高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220613.doi: 10.7503/cjcu20220613
收稿日期:
2022-09-14
出版日期:
2023-01-10
发布日期:
2022-11-01
基金资助:
ZOU Yingying1, ZHANG Chaoqi1, YUAN Ling1, LIU Chao1(), YU Chengzhong1,2(
)
Received:
2022-09-14
Online:
2023-01-10
Published:
2022-11-01
Contact:
LIU Chao, YU Chengzhong
E-mail:cliu@chem.ecnu.edu.cn;czyu@chem.ecnu.edu.cn
Supported by:
摘要:
金属-有机框架(MOF)衍生功能材料的合理设计对于其应用具有重要意义. 以简单MOF衍生物为基本单元组装成中空超级结构(HSSs)是提升材料性能的有效策略. 目前关于MOF衍生物的综合评述已有诸多报道, 然而鲜少针对HSSs的构筑和应用. 本文系统总结了MOF衍生HSSs相关研究的最新进展. 首先, 根据结构差异将MOF衍生HSSs分为5种类型; 其次, 总结了由MOF衍生物构建HSSs的策略, 着重阐述如何设计MOF前驱体和选择转化条件; 随后, 展示了MOF衍生HSSs在能源和催化相关领域的一些应用; 最后, 提出了MOF衍生HSSs研究领域所面临的挑战和机遇, 旨在为MOF衍生材料的结构设计和性能强化提供一些思路.
中图分类号:
TrendMD:
邹莹莹, 张超琪, 袁玲, 刘超, 余承忠. 金属-有机框架衍生中空超级结构的研究进展: 合成与应用. 高等学校化学学报, 2023, 44(1): 20220613.
ZOU Yingying, ZHANG Chaoqi, YUAN Ling, LIU Chao, YU Chengzhong. Recent Advances in Metal-organic Framework Derived Hollow Superstructures: Synthesis and Applications. Chem. J. Chinese Universities, 2023, 44(1): 20220613.
Fig.1 Schematic illustration of the fabrication process of Co atom embedded carbon micro⁃urchins(A)[58], illustration of the formation process of spherical HSSs of carbon nanorods(B)[49], schematic representation of the synthesis of frame⁃like Co⁃Fe oxide(C)[87](A) Copyright 2019, Elsevier; (B) Copyright 2019, Wiley-VCH; (C) Copyright 2017, American Association for the Advancement of Science.
Fig.2 Illustration of the fabrication of FeCoNi decorated carbon HSSs(A)[81], a scheme of the construction of HSSs composed of Co/Cu mixed oxide nanorods(B)[90], a scheme of the formation process of hollow Co, N⁃doped carbon nanotube arrays(C)[75](A) Copyright 2021, American Chemical Society; (B) Copyright 2019, Wiley-VCH; (C) Copyright 2019, Elsevier.
Fig.3 Schematic illustration of the synthetic process of NiCo2O4 hollow nanowall arrays(A)[79], illustration of the fabrication process of 1D carbon HSSs(B)[78](A) Copyright 2017, Wiley-VCH; (B) Copyright 2017, Wiley-VCH.
Fig.5 Synthetic route of hierarchical Co9S8@ZnIn2S4 composite HSSs(A)[94], illustration of the synthetic process of HSSs comprised of Ni⁃Co sulfide nanosheets(B)[97](A) Copyright 2018, American Chemical Society; (B) Copyright 2017, Wiley-VCH.
Fig.6 Schematic illustration of the synthesis of single and double shelled Ni⁃Fe LDH HSSs(A)[69], SEM images of ZIF⁃67 and derived HSSs of hierarchical CNTs frameworks(B)[52](A) Copyright 2020, Wiley-VCH; (B) Copyright 2016, Springer Nature.
