高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220466.doi: 10.7503/cjcu20220466
任诗杰1,2, 谯思聪1, 刘崇静1, 张文华2, 宋礼1()
收稿日期:
2022-07-11
出版日期:
2022-09-10
发布日期:
2022-08-09
通讯作者:
宋礼
E-mail:song2012@ustc.edu.cn
基金资助:
REN Shijie1,2, QIAO Sicong1, LIU Chongjing1, ZHANG Wenhua2, SONG Li1()
Received:
2022-07-11
Online:
2022-09-10
Published:
2022-08-09
Contact:
SONG Li
E-mail:song2012@ustc.edu.cn
Supported by:
摘要:
相比于传统块体材料, 铂单原子催化剂(Pt SACs)具有接近100%的贵金属利用率、 优异的催化活性和均一的反应位点等优势, 近年来逐渐成为催化研究的前沿之一. 高度分散的Pt原子与载体之间的界面相互作用很大程度上决定了Pt SACs的物理和化学性能. 因此, 建立金属-载体相互作用与性能之间的内在关联机制, 对于单原子催化剂的优化设计至关重要. 得益于同步辐射光源高亮度、 高准直性和宽波谱的优势, X射线吸收谱技术在鉴别单原子催化剂的电子结构和局域配位方面的成果显著. 本文综合评述了Pt SACs X射线吸收谱的研究进展, 重点介绍了Pt与金属氧化物、 金属、 纳米碳和多孔有机框架等载体之间独特的相互作用, 以及其对性能的影响机制, 并对未来同步辐射新技术在Pt SACs的高分辨解析方面的前景进行了展望.
中图分类号:
TrendMD:
任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展. 高等学校化学学报, 2022, 43(9): 20220466.
REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts. Chem. J. Chinese Universities, 2022, 43(9): 20220466.
Fig.1 Typical XAS spectra(A)[30], the schematic illustration of the single(left) and multiple(right) scattering process of the excited photoelectrons(B)[43](A) Copyright 2019, Springer Nature; (B) Copyright 2019, Royal Society of Chemistry.
Fig.2 Schematic diagram of three XAS detection modes(A), a photo of in situ XAS experiment setup(B) and diagram of the in situ cell(C)[30]Copyright 2019, Springer Nature.
Fig.3 Pt L3?edge XANES spectra of 0.18%(mass fraction) Pt/θ?Al2O3(A), XANES spectra before and after reduction treatment(B), EXAFS spectra(C) and EXAFS results before and after reduction(D)[58]Copyright 2013, American Chemical Society.
Fig.4 Pt L3?edge XANES spectra of Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2, Pt1/graphene, Pt foil and PtO2(A), the corresponding EXAFS spectra(B), DRIFTS spectra of Pt1/Co3O4, Pt1/CeO2 and Pt1/ZrO2(C), Pt4f XPS spectra of PtO2, Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2 and Pt1/graphene(D)[59]Copyright 2019, American Chemical Society.
Fig.5 Normalized Pt L3?edge XANES spectra(A) and temporal variation of Pt L3 white line intensity during a single cycle of redox operation(B)[60]Copyright 2016, American Chemical Society.
Fig.6 HAADF?STEM image of SANi?PtNWs(A), EELS mapping images(B,C), Pt L3?edge EXAFS spectra of Pt foil, PtO2, SANi?PtNWs(D), Ni K?edge EXAFS spectra of Ni foil, Ni(OH)2, SANi?PtNWs(E), HER LSV curves(F) and Pt mass normalized HER Tafel slope of Pt/C, pure?PtNWs, SANi?PtNWs(G), comparison of ECSA, specific activity(SA) and mass activity(MA) values at -70?mV(vs. RHE) of Pt/C, pure?PtNWs, SANi?PtNWs(H)[64]
Fig.8 Pt L3?edge XANES spectra of Au@Pt1.5Co0.08, Au@Pt1.5, Pt1.5Co0.08, Pt foil(A), Co K?edge XANES spectra(B) and Co K?edge EXAFS spectra of Au@Pt1.5Co0.08, Co foil, CoO, Co3O4(C), wavelet transform(WT) EXAFS spectra of Au@Pt1.5Co0.08, Pt1.5Co0.08, Au@Pt1.5 and Pt foil(D)[66]Copyright 2022, Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Fig.9 Schematic synthesis diagram of Pt1/OLC(A), TEM image of Pt1/OLC(B), Pt L3?edge FT?EXAFS spectra of Pt1/OLC(red), along with PtO2(yellow), Pt foil(blue) and Pt ligands/OLC(black)(C), the corresponding normalized XANES spectra(D)[68]Copyright 2019, Springer Nature.
