Han Y., Jaroniec M., Zhu Y., Zheng Y., Qiao S. Z., J. Am. Chem. Soc., 2021, 143(13), 5201—5211 |
75 | Zhang M. L., Wang Y. G., Chen W. X., Dong J. C., Zheng L. R., Luo J., Wan J. W., Tian S. B., Cheong W. C., Wang D. S., Li Y. D., J. Am. Chem. Soc., 2017, 139(32), 10976—10979 |
76 | Ni W., Liu Z., Zhang Y., Ma C., Deng H., Zhang S., Wang S., Adv. Mater., 2021, 33(1), 2003238 |
77 | Zhang L., Si R. T., Liu H. S., Chen N., Wang Q., Adair K., Wang Z. Q., Chen J. T., Song Z. X., Li J. J., Banis M. N., Li R. Y., Sham T. K., Gu M., Liu L. M., Botton G. A., Sun X. L., Nat. Commun., 2019, 10, 4936 |
78 | Xu S. C., Wang Z. X., Dull S., Liu Y. Z., Lee D. U., Pacheco J. S. L., Orazov M., Vullum P. E., Dadlani A. L., Vinogradova O., Schindler P., Tam Q., Schladt T. D., Mueller J. E., Kirsch S., Huebner G., Higgins D., Torgersen J., Viswanathan V., Jaramillo T. F., Prinz F. B., Adv. Mater., 2021, 33(30), 2007885 |
79 | Li J., Banis M. N., Ren Z., Adair K. R., Doyle⁃Davis K., Meira D. M., Finfrock Y. Z., Zhang L., Kong F., Sham T. K., Li R., Luo J., Sun X., Small, 2021, 17(11), 2007245 |
80 | Fonseca J., Lu J. L., ACS Catal., 2021, 11(12), 7018—7059 |
81 | Li J., Jiang Y. F., Wang Q., Xu C. Q., Wu D., Banis M. N., Adair K. R., Doyle⁃Davis K., Meira D. M., Finfrock Y. Z., Li W., Zhang L., Sham T. K., Li R., Chen N., Gu M., Li J., Sun X., Nat. Commun., 2021, 12, 6806 |
82 | Chen C., Ou W., Yam K. M., Xi S., Zhao X., Chen S., Li J., Lyu P., Ma L., Du Y., Yu W., Fang H., Yao C., Hai X., Xu H., Koh M. J., Pennycook S. J., Lu J., Lin M., Su C., Zhang C., Lu J., Adv. Mater., 2021, 33(35), 2008471 |
83 | Peng Y., Lu B. Z., Chen S. W., Adv. Mater., 2018, 30(48), 1801995 |
84 | Zhang Z. R., Feng C., Li X. Y., Liu C. X., Wang D. D., Si R., Yang J. L., Zhou S. M., Zeng J., Nano Lett., 2021, 21(11), 4795—4801 |
85 | Zhang L., Fischer J., Jia Y., Yan X., Xu W., Wang X., Chen J., Yang D., Liu H., Zhuang L., Hankel M., Searles D. J., Huang K., Feng S., Brown C. L., Yao X., J. Am. Chem. Soc., 2018, 140(34), 10757—10763 |
86 | Zhang Z., Feng C., Liu C., Zuo M., Qin L., Yan X., Xing Y., Li H., Si R., Zhou S., Zeng J., Nat. Commun., 2020, 11, 1215 |
87 | Shi Y., Huang W. M., Li J., Zhou Y., Li Z. Q., Yin Y. C., Xia X. H., Nat. Commun., 2020, 11, 4558 |
88 | Liu P. X., Zhao Y., Qin R. X., Mo S. G., Chen G. X., Gu L., Chevrier D. M., Zhang P., Guo Q., Zang D. D., Wu B. H., Fu G., Zheng N. F., Science, 2016, 352(6287), 797—801 |
89 | Liu J. Y., ACS Catal., 2017, 7(1), 34—59 |
90 | Zhu Z., Wang W., Yin Y., Meng Y., Liu Z., Jiang T., Peng Q., Sun J., Chen W., J. Am. Chem. Soc., 2021, 143(48), 20302—20308 |
91 | Shi Y., Ma Z. R., Xiao Y. Y., Yin Y. C., Huang W. M., Huang Z. C., Zheng Y. Z., Mu F. Y., Huang R., Shi G. Y., Sun Y. Y., Xia X. H., Chen W., Nat. Commun., 2021, 12, 3021 |
92 | Zhao S. N., Li J. K., Wang R., Cai J., Zang S. Q., Adv. Mater., 2021, 2107291 |
