高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (1): 29.doi: 10.7503/cjcu20200382
所属专题: 分子筛功能材料 2021年,42卷,第1期
收稿日期:
2020-06-23
出版日期:
2021-01-10
发布日期:
2021-01-12
通讯作者:
吴鹏
E-mail:hxu@chem.ecnu.edu.cn;pwu@chem.ecnu.edu.cn
作者简介:
徐 浩, 女, 博士, 副教授, 主要从事分子筛及多相催化研究. E-mail: 基金资助:
JIAO Meichen, JIANG Jingang, XU Hao(), WU Peng(
)
Received:
2020-06-23
Online:
2021-01-10
Published:
2021-01-12
Contact:
WU Peng
E-mail:hxu@chem.ecnu.edu.cn;pwu@chem.ecnu.edu.cn
Supported by:
摘要:
硅锗分子筛因其超大的孔道结构, 在大分子催化反应领域具有潜在的应用前景. 硅锗分子筛骨架的富锗双四元环结构单元的不稳定性虽然限制了它们的实际应用, 但却为结构后处理修饰以构建新晶体结构分子筛提供了可能. 本文介绍了硅锗分子筛结构稳固、 结构可控调变和催化应用3个方面的研究进展, 并展望了其未来的发展方向和挑战.
中图分类号:
TrendMD:
焦美晨, 蒋金刚, 徐浩, 吴鹏. 硅锗分子筛的结构稳固、 结构可控调变及催化应用. 高等学校化学学报, 2021, 42(1): 29.
JIAO Meichen, JIANG Jingang, XU Hao, WU Peng. Structural Stabilization, Modification and Catalytic Applications of Germanosilicates. Chem. J. Chinese Universities, 2021, 42(1): 29.
Strategy | Germanosilicate precursor | Stabilized analogue | Ref. |
---|---|---|---|
Post?synthetic wet chemistry method | ITQ?17 | Al?BEC | [ |
Low?temperature plasma treatment | ITQ?17 | Ti?BEC, Si?BEC, Ti, Si?BEC | [ |
Isomorphous substitution | IM?12, IM?20, ITQ?17, ITQ?24 | Corresponding high?silica zeolites | [ |
Acid treatment | Ge?rich ITQ?22 | Si?rich ITQ?22, Al?ITQ?22 | [ |
Hydroxyl free radical route | Ge?rich Ti?UTL | Highly siliceous Ti?UTL | [ |
Crystallization?disassembly?dissolution? recrystallization(CDDR) | IM?20, ECNU?24 | IM?20?RC, IM?20?RC?Al, ECNU?24?RC | [ |
Table 1 Strategies for stabilizing germanosilicate structures by decreasing the Ge content without changing their topologies
Strategy | Germanosilicate precursor | Stabilized analogue | Ref. |
---|---|---|---|
Post?synthetic wet chemistry method | ITQ?17 | Al?BEC | [ |
Low?temperature plasma treatment | ITQ?17 | Ti?BEC, Si?BEC, Ti, Si?BEC | [ |
Isomorphous substitution | IM?12, IM?20, ITQ?17, ITQ?24 | Corresponding high?silica zeolites | [ |
Acid treatment | Ge?rich ITQ?22 | Si?rich ITQ?22, Al?ITQ?22 | [ |
Hydroxyl free radical route | Ge?rich Ti?UTL | Highly siliceous Ti?UTL | [ |
Crystallization?disassembly?dissolution? recrystallization(CDDR) | IM?20, ECNU?24 | IM?20?RC, IM?20?RC?Al, ECNU?24?RC | [ |
Fig.1 Structural stabilization of BEC germanosilicate by plasma method(A) and XRD patterns(B) of ITQ?17(a) and the treated samples of Ti, Si?BEC(b), Si?BEC(c), Ti?BEC(d), water?treated Ti, Si?BEC?calcined(e) and water?treated BEC?calcined material (f)[36]Copyright 2014, Royal Society of Chemistry.
Fig.2 Strategy for stabilizing the framework of germanosilicates via isomorphous substitution of Ge with Si in acidic media(A) and XRD patterns of IM?12 (UTL)(B1), ITQ?24 (IWR)(B2), ITQ?17(BEC)(B3) and IM?20 (UWY)(B4)(A) The Si sources come from removal species on crystallites or external addition of Si source. (B1―B4) As?synthesized(a), stabilized by Si substitution(b), and further autoclaved in 65% HNO3 aqueous solution(423 K, 24 h) and calcination(823 K, 6 h)(c)[37]Copyright 2014, Wiley.