Fig.10 HER polarization curves for ALDPt/NGNs and Pt/C catalysts(A), mass activity at 0.05 V(vs. RHE)(B), durability measurement of ALD50Pt/NGNs(C), ADF?STEM image of ALD50Pt/NGNs(D), schematic illustration of the ALD mechanism(E), the normalized Pt L3?edge XANES spectra(F) and the normalized Pt L2?edge XANES spectra(G) of ALDPt/NGNs, Pt/C catalysts and Pt foil[77]Copyright 2016, Springer Nature.
Fig.11 Schematic synthesis illustration of Al?TCPP?Pt(A), aberration?corrected HAADF?STEM image of Al?TCPP?0.1Pt(B), Pt L3?edge XANES spectra of Al?TCPP?0.3Pt, Al?TCPP?0.1Pt, and Pt foil(C), the corresponding k3?weighted EXAFS spectra(D), DRIFT spectra of CO adsorbed on AlTCPP?0.1Pt(E), photocatalytic hydrogen production rates of Al?TCPP, Al?TCPP?PtNPs and Al?TCPP?0.1Pt(F), recycling performance comparison for Al?TCPP?PtNPs and Al?TCPP?0.1Pt(G), the comparison of the ultrafast TA kinetics(H), the calculated free energy diagram for photocatalytic H2 production(I)[81]Copyright 2018, Wiley‐VCH.
Fig.12 Schematic synthesis diagram of Pt1/Co1NC(A), HAADF?STEM image(B), EDX mapping images of Pt1/Co1NC(C,D), Pt L3?edge XANES spectra for Pt1/Co1NC and references(E), Fourier transform and wavelet transform Pt L3?edge EXAFS spectra(F), polarization curves of Co1NC, Pt1/Co1NC, PtNP/NC, and 20%(mass fraction) Pt/C(G), polarization curves of Pt1/Co1NC and 20%(mass fraction) Pt/C before and after 5000 CV cycles(H)[85]Copyright 2022, Elsevier.
1 | Davidson D. J., Nat. Energy, 2019, 4(4), 254—256 |
2 | Chu S., Cui Y., Liu N., Nat. Mater., 2017, 16(1), 16—22 |
3 | Chu S., Majumdar A., Nature, 2012, 488(7411), 294—303 |
4 | Zhao Y. F., Waterhouse G. I. N., Chen G. B., Xiong X. Y., Wu L. Z., Tung C. H., Zhang T. R., Chem. Soc. Rev., 2019, 48(7), 1972—2010 |
5 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Norskov J. K., Jaramillo T. F., Science, 2017, 355(6321), eaad4998 |
6 | Friebel D., Louie M. W., Bajdich M., Sanwald K. E., Cai Y., Wise A. M., Cheng M. J., Sokaras D., Weng T. C., Alonso⁃Mori R., Davis R. C., Bargar J. R., Norskov J. K., Nilsson A., Bell A. T., J. Am. Chem. Soc., 2015, 137(3), 1305—1313 |
7 | Jiao Y., Zheng Y., Davey K., Qiao S. Z., Nat. Energy, 2016, 1(10), 1—9 |
8 | Mavrikakis M., Nat. Mater., 2006, 5(11), 847—848 |
9 | Zhang C. L., Shen X. C., Pan Y. B., Peng Z. M., Front. Energy, 2017, 11(3), 268—285 |
10 | Hussain S., Erikson H., Kongi N., Sarapuu A., Solla⁃Gullon J., Maia G., Kannan A. M., Alonso⁃Vante N., Tammeveski K., Int. J. Hydrog., 2020, 45(56), 31775—31797 |
