高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (4): 1188.doi: 10.7503/cjcu20200591
收稿日期:
2020-08-23
出版日期:
2021-04-10
发布日期:
2020-12-21
通讯作者:
刘建波
E-mail:linyibm@163.com;wuxc@nanoctr.cn
作者简介:
吴晓春, 女, 博士, 研究员, 主要从事纳米材料和纳米标准研究. E-mail: 基金资助:
CAI Rui1,2, LIU Jianbo3(), WU Xiaochun1,2(
)
Received:
2020-08-23
Online:
2021-04-10
Published:
2020-12-21
Contact:
LIU Jianbo
E-mail:linyibm@163.com;wuxc@nanoctr.cn
Supported by:
摘要:
贵金属纳米材料在纳米尺度具有独特的光学、 电学性质及优异的催化性能, 是一类重要的功能纳米材料. 基于贵金属材料的纳米酶研究是贵金属纳米材料在生物医学领域的一个前沿研究方向. 贵金属基纳米酶具有特殊的光学性质、 较好的化学稳定性、 可调控的类酶活性及良好的生物相容性, 是目前纳米生物医学领域的热点研究材料. 本文总结了贵金属基纳米酶的活性种类、 活性机理、 活性调控以及在生物医学等领域的潜在应用.
中图分类号:
TrendMD:
蔡瑞, 刘建波, 吴晓春. 贵金属基纳米酶的研究进展. 高等学校化学学报, 2021, 42(4): 1188.
CAI Rui, LIU Jianbo, WU Xiaochun. Research Progress of Noble Metal⁃based Nanozymes. Chem. J. Chinese Universities, 2021, 42(4): 1188.
Fig.1 Modulation of particle shapes and structures(A) TEM image and STEM?EDX elemental maps of H?Pt?TiO2[27]. Copyright 2020, Wiley?VCH. (B) Schematic diagram of Au@HCNs synthesis and corresponding TEM characterization[28]. Copyright 2018, American Chemical Society. (C) TEM images of AuNR@mSiO2 and Au@PdNR@mSiO2[29]. Copyright 2019, American Chemical Society. (D) TEM images of Au@Pt and Au@PtCu NRs, and STEM?EDX element maps for the Au@PtCu NRs[30]. Copyright 2014, Springer.
Fig.2 Typical enzyme?like activities(A) Glucose oxidase? and POD?like activities of EMSN?AuNPs[32]. Copyright 2013, Elsevier. (B) CAT?like activity of Pt NPs in PUA?Ce6 enhancing tumor PDT[40]. Copyright 2018, Wiley?VCH. (C) POD?like activity of CuO?Au nanoalloys for selective detection of glucose[47]. Copyright 2018, Elsevier. (D) SOD? and CAT?like activities of Au?Ag?AFT nanozyme for ·O2- scavenging and H2O2 decomposition[52]. Copyright 2019, Elsevier.
Fig.3 Predicted catalytic mechanisms via theoretical calculation(A) pH?switchable POD?like and CAT?like activities[39]. Copyright 2015, Elsevier. (B) Calculated reaction energy profiles for H2O2 decomposition on Au(111) surface under different pH conditions[39]. Copyright 2015, Elsevier. (C) Energy?based model for the activation of 3O2[57]. Copyright 2015, American Chemical Society. (D) Rearrangements of two HO2· groups on Au(111) surface[57]. Copyright 2015, American Chemical Society. (E) Typical enzyme mimetic activities of metals and alloys. S and Sox stand for organic substrates and oxidized organic substrates, respectively[57]. Copyright 2015, American Chemical Society.
Fig.4 Nanozyme activity regulation(A) Size?dependent oxidase?like activity of the AuNPs for ECL?based immunoassay conducted on screen?printed electrode(SPE) chips[62]. Copyright 2018, American Chemical Society. (B) Shape?dependent nanozyme activity of Pd nanocrystals for cytoprotection via ROS?scavenging[63]. Copyright 2016, American Chemical Society. (C) Composition?dependent enzymatic activity of branched AgPdNCs[9]. Copyright 2010, American Chemical Society. (D) Pd/Pt ratio?modulated oxidase?like activity Au@PdPt NRs[66]. Copyright 2011, American Chemical Society.