Fig.3 Strategy for the stabilization of Ge?rich zeolites by the isomorphous substitution of Ge(green) with Si(yellow) under neutral conditions and room temperature(A) and EPR spectra of the mixture containing 5,5?dimethy?1?pyrroline?N?oxide (DMPO) under UV conditions(B1), H2O2 conditions(B2), and dark conditions(B3)[39]Copyright 2019, Royal Society of Chemistry.
Fig.4 Mechanism of crystallization?disassembly?dissolution?recrystallization (CDDR) for the post?synthesis of high?silica zeolites[40]Copyright 2019, Wiley.
Method | Code | Parent zeolite | Novel zeolite | Pore structure | Ref. |
---|---|---|---|---|---|
Acid?assisted | UTL | IM?12 | IPC?2 (OKO) | 12×10 | [ |
IPC?4 (PCR) | 10×8 | [ | |||
IPC?6 (*PCS) | 10×8+12×10 | [ | |||
IPC?7 | 12×10+14×12 | [ | |||
IPC?9 | 10×7 | [ | |||
IPC?10 | 12×9 | [ | |||
UOV | IM?17 | IPC?12 | 12?8(1D) | [ | |
*CTHa | SAZ?1 | IPC?15 | 10 | [ | |
IPC?16 | 12×8 | [ | |||
Alkaline?assisted | *CTH | CIT?13 | ECNU?21 (EWO) | 10 | [ |
ECNU?23 | 12×8 | [ | |||
Microwave?assisted | IWW | Ge?IWW2.9 | IPC?5M | (12?8)×10+(12?8)×8 | [ |
UTL | IM?12 | IPC?6Mwb | 10×8+12×10 | [ | |
Pressure?assisted | UTL | IM?12 | IPC?2 | 12×10 | [ |
Vapor?phase?transport(VPT) | IWW | Ge?IWW3.7 | IPC?18 | (12?8)×8 | [ |
Table 2 Synthesis of novel zeolites by performing ADOR strategy over germanosilicates
Method | Code | Parent zeolite | Novel zeolite | Pore structure | Ref. |
---|---|---|---|---|---|
Acid?assisted | UTL | IM?12 | IPC?2 (OKO) | 12×10 | [ |
IPC?4 (PCR) | 10×8 | [ | |||
IPC?6 (*PCS) | 10×8+12×10 | [ | |||
IPC?7 | 12×10+14×12 | [ | |||
IPC?9 | 10×7 | [ | |||
IPC?10 | 12×9 | [ | |||
UOV | IM?17 | IPC?12 | 12?8(1D) | [ | |
*CTHa | SAZ?1 | IPC?15 | 10 | [ | |
IPC?16 | 12×8 | [ | |||
Alkaline?assisted | *CTH | CIT?13 | ECNU?21 (EWO) | 10 | [ |
ECNU?23 | 12×8 | [ | |||
Microwave?assisted | IWW | Ge?IWW2.9 | IPC?5M | (12?8)×10+(12?8)×8 | [ |
UTL | IM?12 | IPC?6Mwb | 10×8+12×10 | [ | |
Pressure?assisted | UTL | IM?12 | IPC?2 | 12×10 | [ |
Vapor?phase?transport(VPT) | IWW | Ge?IWW3.7 | IPC?18 | (12?8)×8 | [ |
Fig.6 Structural transformation from germanosilicate CIT?13 into high?silica daughter zeolites ECNU?21 and ECNU?23 in ammonia solutions with different concentrations[54]Copyright 2020, Wiley.