Architectural type | Composition | Application | Ref. |
---|---|---|---|
Type I | Fe2O3 | LIBs | [ |
NiCo⁃LDH/Co9S8 | HER/supercapacitors | [ | |
NiCoP/C | OER | [ | |
Co3O4/NiCo2O4 | OER/pseudo⁃capacitors | [ | |
Ni⁃Fe LDH | OER | [ | |
Ni⁃Co⁃MoS2 | HER | [ | |
ZnCo⁃OH | Photocatalytic CO2 RR | [ | |
CoS⁃NP/CoS⁃NS | Supercapacitors | [ | |
FeCoS2⁃CoS2 | Photocatalytic CO2 RR | [ | |
Ni3S4@Co9S8 | Supercapacitors | [ | |
ZnS NR@HCP | LIBs | [ | |
CoO/Co⁃Cu⁃S⁃2 | Supercapacitors | [ | |
FeCoNi/HCS | ORR/OER | [ | |
Co⁃Fe alloy/N⁃C | ORR | [ | |
ZnO/ZnFe2O4/C | LIBs | [ | |
Pd@SS⁃CNR | Heterogeneous catalysis | [ | |
Co⁃Fe oxides | OER | [ | |
Cu(NiCo)2S4/Ni3S4 | Supercapacitors | [ | |
Cu doped Co3O4 | Heterogeneous catalysis | [ | |
Type II | Co3S4@MoS2 | HER/OER | [ |
Co9S8@ZnIn2S4 | Photocatalytic HER | [ | |
Co/NGC@ZnIn2S4 | Photocatalytic HER | [ | |
In2S3⁃CdIn2S4 | Photocatalytic CO2 RR | [ | |
ZnIn2S4⁃In2O3 | Photocatalytic CO2 RR | [ | |
Type III | Co SAs/N⁃C | ORR/OER | [ |
Co1-x S@C | Pseudo⁃capacitors | [ | |
Type IV | NiCo2O4 | OER/supercapacitors | [ |
Mo⁃CoP//Mo⁃CoOOH | Water splitting | [ | |
Fe⁃Co⁃S/NF | Supercapacitors | [ | |
Ni2P/(NiFe)2P(O) NAs | OER | [ | |
MoS2/CoS2 | HER | [ | |
NCPFs | Supercapacitors | [ | |
Architectural type | Composition | Application | Ref. |
Type IV | HPCNFs⁃N | Supercapacitors | [ |
HCA⁃Co | OER/ORR/batteries | [ | |
Type V | Co3O4/ZnFe2O4 | Supercapacitors | [ |
NCNTFs | ORR/OER | [ | |
N⁃CNTs | ORR/LIBs | [ | |
CoP@HPCN | Lithium⁃sulfur batteries | [ | |
CoP@N⁃HP/CT | SIBs | [ | |
Ti⁃CoSx | OER | [ | |
Ti⁃ZnCoS | ORR | [ | |
CoS2 | LIBs | [ | |
Co3O4 | LIBs | [ |
Table 1 Architectural types, composition and performance of MOF derived HSSs
Architectural type | Composition | Application | Ref. |
---|---|---|---|
Type I | Fe2O3 | LIBs | [ |
NiCo⁃LDH/Co9S8 | HER/supercapacitors | [ | |
NiCoP/C | OER | [ | |
Co3O4/NiCo2O4 | OER/pseudo⁃capacitors | [ | |
Ni⁃Fe LDH | OER | [ | |
Ni⁃Co⁃MoS2 | HER | [ | |
ZnCo⁃OH | Photocatalytic CO2 RR | [ | |
CoS⁃NP/CoS⁃NS | Supercapacitors | [ | |
FeCoS2⁃CoS2 | Photocatalytic CO2 RR | [ | |
Ni3S4@Co9S8 | Supercapacitors | [ | |
ZnS NR@HCP | LIBs | [ | |
CoO/Co⁃Cu⁃S⁃2 | Supercapacitors | [ | |
FeCoNi/HCS | ORR/OER | [ | |
Co⁃Fe alloy/N⁃C | ORR | [ | |
ZnO/ZnFe2O4/C | LIBs | [ | |
Pd@SS⁃CNR | Heterogeneous catalysis | [ | |
Co⁃Fe oxides | OER | [ | |
Cu(NiCo)2S4/Ni3S4 | Supercapacitors | [ | |
Cu doped Co3O4 | Heterogeneous catalysis | [ | |
Type II | Co3S4@MoS2 | HER/OER | [ |
Co9S8@ZnIn2S4 | Photocatalytic HER | [ | |
Co/NGC@ZnIn2S4 | Photocatalytic HER | [ | |
In2S3⁃CdIn2S4 | Photocatalytic CO2 RR | [ | |
ZnIn2S4⁃In2O3 | Photocatalytic CO2 RR | [ | |
Type III | Co SAs/N⁃C | ORR/OER | [ |
Co1-x S@C | Pseudo⁃capacitors | [ | |
Type IV | NiCo2O4 | OER/supercapacitors | [ |
Mo⁃CoP//Mo⁃CoOOH | Water splitting | [ | |
Fe⁃Co⁃S/NF | Supercapacitors | [ | |
Ni2P/(NiFe)2P(O) NAs | OER | [ | |
MoS2/CoS2 | HER | [ | |
NCPFs | Supercapacitors | [ | |
Architectural type | Composition | Application | Ref. |
Type IV | HPCNFs⁃N | Supercapacitors | [ |