93 | Zaman S., Su Y. Q., Dong C. L., Qi R. J., Huang L., Qin Y. Y., Huang Y. C., Li F. M., You B., Guo W., Li Q., Ding S. J., Yu X. B., Angew. Chem. Int. Ed., 2021 , 202115835 |
94 | Wang S. Y., Zhu E. B., Huang Y., Heinz H., Sci. Adv., 2021, 7(24), eabb1435 |
95 | Li M. F., Zhao Z. P., Cheng T., Fortunelli A., Chen C. Y., Yu R., Zhang Q. H., Gu L., Merinov B. V., Lin Z. Y., Zhu E. B., Yu T., Jia Q. Y., Guo J. H., Zhang L., Goddard W. A., Huang Y., Duan X. F., Science, 2016, 354(6318), 1414—1419 |
96 | Lai W. H., Zhang L. F., Yan Z. C., Hua W. B., Indris S., Lei Y. J., Liu H. W., Wang Y. X., Hu Z. P., Liu H. K., Chou S. L., Wang G. X., Dou S. X., Nano Lett., 2021, 21(19), 7970—7978 |
97 | Ge Y. Y., Wang X. X., Huang B., Huang Z. Q., Chen B., Ling C. Y., Liu J. W., Liu G. H., Zhang J., Wang G., Chen Y., Li L. J., Liao L. W., Wang L., Yun Q. B., Lai Z. C., Lu S. Y., Luo Q. X., Wang J. L., Zheng Z. J., Zhang H., J. Am. Chem. Soc., 2021, 143(41), 17292—17299 |
98 | Li J., Yin H. M., Li X. B., Okunishi E., Shen Y. L., He J., Tang Z. K., Wang W. X., Yucelen E., Li C., Gong Y., Gu L., Miao S., Liu L. M., Luo J., Ding Y., Nat. Energy, 2017, 2(8),17111 |
99 | Yu Z. Y., Xu S. L., Feng Y. G., Yang C. Y., Yao Q., Shao Q., Li Y. F., Huang X. Q., Nano Lett., 2021, 21(9), 3805—3812 |
100 | Liu J., Jiao M., Mei B., Tong Y., Li Y., Ruan M., Song P., Sun G., Jiang L., Wang Y., Jiang Z., Gu L., Zhou Z., Xu W., Angew. Chem. Int. Ed., 2019, 58(4), 1163—1167 |
101 | Cui L., Fan K., Zong L., Lu F., Zhou M., Li B., Zhang L., Feng L., Li X., Chen Y., Wang L., Energy Stor. Mater., 2022, 44, 469—476 |
102 | Wei Z., Deng B., Chen P., Zhao T., Zhao S., Chem. Eng. J., 2022, 428, 131112 |
103 | Jin Z., Li P., M Y., Fang Z., Xiao D., Yu G., Nat. Catal., 2021, 4(7), 615—622 |
104 | Luo X., Wei X., Wang H., Gu W., Kaneko T., Yoshida Y., Zhao X., Zhu C., Nano Micro Lett., 2020, 12(1), 163 |
105 | Xie X., Shang L., Xiong X., Shi R., Zhang T., Adv. Energy Mater., 2021, 2102688 |
106 | Xie X., He C., Li B., He Y., Cullen D. A., Wegener E. C., Kropf A. J., Martinez U., Cheng Y., Engelhard M. H., Bowden M. E., Song M., Lemmon T., Li X. S., Nie Z., Liu J., Myers D. J., Zelenay P., Wang G., Wu G., Ramani V., Shao Y., Nat. Catal., 2020, 3(12), 1044—1054 |
107 | Li J. C., Qin X., Xiao F., Liang C., Xu M., Meng Y., Sarnello E., Fang L., Li T., Ding S., Lyu Z., Zhu S., Pan X., Hou P. X., Liu C., Lin Y., Shao M., Nano Lett., 2021, 21(10), 4508—4515 |
108 | Zhu M., Zhao C., Liu X., Wang X., Zhou F., Wang J., Hu Y., Zhao Y., Yao T., Yang L. M., Wu Y., ACS Catal., 2021, 11(7), 3923—3929 |
109 | Hu H., Wang J., Cui B., Zheng X., Lin J., Deng Y., Han X., Angew. Chem. Int. Ed., 2021, 61(3), 202114441 |
110 | Wang T., Cao X., Qin H., Shang L., Zheng S., Fang F., Jiao L., Angew. Chem. Int. Ed., 2021, 60(39), 21237—21241 |
111 | Sa Y. J., Lee C. W., Lee S. Y., Na J., Lee U., Chem. Soc. Rev., 2020, 49(18), 6632—6665 |
112 | Jin S., Hao Z. M., Zhang K., Yan Z. H., Chen J., Angew. Chem. Int. Ed., 2021, 60(38), 20627—20648 |