11 | Li H. Y., Wan Q., Du C. C., Liu Q. N., Qi J. M., Ding X. Y., Wang S., Wan S. L., Lin J. D., Tian C., Li L. N., Peng T., Zhao W., Zhang K. H. L., Huang J. Y., Zhang X. B., Gu Q. Q., Yang B., Guo H., Lin S., Datye A. K., Wang Y., Xiong H. F., Chem, 2022, 8(3), 731—748 |
12 | Luo B., Zhou F., Pan M., Chem. J. Chinese Universities, 2022, 43(4), 20210853 |
罗昪, 周芬, 潘牧. 高等学校化学学报, 2022, 43(4), 20210853 | |
13 | He T. O., Wang W. C., Shi F. L., Yang X. L., Li X., Wu J. B., Yin Y. D., Jin M. S., Nature, 2021, 598(7879), 76—81 |
14 | Cheng X., Xiao B., Chen Y., Wang Y., Zheng L., Lu Y., Li H., Chen G., ACS Catal., 2022, 12(10), 5970—5978 |
15 | Wang J., Li Z. J., Wu Y., Li Y. D., Adv. Mater., 2018, 30(48), 1801649 |
16 | Chen P. Z., Zhou T. P., Xing L. L., Xu K., Tong Y., Xie H., Zhang L. D., Yan W. S., Chu W. S., Wu C. Z., Xie Y., Angew. Chem. Int. Ed. Engl., 2017, 56(2), 610—614 |
17 | Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T., Chem. Rev., 2020, 120(21), 11986—12043 |
18 | Wang L., Li H., Zhang W., Zhao X., Qiu J., Li A., Zheng X., Hu Z., Si R., Zeng J., Angew. Chem. Int. Ed. Engl., 2017, 56(17), 4712—4718 |
19 | Zhang Q., Kusada K., Wu D. S., Yamamoto T., Toriyama T., Matsumura S., Kawaguchi S., Kubota Y., Kitagawa H., Nat. Commun., 2018, 9(1), 1—9 |
20 | Wang X., Chen W., Zhang L., Yao T., Liu W., Lin Y., Ju H., Dong J., Zheng L., Yan W., Zheng X., Li Z., Wang X., Yang J., He D., Wang Y., Deng Z., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139(28), 9419—9422 |
21 | Yi N., Saltsburg H., Flytzani⁃Stephanopoulos M., ChemSusChem, 2013, 6(5), 816—819 |
22 | Narula C. K., Allard L. F., Stocks G. M., Moses⁃DeBusk M., Sci. Rep., 2014, 4(1), 1—6 |
23 | Qiao B., Liu J., Wang Y. G., Lin Q., Liu X., Wang A., Li J., Zhang T., Liu J., ACS Catal., 2015, 5(11), 6249—6254 |
24 | Cao D. F., Shou H. W., Chen S. M., Song L., Curr. Opin. Chem. Eng., 2021, 30, 100788 |
25 | Nam D. H., Bushuyev O. S., Li J., De Luna P., Seifitokaldani A., Dinh C. T., Garcia de Arquer F. P., Wang Y., Liang Z., Proppe A. H., Tan C. S., Todorovic P., Shekhah O., Gabardo C. M., Jo J. W., Choi J., Choi M. J., Baek S. W., Kim J., Sinton D., Kelley S. O., Eddaoudi M., Sargent E. H., J. Am. Chem. Soc., 2018, 140(36), 11378—11386 |
26 | Song F., Schenk K., Hu X. L., Energy Environ. Sci., 2016, 9(2), 473—477 |
27 | Mosorov V., Appl. Radiat. Isot., 2017, 128, 1—5 |
28 | Rehr J. J., Albers R. C., Rev. Mod. Phys., 2000, 72(3), 621—654 |
29 | Calvin S., XAFS for Everyone, CRC Press, Booa Raton, 2013 |