HCA⁃Co | OER/ORR/batteries | [ | |
Type V | Co3O4/ZnFe2O4 | Supercapacitors | [ |
NCNTFs | ORR/OER | [ | |
N⁃CNTs | ORR/LIBs | [ | |
CoP@HPCN | Lithium⁃sulfur batteries | [ | |
CoP@N⁃HP/CT | SIBs | [ | |
Ti⁃CoSx | OER | [ | |
Ti⁃ZnCoS | ORR | [ | |
CoS2 | LIBs | [ | |
Co3O4 | LIBs | [ |
Fig.8 SEM(A) and TEM(B) images of CoO/Co⁃Cu⁃S⁃2 HTHSs, specific capacitances and cycling stability of various samples(C), specific capacities and coulombic efficiencies of CoO/Co⁃Cu⁃S⁃2 HTHSs//AC hybrid supercapacitor(D)[90]
Fig.9 Schematic illustration for the synthesis process(A), charge/discharge profiles(B), rate capability(C) and cycling performance of CNT/Co3O4 HSSs(D)[84]
Fig.10 Scheme of the function of CoP@N⁃HP/CT during sodium storage process(A), rate performance of different samples at various current densities(B), long⁃term cycling performance of CoP@N⁃HP/CT anodes(C)[124]
Fig.11 Schematic illustrations of preparation route of N⁃CNTs HSSs(A), LSV profiles of different catalysts(B), K⁃L plots(C) and chronoamperometric responses N⁃CNTs⁃650(D)[53]
Fig.13 CO2 photoreduction activities of different samples(A), cycle performance of In2S3⁃CdIn2S4⁃10(B)[96], photocatalytic H2 evolution activities of different samples(C), H2 evolution rate of Co9S8@ZnIn2S4 in stability tests(D)[94]
Fig.14 Schematic representation for the design of C⁃CoM⁃HNCs(A), c/c0vs. time of RhB degradation over C⁃Co⁃HNC(B), catalytic dynamics of C⁃Cu⁃HNC with different PMS concentrations(C)[135]
Fig.15 TEM(A) and HAADF⁃STEM images of Pd@SS⁃CNR(B), catalytic activities of Pd loaded carbon materials for FA dehydrogenation(C), temperature⁃dependent gas evolution over Pd@SS⁃CNR(D)[49]
33 | Wang J., Yuan L., Zhang C., Li S., Wang G., Wan J., Liu C., Yu C., Adv. Funct. Mater., 2021, 31(51), 2107260 |
34 | Zhang N., Yan L., Lu Y., Fan Y., Guo S., Adimi S., Liu D., Ruan S., Chin. Chem. Lett., 2020, 31(8), 2071—2076 |
35 | Fu S., Zhu C., Song J., Du D., Lin Y., Adv. Energy Mater., 2017, 7(19), 1700363 |
36 | Liang Z., Zhao R., Qiu T., Zou R., Xu Q., Energy Chem., 2019, 1(1), 100001 |
37 | Dong Y., Li S., Hong S., Wang L., Wang B., Chin. Chem. Lett., 2020, 31(3), 635—642 |
38 | Wang Q., Astruc D., Chem. Rev., 2020, 120(2), 1438—1511 |
39 | Dang S., Zhu Q. L., Xu Q., Nat. Rev. Mater., 2018, 3(1), 17075 |
40 | Xia W., Mahmood A., Zou R., Xu Q., Energy Environ. Sci., 2015, 8(7), 1837—1866 |
41 | Chen Y. Z., Zhang R., Jiao L., Jiang H. L., Coord. Chem. Rev., 2018, 362, 1—23 |
42 | Cao X., Tan C., Sindoro M., Zhang H., Chem. Soc. Rev., 2017, 46(10), 2660—2677 |
43 | Yap M. H., Fow K. L., Chen G. Z., Green Energy Environ., 2017, 2(3), 218—245 |
44 | Luo H., Zeng Z., Zeng G., Zhang C., Xiao R., Huang D., Lai C., Cheng M., Wang W., Xiong W., Yang Y., Qin L., Zhou C., Wang H., Zhou Y., Tian S., Chem. Eng. J., 2020, 383, 123196 |
45 | Kim H., Lah M. S., Dalton Trans., 2017, 46(19), 6146—6158 |
46 | Xue Z., Wang P., Peng A., Wang T., Adv. Mater., 2019, 31(38), 1801441 |
47 | Hou C. C., Zou L., Xu Q., Adv. Mater., 2019, 31(46), e1904689 |
48 | Chen Z., Wu R., Wang H., Jiang Y., Jin L., Guo Y., Song Y., Fang F., Sun D., Chem. Eng. J., 2017, 326, 680—690 |