113 | Nguyen T. N., Salehi M., Le Q. V., Seifitokaldani A., Dinh C. T., ACS Catal., 2020, 10(17), 10068—10095 |
114 | Li K., Zhang S., Zhang X., Liu S., Jiang H., Jiang T., Shen C., Yu Y., Chen W., Nano Lett., 2022, 22(4), 1557—1565 |
115 | Wang Q., Liu K., Fu J., Cai C., Li H., Long Y., Chen S., Liu B., Li H., Li W., Qiu X., Zhang N., Hu J., Pan H., Liu M., Angew. Chem. Int. Ed., 2021, 60(48), 25241—25245 |
116 | Feng J., Gao H., Zheng L., Chen Z., Zeng S., Jiang C., Dong H., Liu L., Zhang S., Zhang X., Nat. Commun., 2020, 11, 4341 |
117 | Wu Y., Chen C., Yan X., Sun X., Zhu Q., Li P., Li Y., Liu S., Ma J., Huang Y., Han B., Angew. Chem. Int. Ed., 2021, 60(38), 20803—20810 |
118 | Zhang T., Han X., Yang H., Han A., Hu E., Li Y., Yang X. Q., Wang L., Liu J., Liu B., Angew. Chem. Int. Ed., 2020, 59(29), 12055—12061 |
119 | Chen B., Li B., Tian Z., Liu W., Liu W., Sun W., Wang K., Chen L., Jiang J., Adv. Energy Mater., 2021, 11(40), 2102152 |
120 | He Q., Lee J. H., Liu D., Liu Y., Lin Z., Xie Z., Hwang S., Kattel S., Song L., Chen J. G., Adv. Funct. Mater., 2020, 30(17), 2000407 |
121 | Han L., Song S., Liu M., Yao S., Liang Z., Cheng H., Ren Z., Liu W., Lin R., Qi G., Liu X., Wu Q., Luo J., Xin H. L., J. Am. Chem. Soc., 2020, 142(29), 12563—12567 |
122 | Ren D., Fong J. H., Yeo B. S., Nat. Commun., 2018, 9, 925 |
123 | Phan T. H., Banjac K., Cometto F. P., Dattila F., Garcia⁃Muelas R., Raaijman S. J., Ye C. M., Koper M. T. M., Lopez N., Lingenfelder M., Nano Lett., 2021, 21(5), 2059—2065 |
124 | Grosse P., Yoon A., Rettenmaier C., Herzog A., Chee S. W., Cuenya B. R., Nat. Commun., 2021, 12, 6736 |
125 | Kim J. Y., Kim G., Won H., Gereige I., Jung W. B., Jung H. T., Adv. Mater., 2021, 2106028 |
126 | Xu C., Zhi X., Vasileff A., Wang D., Jin B., Jiao Y., Zheng Y., Qiao, S. Z., Small Structures, 2020, 2(1), 2000058 |
127 | Chen S., Wang B., Zhu J., Wang L., Ou H., Zhang Z., Liang X., Zheng L., Zhou L., Su Y. Q., Wang D., Li Y., Nano Lett., 2021, 21(17), 7325—7331 |
128 | Cai Y., Fu J., Zhou Y., Chang Y. C., Min Q., Zhu J. J., Lin Y., Zhu W., Nat. Commun., 2021, 12, 586 |
129 | Yang H., Wu Y., Li G., Lin Q., Hu Q., Zhang Q., Liu J., He C., J. Am. Chem. Soc., 2019, 141(32), 12717—12723 |
130 | Zhao Q., Zhang C., Hu R., Du Z., Gu J., Cui Y., Chen X., Xu W., Cheng Z., Li S., Li B., Liu Y., Chen W., Liu C., Shang J., Song L., Yang S., ACS Nano, 2021, 15(3), 4927—4936 |
131 | Zhao K., Nie X., Wang H., Chen S., Quan X., Yu H., Choi W., Zhang G., Kim B., Chen J. G., Nat. Commun., 2020, 11, 2455 |
132 | Tong W. M., Forster M., Dionigi F., Dresp S., Erami R. S., Strasser P., Cowan A. J., Farras P., Nat. Energy, 2020, 5(5), 367—377 |
133 | An L., Wei C., Lu M., Liu H., Chen Y., Scherer G. G., Fisher A. C., Xi P., Xu Z. J., Yan C. H., Adv. Mater., 2021, 33(20), 2006328 |
134 | Sultan S., Tiwari J. N., Singh A. N., Zhumagali S., Ha M., Myung C. W., Thangavel P., Kim K. S., Adv. Energy Mater., 2019, 9(22), 1900624 |