30 | Wang M., Arnadottir L., Xu Z. J., Feng Z., Nanomicro. Lett., 2019, 11(1), 1—18 |
31 | Qu W. Y., Liu X. N., Chen J. X., Dong Y. Y., Tang X. F., Chen Y. X., Nat. Commun., 2020, 11(1), 1—7 |
32 | Wang G., He C. T., Huang R., Mao J., Wang D., Li Y., J. Am. Chem. Soc., 2020, 142(45), 19339—19345 |
33 | Jiao L., Zhang R., Wan G., Yang W., Wan X., Zhou H., Shui J., Yu S. H., Jiang H. L., Nat. Commun., 2020, 11(1), 2831 |
34 | Bunker G., Introduction to XAFS: A Practical Guide to X⁃Ray Absorption Fine Structure Spectroscopy, Cambridge University Press, Cambridge, 2010 |
35 | Bordiga S., Groppo E., Agostini G., van Bokhoven J. A., Lamberti C., Chem. Rev., 2013, 113(3), 1736—1850 |
36 | Rehr J. J., Ankudinov A. L., Coord. Chem. Rev., 2005, 249(1/2), 131—140 |
37 | Koningsberger D. C., Prins R., X⁃Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Wiley⁃ Interscience, Chichester, 1987 |
38 | Xu W., Zhang G., Shou H., Zhou J., Chen S., Chu S., Zhang J., Song L., J. Synchrotron Radiat., 2022, 29(Pt 4), 1065—1073 |
39 | Yang Z., Wang Y., Zhu M., Li Z., Chen W., Wei W., Yuan T., Qu Y., Xu Q., Zhao C., Wang X., Li P., Li Y., Wu Y., Li Y., ACS Catal., 2019, 9(3), 2158—2163 |
40 | Zhang H., Zhou W., Chen T., Guan B. Y., Li Z., Lou X. W., Energy Environ. Sci., 2018, 11(8), 1980—1984 |
41 | Su H., Zhou W., Zhou W., Li Y., Zheng L., Zhang H., Liu M., Zhang X., Sun X., Xu Y., Hu F., Zhang J., Hu T., Liu Q., Wei S., Nat. Commun., 2021, 12(1), 6118 |
42 | Gu H., Liu X., Liu X., Ling C., Wei K., Zhan G., Guo Y., Zhang L., Nat. Commun., 2021, 12(1), 5422 |
43 | Fei H., Dong J., Chen D., Hu T., Duan X., Shakir I., Huang Y., Duan X., Chem. Soc. Rev., 2019, 48(20), 5207—5241 |
44 | Kim H., Shin D., Yang W., Won D. H., Oh H. S., Chung M. W., Jeong D., Kim S. H., Chae K. H., Ryu J. Y., Lee J., Cho S. J., Seo J., Kim H., Choi C. H., J. Am. Chem. Soc., 2021, 143(2), 925—933 |
45 | Qiao S., He Q., Zhang P., Zhou Y., Chen S., Song L., Wei S., J. Mater. Chem. A, 2022, 10(11), 5771—5791 |
46 | Feng J., Gao H., Zheng L., Chen Z., Zeng S., Jiang C., Dong H., Liu L., Zhang S., Zhang X., Nat. Commun., 2020, 11(1), 4341 |
47 | Vedrine J. C., Chinese J. Catal., 2019, 40(11), 1627—1636 |
48 | Cao L., Liu W., Luo Q., Yin R., Wang B., Weissenrieder J., Soldemo M., Yan H., Lin Y., Sun Z., Ma C., Zhang W., Chen S., Wang H., Guan Q., Yao T., Wei S., Yang J., Lu J., Nature, 2019, 565(7741), 631—635 |
49 | Wang Y., Arandiyan H., Scott J., Bagheri A., Dai H. X., Amal R., J. Mater. Chem. A, 2017, 5(19), 8825—8846 |