49 | Zou L., Kitta M., Hong J., Suenaga K., Tsumori N., Liu Z., Xu Q., Adv. Mater., 2019, 31(24), e1900440 |
50 | Hu H., Guan B., Xia B., Lou X. W., J. Am. Chem. Soc., 2015, 137(16), 5590—5595 |
51 | Wang F., Fang R., Zhao X., Kong X. P., Hou T., Shen K., Li Y., ACS Nano, 2022, 16(3), 4517—4527 |
52 | Xia B. Y., Yan Y., Li N., Wu H. B., Lou X. W., Wang X., Nat. Energy, 2016, 1(1), 15006 |
53 | Meng J., Niu C., Xu L., Li J., Liu X., Wang X., Wu Y., Xu X., Chen W., Li Q., Zhu Z., Zhao D., Mai L., J. Am. Chem. Soc., 2017, 139(24), 8212—8221 |
54 | He P., Yu X. Y., Lou X. W., Angew. Chem. Int. Ed., 2017, 56(14), 3897—3900 |
55 | Pi Y., Jin S., Li X., Tu S., Li Z., Xiao J., Appl. Catal. B: Environ., 2019, 256, 117882 |
56 | Wang X., Cheng B., Zhang L., Yu J., Li Y., J. Colloid Interface Sci., 2022, 612, 598—607 |
57 | Le K., Gao M., Liu W., Liu J., Wang Z., Wang F., Murugadoss V., Wu S., Ding T., Guo Z., Electrochim. Acta, 2019, 323,134826 |
58 | Sun X., Sun S., Gu S., Liang Z., Zhang J., Yang Y., Deng Z., Wei P., Peng J., Xu Y., Fang C., Li Q., Han J., Jiang Z., Huang Y., Nano Energy, 2019, 61, 245—250 |
59 | Yu X. Y., Feng Y., Jeon Y., Guan B., Lou X. W., Paik U., Adv. Mater., 2016, 28(40), 9006—9011 |
60 | Wang Y., Wang S., Zhang S., Lou X., Angew. Chem., 2020, 132, 12016—12020 |
61 | Ye Z., Jiang Y., Qian J., Li W., Feng T., Li L., Wu F., Chen R., Nano Energy, 2019, 64,103965 |
62 | Hu X. W., Liu S., Qu B. T., You X. Z., ACS Appl. Mater. Interfaces, 2015, 7(18), 9972—9981 |
63 | Zhao W., Yan G., Zheng Y., Liu B., Jia D., Liu T., Cui L., Zheng R., Wei D., Liu J., J. Colloid Interface Sci., 2020, 565, 295—304 |
64 | Xie X. C., Huang K. J., Wu X., J. Mater. Chem. A, 2018, 6(16), 6754—6771 |
65 | Cai Z. X., Wang Z. L., Kim J., Yamauchi Y., Adv. Mater., 2019, 31(11), 1804903 |
66 | Guan B. Y., Yu X. Y., Wu H. B., Lou X. W., Adv. Mater., 2017, 29(47), 1703614 |
67 | Zou F., Hu X., Li Z., Qie L., Hu C., Zeng R., Jiang Y., Huang Y., Adv. Mater., 2014, 26(38), 6622—6628 |
68 | Zhang S. L., Guan B. Y., Lou X. W., Small, 2019, 15(13), e1805324 |
69 | Zhang J., Yu L., Chen Y., Lu X. F., Gao S., Lou X. W., Adv. Mater., 2020, 32(16), e1906432 |
70 | Li H., Yue F., Xie H., Yang C., Zhang Y., Zhang L., Wang J., CrystEngComm, 2018, 20(7), 889—895 |
71 | Hu H., Guan B. Y., Lou X. W., Chem, 2016, 1(1), 102—113 |
72 | Guo Y., Tang J., Qian H., Wang Z., Yamauchi Y., Chem. Mat., 2017, 29(13), 5566—5573 |
73 | Wang S., Wang Y., Zhang S. L., Zang S. Q., Lou X. W., Adv. Mater., 2019, 31(41), e1903404 |
74 | Sun S., Sun X., Liu Y., Peng J., Qiu Y., Xu Y., Zhang J., Li Q., Fang C., Han J., Huang Y., J. Mater. Chem. A, 2019, 7(29), 17248—17253 |
75 | Zhu C., Ma Y., Zang W., Guan C., Liu X., Pennycook S. J., Wang J., Huang W., Chem. Eng. J., 2019, 369, 988—995 |
76 | Tang B., Yu Z. G., Zhang Y., Tang C., Seng H. L., Seh Z. W., Zhang Y. W., Pennycook S. J., Gong H., Yang W., J. Mater. Chem. A, 2019, 7(21), 13339—13346 |
77 | Wang C., Liu C., Li J., Sun X., Shen J., Han W., Wang L., Chem. Commun., 2017, 53(10), 1751—1754 |