Fig.5 Surface chemistry modification and formation of hybrid nanozymes(A) Detection of heparin and heparinase based on enhanced electrostatic interaction between AuNCs and TMB[68]. Copyright 2018, American Chemical Society. (B) Effect of purine derivatives on the peroxidase?like activity of AuNPs[14]. Copyright 2018, Elsevier. (C) Enhancing a specific enzyme activity by atomic layer deposition of Fe2O3 on Pt/CNTs nanozyme[75]. Copyright 2020, Elsevier. (D) GO?AuNCs hybrid mimicking natural enzyme structure[76]. Copyright 2013, Wiley?VCH.
Fig.6 LSPR?enhanced enzyme?like activity(A) POD?like activity of AuNPs upon LSPR excitation[11]. Copyright 2017, Wiley?VCH. (B) AuNBPs@MoS2 with high peroxidase?like activity for two?photon imaging and anti?tumor therapy[77]. Copyright 2018, American Chemical Society.
Fig.7 Detection applications(A) Pb2+ sensing based on Pb2+?induced accelerating oxidation of TMB by H2O2 using Au?NCs as a peroxidase mimic[83]. Copyright 2017, the Royal Society of Chemistry. (B) Detection of glucose using the coupling reaction of glucose oxidase and Pt nanoclusters[86]. Copyright 2017, American Chemical Society. (C) Colorimetric aptasensor for ricin based on POD?like activity of AuNPs[91]. Copyright 2015, the Royal Society of Chemistry. (D) K?562 cell assay based on POD?like activity of Pd@AuNPs[94]. Copyright 2014, the Royal Society of Chemistry.
Fig.8 Applications in antibacterial, anticancer, and antioxidant treatments(A) UsAuNPs/MOFs hybrid with POD?like activity for antibacterial therapy[72]. Copyright 2020, Wiley?VCH. (B) PLGA/DOX@PDA?Au?PEG for anticancer therapy[102]. Copyright 2018, American Chemical Society. (C) an oxygen self?supplied nanodelivery system based on Au@ZIF?8 for in vivo PDT[103]. Copyright 2019, Royal Society of Chemistry. (D) Pt?NP as enzyme mimics for counteracting excitotoxicity[105]. Copyright 2018, American Chemical Society.
1 | Willets K. A., van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267—297 |
2 | Saha K., Agasti S. S., Kim C., Li X., Rotello V. M., Chem. Rev., 2012, 112(5), 2739—2779 |
3 | Chen H., Shao L., Li Q., Wang J., Chem. Soc. Rev., 2013, 42(7), 2679—2724 |
4 | Zeng J., Zhang Q., Chen J., Xia Y., Nano Lett., 2010, 10(1), 30—35 |
5 | Kumar A., Kumar S., Rhim W. K., Kim G. H., Nam J. M., J. Am. Chem. Soc., 2014, 136(46), 16317—16325 |
6 | Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nat. Nanotechnol., 2007, 2(9), 577—583 |
7 | Kim M. I., Ye Y., Woo M. A., Lee J., Park H. G., Adv. Healthc. Mater., 2014, 3(1), 36—41 |
8 | Gao Z., Lv S., Xu M., Tang D., Analyst, 2017, 142(6), 911—917 |
9 | He W., Wu X., Liu J., Hu X., Zhang K., Hou S., Zhou W., Xie S., Chem. Mater., 2010, 22(9), 2988—2994 |
10 | Zhang W., Niu X., Meng S., Li X., He Y., Pan J., Qiu F., Zhao H., Lan M., Sens. Actuators B, 2018, 273, 400—407 |
11 | Wang C., Shi Y., Dan Y. Y., Nie X. G., Li J., Xia X. H., Chem. Eur. J., 2017, 23(28), 6717—6723 |