50 | McFarland E. W., Metiu H., Chem. Rev., 2013, 113(6), 4391—4427 |
51 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
52 | Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049 |
53 | Su X., Jiang Z., Zhou J., Liu H., Zhou D., Shang H., Ni X., Peng Z., Yang F., Chen W., Qi Z., Wang D., Wang Y., Nat. Commun., 2022, 13(1), 1322 |
54 | Gu H., Li X., Zhang J., Chen W., Small, 2022, 18(13), e2105883 |
55 | Chen Y., Lin J., Li L., Qiao B., Liu J., Su Y., Wang X., ACS Catal., 2018, 8(2), 859—868 |
56 | Cuartero V., Lafuerza S., Rovezzi M., Garcia J., Blasco J., Subias G., Jimenez E., Phys. Rev. B, 2016, 94(15), 155117 |
57 | Zhang H. B., Liu G. G., Shi L., Ye J. H., Adv. Energy Mater., 2018, 8(1), 1701343 |
58 | Moses⁃DeBusk M., Yoon M., Allard L. F., Mullins D. R., Wu Z., Yang X., Veith G., Stocks G. M., Narula C. K., J. Am. Chem. Soc., 2013, 135(34), 12634—12645 |
59 | Li J., Guan Q., Wu H., Liu W., Lin Y., Sun Z., Ye X., Zheng X., Pan H., Zhu J., Chen S., Zhang W., Wei S., Lu J., J. Am. Chem. Soc., 2019, 141(37), 14515—14519 |
60 | Newton M. A., Ferri D., Smolentsev G., Marchionni V., Nachtegaal M., J. Am. Chem. Soc., 2016, 138(42), 13930—13940 |
61 | Chen H., He S., Cao X., Zhang S., Xu M., Pu M., Su D., Wei M., Evans D. G., Duan X., Chem. Mater., 2016, 28(13), 4751— 4761 |
62 | Zhuang J. H., Wang D. S., Chem. J. Chinese Universities, 2022, 43(5), 20220043 |
庄嘉豪, 王定胜. 高等学校化学学报, 2022, 43(5), 20220043 | |
63 | Sun G., Zhao Z. J., Mu R., Zha S., Li L., Chen S., Zang K., Luo J., Li Z., Purdy S. C., Kropf A. J., Miller J. T., Zeng L., Gong J., Nat. Commun., 2018, 9(1), 4454 |
64 | Li M., Duanmu K., Wan C., Cheng T., Zhang L., Dai S., Chen W., Zhao Z., Li P., Fei H., Zhu Y., Yu R., Luo J., Zang K., Lin Z., Ding M., Huang J., Sun H., Guo J., Pan X., Goddard W. A., Sautet P., Huang Y., Duan X., Nat. Catal., 2019, 2(6), 495—503 |
65 | Pan Y., Qian Y., Zheng X., Chu S. Q., Yang Y., Ding C., Wang X., Yu S. H., Jiang H. L., Natl. Sci. Rev., 2021, 8(1), nwaa224 |
66 | Wan R., Luo M., Wen J., Liu S., Kang X., Tian Y., J. Energy Chem., 2022, 69, 44—53 |
67 | Yan J., Ji Y., Batmunkh M., An P., Zhang J., Fu Y., Jia B., Li Y., Liu S., Ye J., Ma T., Angew. Chem. Int. Ed. Engl., 2021, 60(5), 2541—2547 |
68 | Liu D., Li X., Chen S., Yan H., Wang C., Wu C., Haleem Y. A., Duan S., Lu J., Ge B., Ajayan P. M., Luo Y., Jiang J., Song L., Nat. Energy, 2019, 4(6), 512—518 |
69 | Fan M., Cui J., Wu J., Vajtai R., Sun D., Ajayan P. M., Small, 2020, 16(22), e1906782 |