78 | Chen L. F., Lu Y., Yu L., Lou X. W., Energy Environ. Sci., 2017, 10(8), 1777—1783 |
79 | Guan C., Liu X., Ren W., Li X., Cheng C., Wang J., Adv. Energy Mater., 2017, 7(12), 1602391 |
80 | Guan C., Xiao W., Wu H. J., Liu X. M., Zang W. J., Zhang H., Ding J., Feng Y. P., Pennycook S. J., Wang J., Nano Energy, 2018, 48, 73—80 |
81 | Wang H. F., Chen L., Wang M., Liu Z., Xu Q., Nano Lett., 2021, 21(8), 3640—3648 |
82 | Xi W., Yan G., Lang Z., Ma Y., Tan H., Zhu H., Wang Y., Li Y., Small, 2018, 14(42), 1802204 |
83 | Bao T., Xia Y., Lu J., Zhang C., Wang J., Yuan L., Zhang Y., Liu C., Yu C., Small, 2022, 18(4), e2103106 |
84 | Chen Y. M., Yu L., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(20), 5990—5993 |
85 | Zhang C., Lu R., Liu C., Lu J., Zou Y., Yuan L., Wang J., Wang G., Zhao Y., Yu C., Adv. Sci., 2022, 9(12), e2104768 |
86 | Guo H., Li T., Chen W., Liu L., Yang X., Wang Y., Guo Y., Nanoscale, 2014, 6(24), 15168—15174 |
87 | Nai J., Guan B. Y., Yu L., Lou X. W., Sci. Adv., 2017, 3(8), e1700732 |
88 | Yu L., Yang J. F., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(43), 13422—13426 |
89 | Zhang L., Wu H. B., Madhavi S., Hng H. H., Lou X. W., J. Am. Chem. Soc., 2012, 134(42), 17388—17391 |
90 | Lu W., Shen J. L., Zhang P., Zhong Y. J., Hu Y., Lou X. W., Angew. Chem. Int. Ed., 2019, 58(43), 15441—15447 |
91 | Song N., Ren S., Zhang Y., Wang C., Lu X., Adv. Funct. Mater., 2022, 32(34), 2204751 |
92 | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., J. Mater. Chem. A, 2017, 5(3), 1211—1220 |
93 | Zhang C. L., Lu B. R., Cao F. H., Yu Z. L., Cong H. P., Yu S. H., J. Mater. Chem. A, 2018, 6(27), 12962—12968 |
94 | Wang S., Guan B. Y., Wang X., Lou X. W., J. Am. Chem. Soc., 2018, 140(45), 15145—15148 |
95 | Wang S., Guan B. Y., Lou X. W., J. Am. Chem. Soc., 2018, 140(15), 5037—5040 |
96 | Wang S., Guan B. Y., Lu Y., Lou X. W., J. Am. Chem. Soc., 2017, 139(48), 17305—17308 |
97 | Yilmaz G., Yam K. M., Zhang C., Fan H. J., Ho G. W., Adv. Mater., 2017, 29(26), 1606814 |
1 | Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M., Science, 2013, 341(6149), 974 |
2 | Eddaoudi M., Moler D. B., Li H. L., Chen B. L., Reineke T. M., O'Keeffe M., Yaghi O. M., Acc. Chem. Res., 2001, 34(4), 319—330 |
3 | Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112(2), 673—674 |
4 | Kitagawa S., Kitaura R., Noro S., Angew. Chem. Int. Ed., 2004, 43(18), 2334—2375 |
5 | Tranchemontagne D. J., Mendoza⁃Cortes J. L., O'Keeffe M., Yaghi O. M., Chem. Soc. Rev., 2009, 38(5), 1257—1283 |
6 | Cook T. R., Zheng Y. R., Stang P. J., Chem. Rev., 2013, 113(1), 734—777 |
7 | Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabres I., Xamena F. X., Gascon J., Nat. Mater., 2015, 14(1), 48—55 |
8 | Schneemann A., Bon V., Schwedler I., Senkovska I., Kaskel S., Fischer R. A., Chem. Soc. Rev., 2014, 43(16), 6062—6096. |
9 | Li H., Eddaoudi M., O'Keeffe M., Yaghi O. M., Nature, 1999, 402(6759), 276—279 |
10 | Liu C., Sun Q., Lin L., Wang J., Zhang C., Xia C., Bao T., Wan J., Huang R., Zou J., Yu C., Nat. Commun., 2020, 11(1), 4971 |