135 | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337—365 |
136 | Jiang T., Li K., Park S., Zheng K., Meng Y., Yuan Y., Liu Z., Zhu Z., Zheng X., Liu S., Chen W., Nano Lett., 2022, 22(4), 1741—1749 |
137 | Wang Q., Huang X., Zhao Z. L., Wang M., Xiang B., Li J., Feng Z., Xu H., Gu M., J. Am.Chem. Soc., 2020, 142(16), 7425—7433 |
138 | Wang Q., Zhang Z., Cai C., Wang M., Zhao Z. L., Li M., Huang X., Han S., Zhou H., Feng Z., Li L., Li J., Xu H., Francisco J. S., Gu M., J. Am.Chem. Soc., 2021, 143(34), 13605—13615 |
139 | Xu H., Liu T., Bai S., Li L., Zhu Y., Wang J., Yang S., Li Y., Shao Q., Huang X., Nano Lett., 2020, 20(7), 5482—5489 |
140 | Zhu Y., Zhu X., Bu L., Shao Q., Li Y., Hu Z., Chen C. T., Pao C. W., Yang S., Huang X., Adv. Funct. Mater., 2020, 30(49), 2004310 |
141 | Smil V., Nature, 1999, 400(6743), 415 |
142 | Andersen S. Z., Colic V., Yang S., Schwalbe J. A., Nielander A. C., McEnaney J. M., Enemark⁃Rasmussen K., Baker J. G., Singh A. R., Rohr B. A., Statt M. J., Blair S. J., Mezzavilla S., Kibsgaard J., Vesborg P. C. K., Cargnello M., Bent S. F., Jaramillo T. F., Stephens I. E. L., Norskov J. K., Chorkendorff I., Nature, 2019, 570(7762), 504—508 |
143 | Skulason E., Bligaard T., Gudmundsdottir S., Studt F., Rossmeisl J., Abild⁃Pedersen F., Vegge T., Jonsson H., Norskov J. K., Phys Chem Chem Phys, 2012, 14(3), 1235—1245 |
144 | Honkala K., Hellman A., Remediakis I. N., Logadottir A., Carlsson A., Dahl S., Christensen C. H., Norskov J. K., Science, 2005, 307(5709), 555—558 |
145 | Tao H., Choi C., Ding L.X., Jiang Z., Han Z., Jia M., Fan Q., Gao Y., Wang H., Robertson A. W., Hong S., Jung Y., Liu S., Sun Z., Chem, 2019, 5(1), 204—214 |
146 | Li Y., Li J., Huang J., Chen J., Kong Y., Yang B., Li Z., Lei L., Chai G., Wen Z., Dai L., Hou Y., Angew. Chem. Int. Ed., 2021, 60(16), 9078—9085 |
[1] | 曹舒杰, 李泓君, 管文丽, 任梦田, 周传政. 硫代磷酸酯寡聚核苷酸的立体控制合成研究进展[J]. 高等学校化学学报, 2022, 43(Album-4): 20220304. |
[2] | 唐全骏, 刘颖馨, 孟蓉炜, 张若天, 凌国维, 张辰. 单原子催化在海洋能源领域的应用[J]. 高等学校化学学报, 2022, 43(9): 20220324. |
[3] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[4] | 吴玉, 李轩, 杨恒攀, 何传新. 钴单原子的双重限域制备策略及高效CO2电还原性能[J]. 高等学校化学学报, 2022, 43(9): 20220343. |
[5] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[6] | 杨静怡, 施思齐, 彭怀涛, 杨其浩, 陈亮. Ga-C3N4单原子催化剂高效光驱动CO2环加成[J]. 高等学校化学学报, 2022, 43(9): 20220349. |
[7] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[8] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[9] | 杨静怡, 李庆贺, 乔波涛. 铱单原子和纳米粒子在N2O分解反应中的协同催化[J]. 高等学校化学学报, 2022, 43(9): 20220388. |
[10] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[11] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[12] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[13] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[14] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[15] | 江博文, 陈敬轩, 成永华, 桑微, 寇宗魁. 单原子材料在电化学生物传感中的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||