12 | Huang Y., Ren J., Qu X., Chem. Rev., 2019, 119(6), 4357—4412 |
13 | Wu J., Wang X., Wang Q., Lou Z., Li S., Zhu Y., Qin L., Wei H., Chem. Soc. Rev., 2019, 48(4), 1004—1076 |
14 | Wu Y., Chen Y., Li Y., Huang J., Yu H., Wang Z., Sens. Actuators B, 2018, 270, 443—451 |
15 | Chen L., Sha L., Qiu Y., Wang G., Jiang H., Zhang X., Nanoscale, 2015, 7(7), 3300—3308 |
16 | Cai K., Lv Z., Chen K., Huang L., Wang J., Shao F., Wang Y., Han H., Chem. Commun., 2013, 49(54), 6024—6026 |
17 | Fang G., Li W., Shen X., Perez⁃Aguilar J. M., Chong Y., Gao X., Chai Z., Chen C., Ge C., Zhou R., Nat. Commun., 2018, 9(1), 129 |
18 | Cao G. J., Jiang X., Zhang H., Croley T. R., Yin J. J., RSC Advances, 2017, 7(82), 52210—52217 |
19 | Cao G. J., Chen Y., Chen X., Weng P., Lin R. G., J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(1), 14—25 |
20 | He S. B., Zhuang Q. Q., Yang L., Lin M. Y., Kuang Y., Peng H. P., Deng H. H., Xia X. H., Chen W., Anal. Chem., 2020, 92(1), 1635—1642 |
21 | Su H., Liu D. D., Zhao M., Hu W. L., Xue S. S., Cao Q., Le X. Y., Ji L. N., Mao Z. W., ACS Appl. Mater. Interfaces, 2015, 7(15), 8233—8242 |
22 | Zheng S., Gu H., Yin D., Zhang J., Li W., Fu Y., Colloids Surf. A,2020, 589, 124444 |
23 | Borghei Y. S., Hosseinkhani S., Microchim. Acta,2019, 186(12), 845 |
24 | He X., Tan L., Chen D., Wu X., Ren X., Zhang Y., Meng X., Tang F., Chem. Commun., 2013, 49(41), 4643—4645 |
25 | Liang S., Deng X., Chang Y., Sun C., Shao S., Xie Z., Xiao X., Ma P., Zhang H., Cheng Z., Lin J., Nano Lett., 2019, 19(6), 4134—4145 |
26 | Zhao H., Guo Y., Zhu S., Song Y., Jin J., Ji W., Song W., Zhao B., Yang B., Ozaki Y., Appl. Surf. Sci., 2017, 410, 42—50 |
27 | Liang S., Deng X., Xu G., Xiao X., Wang M., Guo X., Ma P. A., Cheng Z., Zhang D., Lin J., Adv. Funct. Mater., 2020, 30(13), 1908598 |
28 | Fan L., Xu X., Zhu C., Han J., Gao L., Xi J., Guo R., ACS Appl. Mater. Interfaces, 2018, 10(5), 4502—4511 |
29 | Fan H., Li Y., Liu J., Cai R., Gao X., Zhang H., Ji Y., Nie G., Wu X., ACS Appl. Mater. Interfaces, 2019, 11(49), 45416—45426 |
30 | Hu X., Saran A., Hou S., Wen T., Ji Y., Liu W., Zhang H., Wu X., Chin. Sci. Bull., 2014, 59(21), 2588—2596 |
31 | Comotti M., Della Pina C., Matarrese R., Rossi M., Angew. Chem. Int. Ed., 2004, 43(43), 5812—5815 |
32 | Lin Y., Li Z., Chen Z., Ren J., Qu X., Biomaterials, 2013, 34(11), 2600—2610 |
33 | Yu C. J., Chen T. H., Jiang J. Y., Tseng W. L., Nanoscale, 2014, 6(16), 9618—9624 |
34 | Liu Y., Wu H., Chong Y., Wamer W. G., Xia Q., Cai L., Nie Z., Fu P. P., Yin J. J., ACS Appl. Mater. Interfaces, 2015, 7(35), 19709—19717 |
35 | Clark A. J., Coury E. L., Meilhac A. M., Petty H. R., Nanotechnology, 2016, 27(6), 065101 |
36 | Zhou Y. T., He W., Wamer W. G., Hu X., Wu X., Lo Y. M., Yin J. J., Nanoscale, 2013, 5(4), 1583—1591 |
37 | Kajita M., Hikosaka K., Iitsuka M., Kanayama A., Toshima N., Miyamoto Y., Free Radical Res., 2007, 41(6), 615—626 |