11 | Liu C., Wang J., Wan J., Yu C., Coord. Chem. Rev., 2021, 432,213743 |
12 | Bao T., Zou Y., Zhang C., Yu C., Liu C., Angew. Chem. Int. Ed., 2022,e202209433 |
13 | Li J. R., Kuppler R. J., Zhou H. C., Chem. Soc. Rev., 2009, 38(5), 1477—1504 |
14 | Li J. R., Sculley J., Zhou H. C., Chem. Rev., 2012, 112(2), 869—932 |
15 | Kreno L. E., Leong K., Farha O. K., Allendorf M., Van Duyne R. P., Hupp J. T., Chem. Rev., 2012, 112(2), 1105—1125 |
16 | Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38(5), 1450—1459 |
17 | Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J. S., Hwang Y. K., Marsaud V., Bories P. N., Cynober L., Gil S., Ferey G., Couvreur P., Gref R., Nat. Mater., 2010, 9(2), 172—178 |
18 | Suh M. P., Park H. J., Prasad T. K., Lim D. W., Chem. Rev., 2012, 112(2), 782—835 |
19 | Corma A., Garcia H., Llabres i Xamena F. X., Chem. Rev., 2010, 110(8), 4606—4655 |
20 | Della Rocca J., Liu D., Lin W., Acc. Chem. Res., 2011, 44(10), 957—968 |
21 | Liu X., Yue T., Qi K., Qiu Y., Xia B. Y., Guo X., Chin. Chem. Lett., 2020, 31(9), 2189—2201 |
22 | Ren X. Y., Lu L. H., Chin. Chem. Lett., 2015, 26(12), 1439—1445 |
23 | Zhang Z., Cai Z., Wang Z., Peng Y., Xia L., Ma S., Yin Z., Huang Y., Nano⁃Micro Lett., 2021, 13(1), 56 |
98 | Dai M., Zhao D., Wu X., Chin. Chem. Lett., 2020, 31(9), 2177—2188 |
99 | Zou J., Zhang Y., Chen S., Shao H., Tang Y., Chem. J. Chinese Universities, 2021, 42(4), 1005—1016 |
100 | Simon P., Gogotsi Y., Nat. Mater., 2008, 7(11), 845—854 |
101 | Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., Nat. Mater., 2005, 4(5), 366—377 |
102 | Chen M., Yang Y., Chen D., Wang H., Chin. Chem. Lett., 2018, 29(4), 564—570 |
103 | Liu L., Niu Z., Chen J., Chin. Chem. Lett., 2018, 29(4), 571—581 |
104 | Cheng W., Chen C., Yu Y., Li C., Gao L., Shi Z., Chem. J. Chinese Universities, 2017, 38(8), 1303—1308 |
105 | Liu C., Li F., Ma L. P., Cheng H. M., Adv. Mater., 2010, 22(8), E28—E62 |
106 | Wang G., Zhang L., Zhang J., Chem. Soc. Rev., 2012, 41(2), 797—828 |
107 | Frackowiak E., Beguin F., Carbon, 2001, 39(6), 937—950 |
108 | Yan J., Wang Q., Wei T., Fan Z., Adv. Energy Mater., 2014, 4(4), 1300816 |
109 | Chen M., Li H., Fan H., Li Y., Liu W., Xia X., Chen Q., Chem. J. Chinese Universities, 2021, 42(2), 539—555 |
110 | Kumar S., Saeed G., Zhu L., Hui K. N., Kim N. H., Lee J. H., Chem. Eng. J., 2021, 403, 126352 |
111 | Augustyn V., Simon P., Dunn B., Energy Environ. Sci., 2014, 7(5), 1597—1614 |
112 | Yuan H., Kong L., Li T., Zhang Q., Chin. Chem. Lett., 2017, 28(12), 2180—2194 |
24 | Ren Q., Wang H., Lu X. F., Tong Y. X., Li G. R., Adv. Sci., 2018, 5(3), 1700515 |
25 | Ren J., Huang Y., Zhu H., Zhang B., Zhu H., Shen S., Tan G., Wu F., He H., Lan S., Xia X., Liu Q., Carbon Energy, 2020, 2(2), 176—202 |
26 | Cheng N., Ren L., Xu X., Du Y., Dou S. X., Adv. Energy Mater., 2018, 8(25), 1801257 |
27 | Wang C., Kim J., Tang J., Kim M., Lim H., Malgras V., You J., Xu Q., Li J., Yamauchi Y., Chem, 2020, 6(1), 19—40 |
28 | Wang C., Kaneti Y. V., Bando Y., Lin J., Liu C., Li J., Yamauchi Y., Mater. Horizons, 2018, 5(3), 394—407 |