70 | Sahraie N. R., Kramm U. I., Steinberg J., Zhang Y., Thomas A., Reier T., Paraknowitsch J. P., Strasser P., Nat. Commun., 2015, 6(1), 1—9 |
71 | Wurster B., Grumelli D., Hotger D., Gutzler R., Kern K., J. Am. Chem. Soc., 2016, 138(11), 3623—3626 |
72 | Wu J., Gao G., Sun P., Long X., Li F., ACS Catal., 2017, 7(11), 7890—7901 |
73 | Wu J., Zheng X., Jin C., Tian J., Yang R., Carbon, 2015, 92, 327—338 |
74 | Fan M., Huang Y., Yuan F., Hao Q., Yang J., Sun D., J. Power Sources, 2017, 366, 143—150 |
75 | Gao S., Liu H., Geng K., Wei X., Nano Energy, 2015, 12, 785—793 |
76 | Blonski P., Tucek J., Sofer Z., Mazanek V., Petr M., Pumera M., Otyepka M., Zboril R., J. Am. Chem. Soc., 2017, 139(8), 3171—3180 |
77 | Cheng N., Stambula S., Wang D., Banis M. N., Liu J., Riese A., Xiao B., Li R., Sham T. K., Liu L. M., Botton G. A., Sun X., Nat. Commun., 2016, 7(1), 1—9 |
78 | Adli N. M., Shan W. T., Hwang S., Samarakoon W., Karakalos S., Li Y., Cullen D. A., Su D., Feng Z. X., Wang G. F., Wu G., Angew. Chem. Int. Ed. Engl., 2021, 60(2), 1022—1032 |
79 | Li J. Z., Zhang H. G., Samarakoon W., Shan W. T., Cullen D. A., Karakalos S., Chen M. J., Gu D. M., More K. L., Wang G. F., Feng Z. X., Wang Z. B., Wu G., Angew. Chem. Int. Ed. Engl., 2019, 58(52), 18971—18980 |
80 | Xia T., Wan J. W., Yu R. B., Chem. J. Chinese Universities, 2022, 43(5), 20220162 |
夏天, 万家炜, 于然波. 高等学校化学学报, 2022, 43(5), 20220162 | |
81 | Fang X., Shang Q., Wang Y., Jiao L., Yao T., Li Y., Zhang Q., Luo Y., Jiang H. L., Adv. Mater., 2018, 30(7), 1705112 |
82 | Xu X. L., Zhang X. M., Xia Z. X., Sun R. L., Li H. Q., Wang J. H., Yu S. S., Wang S. L., Sun G. Q., J. Energy Chem., 2021, 54, 579—586 |
83 | Liu D., Li J. C., Ding S., Lyu Z., Feng S., Tian H., Huyan C., Xu M., Li T., Du D., Liu P., Shao M., Lin Y., Small Methods, 2020, 4(6), 1900827 |
84 | Li Z., He D., Yan X., Dai S., Younan S., Ke Z., Pan X., Xiao X., Wu H., Gu J., Angew. Chem. Int. Ed. Engl., 2020, 59(42), 18572—18577 |
85 | Chen Y., Ding R., Li J., Liu J., Appl. Catal. B: Environ., 2022, 301, 120830 |
86 | Czioska S., Boubnov A., Escalera⁃López D., Geppert J., Zagalskaya A., Röse P., Saraçi E., Alexandrov V., Krewer U., Cherevko S., Grunwaldt J. D., ACS Catal., 2021, 11(15), 10043—10057 |
87 | Sasaki K., Marinkovic N., Isaacs H. S., Adzic R. R., ACS Catal., 2015, 6(1), 69—76 |
[1] | 胡慧敏, 崔静, 刘丹丹, 宋佳欣, 张宁, 范晓强, 赵震, 孔莲, 肖霞, 解则安. 过渡金属修饰对Pt/M-DMSN催化剂丙烷脱氢性能的影响[J]. 高等学校化学学报, 2022, 43(4): 20210815. |
[2] | 杨咏来, 徐恒泳, 李文钊. Ni/CeO2-Al2O3催化剂上CH4-CO2转化积炭性能的研究[J]. 高等学校化学学报, 2002, 23(11): 2112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||