38 | He W., Zhou Y. T., Wamer W. G., Hu X., Wu X., Zheng Z., Boudreau M. D., Yin J. J., Biomaterials, 2013, 34(3), 765—773 |
39 | Li J., Liu W., Wu X., Gao X., Biomaterials, 2015, 48, 37—44 |
40 | Liu C., Luo L., Zeng L., Xing J., Xia Y., Sun S., Zhang L., Yu Z., Yao J., Yu Z., Akakuru O. U., Saeed M., Wu A., Small, 2018, 14(35), e1801851 |
41 | Jv Y., Li B., Cao R., Chem. Commun., 2010, 46(42), 8017—8019 |
42 | Weerathunge P., Behera B. K., Zihara S., Singh M., Prasad S. N., Hashmi S., Mariathomas P. R. D., Bansal V., Ramanathan R., Anal. Chim. Acta,2019, 1083, 157—165 |
43 | Tan X., Zhang L., Tang Q., Zheng G., Li H., Microchim. Acta,2019, 186(5), 280 |
44 | Cai S., Xiao W., Duan H., Liang X., Wang C., Yang R., Li Y., Nano Research, 2018, 11(12), 6304—6315 |
45 | Xia X., Zhang J., Lu N., Kim M. J., Ghale K., Xu Y., Mckenzie E., Liu J., Yet H., ACS Nano, 2015, 9(10), 9994—10004 |
46 | Fan J., Yin J. J., Ning B., Wu X., Hu Y., Ferrari M., Anderson G. J., Wei J., Zhao Y., Nie G., Biomaterials, 2011, 32(6), 1611—1618 |
47 | Mvango S., Mashazi P., Mater. Sci. Eng. C, 2019, 96, 814—823 |
48 | Lin Y., Ren J., Qu X., Adv. Mater., 2014, 26(25), 4200—4217 |
49 | Liu Y., Wu H., Li M., Yin J. J., Nie Z., Nanoscale, 2014, 6(20), 11904—11910 |
50 | Wen T., He W., Chong Y., Liu Y., Yin J. J., Wu X., Phys. Chem. Chem. Phys., 2015, 17(38), 24937—24943 |
51 | Cao G. J., Jiang X., Zhang H., Zheng J., Croley T. R., Yin J. J., J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev., 2017, 35(4), 223—238 |
52 | Dashtestani F., Ghourchian H., Najafi A., Mater. Sci. Eng. C, 2019, 94, 831—840 |
53 | Slocik J. M., Govorov A. O., Naik R. R., Angew. Chem. Int. Ed., 2008, 47(29), 5335—5339 |
54 | Yu T., Wang W., Chen J., Zeng Y., Li Y., Yang G., Li Y., J. Phys. Chem. C, 2012, 116(19), 10516—10521 |
55 | Hikosaka K., Kim J., Kajita M., Kanayama A., Miyamoto Y., Colloids Surf. B, 2008, 66(2), 195—200 |
56 | Sun H., Zhao A., Gao N., Li K., Ren J., Qu X., Angew. Chem. Int. Ed., 2015, 54(24), 7176—7180 |
57 | Shen X., Liu W., Gao X., Lu Z., Wu X., Gao X., J. Am. Chem. Soc., 2015, 137(50), 15882—15891 |
58 | Song Y., Xia X., Wu X., Wang P., Qin L., Angew. Chem. Int. Ed., 2014, 53(46), 12451—12455 |
59 | Ye H., Mohar J., Wang Q., Catalano M., Kim M. J., Xia X., Chin. Sci. Bull., 2016, 61(22), 1739—1745 |
60 | Chen C., Fan S., Li C., Chong Y., Tian X., Zheng J., Fu P. P., Jiang X., Wamer W. G., Yin J. J., J. Mater. Chem. B, 2016, 4(48), 7895—7901 |
61 | Kalantari M., Ghosh T., Liu Y., Zhang J., Zou J., Lei C., Yu C., ACS Appl. Mater. Interfaces, 2019, 11(14), 13264—13272 |
62 | Higashi Y., Mazumder J., Yoshikawa H., Saito M., Tamiya E., Anal. Chem., 2018, 90(9), 5773—5780 |
63 | Ge C., Fang G., Shen X., Chong Y., Wamer W. G., Gao X., Chai Z., Chen C., Yin J. J., ACS Nano, 2016, 10(11), 10436—10445 |