29 | Qin Y., Sun Y., Li Y., Li C., Wang L., Guo S., Chin. Chem. Lett., 2020, 31(3), 774—778 |
30 | Kaneti Y. V., Tang J., Salunkhe R. R., Jiang X., Yu A., Wu K. C. W., Yamauchi Y., Adv. Mater., 2017, 29(12), 1604898. |
31 | Li Y., Xu Y., Yang W., Shen W., Xue H., Pang H., Small, 2018, 14(25), 1704435 |
32 | Salunkhe R. R., Kaneti Y. V., Yamauchi Y., Acs Nano, 2017, 11(6), 5293—5308 |
113 | Geng C., Hua W., Ling G., Tao Y., Zhang C., Yang Q., Chem. J. Chinese Universities, 2021, 42(5), 1331—1339 |
114 | Meng X., Gao Q., Chem. J. Chinese Universities, 2014, 35(8), 1715—1719 |
115 | Li S., Wang C., Lu Z., Chem. J. Chinese Universities, 2021, 42(5), 1530—1542 |
116 | Li H., Zhu S., Li S., Zhang Q., Zhao J., Zhang L., Chem. J. Chinese Universities, 2021, 42(8), 2342—2358 |
117 | Yabuuchi N., Kubota K., Dahbi M., Komaba S., Chem. Rev., 2014, 114(23), 11636—11682 |
118 | Kim S. W., Seo D. H., Ma X., Ceder G., Kang K., Adv. Energy Mater., 2012, 2(7), 710—721 |
119 | Zhou G., Li F., Cheng H. M., Energy Environ. Sci., 2014, 7(4), 1307—1338 |
120 | Du Y., Gao X., Li S., Wang L., Wang B., Chin. Chem. Lett., 2020, 31(3), 609—616 |
121 | Wang Q., Chu S., Guo S., Chin. Chem. Lett., 2020, 31(9), 2167—2176 |
122 | Kundu D., Talaie E., Duffort V., Nazar L. F., Angew. Chem. Int. Ed., 2015, 54(11), 3431—3448 |
123 | Hwang J. Y., Myung S. T., Sun Y. K., Chem. Soc. Rev., 2017, 46(12), 3529—3614 |
124 | Jiang Y., Xie M., Wu F., Ye Z., Zhou Y., Li L., Chen R., Chin. Chem. Lett., 2022, 438, 134279 |
125 | Wang H., Zhu S., Deng J., Zhang W., Feng Y., Ma J., Chin. Chem. Lett., 2021, 32(1), 291—298 |
126 | Gao Z., Li J., Zhang Z., Hu W., Chin. Chem. Lett., 2022, 33(5), 2270—2280 |
127 | Wang Y., Li Q., Shi W., Cheng P., Chin. Chem. Lett., 2020, 31(7), 1768—1772 |
128 | Ji X., Wang Z., Chen X., Yu R., Chem. J. Chinese Universities, 2021, 42(5), 1377—1394 |
129 | Chang J., Xu G., Li H., Fang Q., Chem. J. Chinese Universities, 2020, 41(7), 1609—1614 |
130 | Dong B., Liu T., Li C., Zhang F., Chin. Chem. Lett., 2018, 29(5), 671—680 |
131 | Xia T., Lin Y., Li W., Ju M., Chin. Chem. Lett., 2021, 32(10), 2975—2984 |
132 | Tjandra A. D., Huang J., Chin. Chem. Lett., 2018, 29(6), 734—746 |
133 | Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J., Adv. Mater., 2012, 24(2), 229—251 |
134 | Chen X., Shen S., Guo L., Mao S. S., Chem. Rev., 2010, 110(11), 6503—6570 |
135 | Li S., Hou Y., Chen Q., Zhang X., Cao H., Huang Y., ACS Appl. Mater. Interfaces, 2020, 12(2), 2581—2590 |
136 | Han X., He X., Sun L., Han X., Zhan W., Xu J., Wang X., Chen J., ACS Catal., 2018, 8(4), 3348—3356 |
137 | Zhang L., Wu H., Lou X. W., Lou X. W., J. Am. Chem. Soc. 2013, 135(29) 10664—10672 |
138 | Hou C. C., Wang Y., Zou L., Wang M., Liu H., Liu Z., Wang H. F., Li C., Xu Q., Adv. Mater., 2021, 33(31), e2101698 |
139 | Li S., Wang L., Su H., Hong A. N., Wang Y., Yang H., Ge L., Song W., Liu J., Ma T., Bu X., Feng P., Adv. Funct. Mater., 2022, 32(23), 2200733 |
140 | Wu H. B., Xia B. Y., Yu L., Yu X. Y., Lou X. W., Nat. Commun., 2015, 6, 6512 |
141 | Hu Y., Li C., Xi S., Deng Z., Liu X., Cheetham A. K., Wang J., Adv. Sci., 2021, 8(4), 2003212 |
142 | Xu H., Zhao X., Yu C., Sun Y., Hui Z., Zhou R., Xue J., Dai H., Zhao Y., Wang L., Gong Y., Zhou J., An J., Chen Q., Sun G., Huang W., Nanoscale, 2020, 12(20), 11112—11118 |
143 | Mao D., Wan J., Wang J., Wang D., Adv. Mater., 2018, 33(38), 1802874 |
144 | Jayaramulu K., Horn M., Schneemann A., Saini H., Bakandritsos A., Ranc V., Petr M., Stavila V., Narayana C., Scheibe B., Kment S., Otyepka M., Motta N., Dubal D., Zboril R., Fischer R. A., Adv. Mater., 2021, 33(4), e2004560 |
145 | Shi L., Wu C., Wang Y., Dou Y., Yuan D., Li H., Huang H., Zhang Y., Gates I. D., Sun X., Ma T., Adv. Funct. Mater., 2022, 32(30), 2202571 |
146 | Tsuruoka T., Kumano M., Mantani K., Matsuyama T., Miyanaga A., Ohhashi T., Takashima Y., Minami H., Suzuki T., Imagawa K., Akamatsu K., Cryst. Growth Des., 2016, 16(5), 2472—2476 |
147 | Ohhashi T., Tsuruoka T., Fujimoto S., Takashima Y., Akamatsu K., Cryst. Growth Des., 2018, 18(1), 402—408 |
148 | Wang W., Yan H., Anand U., Mirsaidov U., J. Am. Chem. Soc., 2021, 143(4), 1854—1862 |
149 | Zhang J., Cheng N., Ge B., Adv. Phys. X, 2022, 7(1), 2046157 |
150 | Kang D. Y., Lee J. S., Lin L. C., Langmuir, 2022, 38(31), 9441—9453 |
151 | Wu C., Xie D., Mei Y., Xiu Z., Poduska K. M., Li D., Xu B., Sun D., Phys. Chem. Chem. Phys., 2019, 21(32), 17571—17577 |
152 | Braglia L., Borfecchia E., Maddalena L., Oien S., Lomachenko K. A., Bugaev A. L., Bordiga S., Soldatov A. V., Lillerud K. P., Lamberti C., Catal. Today, 2017, 283, 89—103 |
153 | Jo Y. M., Jo Y. K., Lee J. H., Jang H. W., Hwang I. S., Yoo D. J., Adv. Mater., 2022, e2206842 |
154 | Wu M. X., Yang Y. W., Adv. Mater., 2017, 29(23), 1606134 |
155 | Bhatt P. M., Guillerm V., Datta S. J., Shkurenko A., Eddaoudi M., Chem, 2020, 6(7), 1613—1633 |
[1] | 林俊旭, 习志威, 李志平, 王迎春. 钯催化炔丙醇与叔丁基异腈选择性合成吡咯并呋喃衍生物和氨基甲酸酯[J]. 高等学校化学学报, 2023, 44(2): 20220473. |
[2] | 匡华艺, 陈晨. 贵金属纳米框架设计合成及电催化性能的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220586. |
[3] | 王思佳, 侯璐, 李成龙, 李文翠, 陆安慧. 空腔型纳米炭的制备与应用[J]. 高等学校化学学报, 2023, 44(1): 20220637. |
[4] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[5] | 杨霁野, 孙大吟, 王妍, 谷安祺, 叶一兰, 丁书江, 杨振忠. 若干典型中空结构材料的模板合成与应用进展[J]. 高等学校化学学报, 2023, 44(1): 20220665. |
[6] | 叶祖洋, 殷亚东. 基于刻蚀反应的纳米结构空心化[J]. 高等学校化学学报, 2023, 44(1): 20220656. |
[7] | 路雨, 王铁. 中空金属有机框架材料的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220662. |
[8] | 曹舒杰, 李泓君, 管文丽, 任梦田, 周传政. 硫代磷酸酯寡聚核苷酸的立体控制合成研究进展[J]. 高等学校化学学报, 2022, 43(Album-4): 20220304. |
[9] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[10] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[11] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[12] | 金睿明, 穆晓清, 徐岩. 生物-化学法合成黑色素前体5, 6-二羟基吲哚[J]. 高等学校化学学报, 2022, 43(8): 20220134. |
[13] | 韦春洪, 蒋倩, 王盼盼, 江成发, 刘岳峰. 贵金属Pt促进Co基费托合成催化剂的原子尺度结构分析[J]. 高等学校化学学报, 2022, 43(8): 20220074. |
[14] | 张昕昕, 许狄, 王艳秋, 洪昕林, 刘国亮, 杨恒权. CO2加氢制低碳醇CuFe基催化剂中的Mn助剂效应[J]. 高等学校化学学报, 2022, 43(7): 20220187. |
[15] | 周紫璇, 杨海艳, 孙予罕, 高鹏. 二氧化碳加氢制甲醇多相催化剂研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||