64 | Chong Y., Dai X., Fang G., Wu R., Zhao L., Ma X., Tian X., Lee S., Zhang C., Chen C., Chai Z., Ge C., Zhou R., Nat. Commun., 2018, 9(1), 4861 |
65 | Tseng C. W., Chang H. Y., Chang J. Y., Huang C. C., Nanoscale, 2012, 4(21), 6823—6830 |
66 | Zhang K., Hu X., Liu J., Yin J. J., Hou S., Wen T., He W., Ji Y., Guo Y., Wang Q., Wu X., Langmuir, 2011, 27(6), 2796—2803 |
67 | Mikolajczak D. J., Berger A. A., Koksch B., Angew. Chem. Int. Ed., 2020, 59(23), 8776—8785 |
68 | Hu L., Liao H., Feng L., Wang M., Fu W., Anal. Chem., 2018, 90(10), 6247—6252 |
69 | Wang S., Chen W., Liu A. L., Hong L., Deng H. H., Lin X. H., ChemPhysChem, 2012, 13(5), 1199—1204 |
70 | Zhang Z., Tian Y., Huang P., Wu F. Y., Talanta, 2020, 208, 120342 |
71 | Fan L., Lou D., Wu H., Zhang X., Zhu Y., Gu N., Zhang Y., Adv. Mater. Interfaces, 2018, 5(22), 1801070 |
72 | Hu W. C., Younis M. R., Zhou Y., Wang C., Xia X. H., Small, 2020, 16(23), e2000553 |
73 | Li X., Pu Z., Zhou H., Zhang W., Niu X., He Y., Xu X., Qiu F., Pan J., Ni L., J. Mater. Sci., 2018, 53(19), 13912—13923 |
74 | Dong Y., Zhang J., Jiang P., Wang G., Wu X., Zhao H., Zhang C., New J. Chem., 2015, 39(5), 4141—4146 |
75 | Chen Y., Yuchi Q., Li T., Yang G., Miao J., Huang C., Liu J., Li A., Qin Y., Zhang L., Sens. Actuators B, 2020, 305, 127436 |
76 | Tao Y., Lin Y., Huang Z., Ren J., Qu X., Adv. Mater., 2013, 25(18), 2594—2599 |
77 | Maji S. K., Yu S., Chung K., Sekkarapatti Ramasamy M., Lim J. W., Wang J., Lee H., Kim D. H., ACS Appl. Mater. Interfaces, 2018, 10(49), 42068—42076 |
78 | Liu J., Hu X., Hou S., Wen T., Liu W., Zhu X., Wu X., Chem. Commun. (Camb.), 2011, 47(39), 10981—10983 |
79 | Jiang C., Wei X., Bao S., Tu H., Wang W., RSC Adv., 2019, 9(71), 41561—41568 |
80 | Weerathunge P., Ramanathan R., Shukla R., Sharma T. K., Bansal V., Anal. Chem., 2014, 86(24), 11937—11941 |
81 | Pan N., Wang L. Y., Wu L. L., Peng C. F., Xie Z. J., Microchim. Acta, 2016, 184(1), 65—72 |
82 | Wu G. W., He S. B., Peng H. P., Deng H. H., Liu A. L., Lin X. H., Xia X. H., Chen W., Anal. Chem., 2014, 86(21), 10955—10960 |
83 | Liao H., Liu G., Liu Y., Li R., Fu W., Hu L., Chem. Commun. (Camb.), 2017, 53(73), 10160—10163 |
84 | Gao M., An P., Rao H., Niu Z., Xue X., Luo M., Liu X., Xue Z., Lu X., Analyst, 2020, 145(4), 1279—1287 |
85 | Tao Y., Lin Y., Ren J., Qu X., Biosens. Bioelectron., 2013, 42, 41—46 |
86 | Jin L., Meng Z., Zhang Y., Cai S., Zhang Z., Li C., Shang L., Shen Y., ACS Appl. Mater. Interfaces, 2017, 9(11), 10027—10033 |
87 | Wang W., Bao T., Zeng X., Xiong H., Wen W., Zhang X., Wang S., Biosens. Bioelectron., 2017, 91, 183—189 |
88 | Wang Z., Yang X., Feng J., Tang Y., Jiang Y., He N., Analyst, 2014, 139(23), 6088—6091 |
89 | Wang G. L., Jin L. Y., Wu X. M., Dong Y. M., Li Z. J., Anal. Chim. Acta, 2015, 871, 1—8 |
90 | Wu L., Yin W., Tang K., Shao K., Li Q., Wang P., Zuo Y., Lei X., Lu Z., Han H., Biosens. Bioelectron., 2016, 82, 177—184 |
91 | Hu J., Ni P., Dai H., Sun Y., Wang Y., Jiang S., Li Z., RSC Adv., 2015, 5(21), 16036—16041 |
92 | Zheng C., Zheng A. X., Liu B., Zhang X. L., He Y., Li J., Yang H. H., Chen G., Chem. Commun. (Camb.), 2014, 50(86), 13103—13106 |
93 | Hu D., Sheng Z., Fang S., Wang Y., Gao D., Zhang P., Gong P., Ma Y., Cai L., Theranostics, 2014, 4(2), 142—153 |
94 | Ge S., Liu F., Liu W., Yan M., Song X., Yu J. H., Chem. Commun. (Camb.), 2014, 50(4), 475—477 |
95 | Dehghani Z., Hosseini M., Mohammadnejad J., Bakhshi B., Rezayan A. H., Microchim. Acta, 2018, 185(10), 448 |
96 | Zhan L., Li C. M., Wu W. B., Huang C. Z., Chem. Commun. (Camb.), 2014, 50(78), 11526—11528 |
97 | Long L., Cai R., Liu J., Wu X., Front. Chem., 2020, 8, 463 |
98 | Tao Y., Ju E., Ren J., Qu X., Adv. Mater., 2015, 27(6), 1097—1104 |
99 | Chen S., Quan Y., Yu Y. L., Wang J. H., ACS Biomater. Sci. Eng., 2017, 3(3), 313—321 |
100 | Zhu X., Gong Y., Liu Y., Yang C., Wu S., Yuan G., Guo X., Liu J., Qin X., Biomaterials, 2020, 242, 119923 |
101 | Gao Z., Li Y., Zhang Y., Cheng K., An P., Chen F., Chen J., You C., Zhu Q., Sun B., ACS Appl. Mater. Interfaces, 2020, 12(2), 1963—1972 |
102 | Xi J., Wang W., Da L., Zhang J., Fan L., Gao L., ACS Biomater. Sci. Eng., 2018, 4(3), 1083—1091 |
103 | Ma Y. C., Zhu Y. H., Tang X. F., Hang L. F., Jiang W., Li M., Khan M. I., You Y. Z., Wang Y. C., Biomater. Sci., 2019, 7(7), 2740—2748 |
104 | Jawaid P., Rehman M., Yoshihisa Y., Li P., Zhao Q., Hassan M. A., Miyamoto Y., Shimizu T., Kondo T., Apoptosis, 2014, 19(6), 1006—1016 |
105 | Armada⁃Moreira A., Taipaleenmaki E., Baekgaard⁃Laursen M., Schattling P. S., Sebastiao A. M., Vaz S. H., Stadler B., ACS Appl. Mater. Interfaces, 2018, 10(9), 7581—7592 |
106 | Darabdhara G., Das M. R., J. Hazard. Mater., 2019, 368, 365—377 |
107 | Cai Q., Lu S., Liao F., Li Y., Ma S., Shao M., Nanoscale, 2014, 6(14), 8117—8123 |
108 | Zhang S., Li H., Wang Z., Liu J., Zhang H., Wang B., Yang Z., Nanoscale, 2015, 7(18), 8495—8502 |
[1] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[2] | 杨静怡, 施思齐, 彭怀涛, 杨其浩, 陈亮. Ga-C3N4单原子催化剂高效光驱动CO2环加成[J]. 高等学校化学学报, 2022, 43(9): 20220349. |
[3] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[4] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[5] | 杨静怡, 李庆贺, 乔波涛. 铱单原子和纳米粒子在N2O分解反应中的协同催化[J]. 高等学校化学学报, 2022, 43(9): 20220388. |
[6] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[7] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[8] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[9] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[10] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[11] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[12] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[13] | 程前, 杨博龙, 吴文依, 向中华. S掺杂Fe-N-C高活性氧还原反应催化剂[J]. 高等学校化学学报, 2022, 43(9): 20220341. |
[14] | 唐全骏, 刘颖馨, 孟蓉炜, 张若天, 凌国维, 张辰. 单原子催化在海洋能源领域的应用[J]. 高等学校化学学报, 2022, 43(9): 20220324. |
[15] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||