1 | Treacy M. M. J., Rivin I., Balkovsky E., Randall K. H., Foster M. D., Micropor. Mesopor. Mater., 2004, 74(1―3), 121—132 |
2 | Pophale R., Cheeseman P. A., Deem M. W., Phys. Chem. Chem. Phys., 2011, 13(27), 12407—12412 |
3 | Corma A., Fornés V., Díaz U., Chem. Commun., 2001, (24), 2642—2643 |
4 | Wei X., Smirniotis P. G., Micropor. Mesopor. Mater., 2006, 89(1―3), 170—178 |
5 | Xiao F. S., Wu Q., Zhu L., Chu Y., Liu X., Zhang C., Zhang J., Xu H., Xu J., Deng F., Feng Z., Meng X., Angew. Chem., 2019, 131(35), 12266—12270 |
6 | Corma A., Fornés V., Martı́nez⁃Triguero J., Pergher S. B., J. Catal., 1999, 186(1), 57—63 |
7 | Ren L., Guo Q., Kumar P., Orazov M., Xu D., Alhassan S. M., Mkhoyan K. A., Davis M. E., Tsapatsis M., Angew. Chem. Int. Ed., 2015, 127(37), 10848—10851 |
8 | Wang J., Xu L., Zhang K., Peng H., Wu H., Jiang J. G., Liu Y., Wu P., J. Catal., 2012, 288, 16—23 |
9 | Corma A., Fornes V., Pergher S. B., Maesen T. L. M., Buglass J. G., Nature, 1998, 396(6709), 353—356 |
10 | Kasneryk V. I., Shamzhy M. V., Opanasenko M. V., Čejka J., J. Energy Chem., 2016, 25(2), 318—326 |
11 | Dijkmans J., Dusselier M., Janssens W., Trekels M., Vantomme A., Breynaert E., Kirschhock C., Sels B. F., ACS Catal., 2016, 6(1), 31—46 |
12 | Li Y., Yu J., Xu R., Angew. Chem. Int. Ed., 2013, 52(6), 1673—1677 |
13 | Wu Q. M., Qang Y. Q., Meng X. J., Xiao F. S., Chem. J. Chinese Universities, 2021, 42(1), 21—28(吴勤明, 王叶青, 孟祥举, 肖丰收, 高等学校化学学报, 2021, 42(1), 21—28) |
14 | Jiang J., Jordá J. L., Díaz⁃Casbañas M. J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 122(29), 5106—5108 |
15 | Corma A., Díaz⁃Casbañas M. J., Jiang J., Afeworki M., Dorset D. L., Soled S. L., Strohmaier K. G., Proc. Natl. Acad. Sci. USA, 2010, 107(32), 13997—14002 |
16 | Corma A., Díaz⁃Casbañas M. J., Jordá J. L., Martínez C., Moliner M., Nature, 2006, 443, 842—845 |
17 | Corma A., Díaz⁃Casbañas M. J., Rey F., Nicolopoulus S., Boulahya K., Chem. Commun., 2004, 10(12), 1356—1357 |
18 | Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science, 2004, 304(5673), 990—992 |
19 | Jiang J. X., Jordá J. L., Yu J. H., Baumes L. A., Mugnaioli E., Díaz⁃Casbañas M. J., Kolb U., Corma A., Science, 2011, 333(6046), 1131—1134 |
20 | Blasco T., Corma A., Díaz⁃Casbañas M. J., Rey F., Vidal⁃Moya J. A., Zicovich⁃Wilson C. M., J. Phys. Chem. B, 2002, 106(10), 2634—2642 |
21 | Conradsson T., Dadachov M. S., Zou X. D., Micropor. Mesopor. Mater., 2000, 41(1―3), 183—191 |
22 | Cantín Á., Corma A., Díaz‐Cabañas M., Jordá J., Moliner M., Rey F., Angew. Chem., 2006, 118(47), 8181—8183 |
23 | Corma A., Rey F., Rius J., Sabater M. J., Valencia S., Nature, 2004, 431, 287—290 |
24 | Jordá J. L., Cantín A., Corma A., Díaz⁃Casbañas M. J., Leiva S., Moliner M., Rey F., Sabater M. J., Valencia S., Z. Kristallogr. Suppl., 2007, 26(2007), 393—398 |
25 | Odoh S. O., Deem M. W., Gagliardi L., J. Phys. Chem. C, 2014, 118(46), 26939—26946 |
26 | Corma A., Díaz⁃Casbañas M. J., García H., Palomares E., Chem. Commun., 2001, (20), 2148—2149 |
27 | Pulido A., Sastre G., Corma A., ChemPhysChem, 2006, 7(5), 1092—1099 |
28 | Jiang J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 49(18), 3120—3145 |
29 | Harris K. D. M., Thomas S. J. M., ChemCatChem, 2009, 1(2), 223—231 |
30 | Zwijnenburg M. A., Bromley S. T., Jansen J. C., Maschmeyer T., Micropor. Mesopor. Mater., 2004, 73(3), 171—174 |
31 | Ogo S., Okuno Y., Sekine H., Manabe S., Yabe T., Onda A., Sekine Y., Chemistry. Select., 2017, 2(22), 6201—6205 |
32 | Zhu Z., Xu H., Jiang J., Wu P., J. Phys. Chem. C, 2016, 120(41), 23613—23624 |
33 | Wu P., Komatsu T., Yashima T., J. Phys. Chem., 1996, 100(24), 10316—10322 |
34 | Chen C. Y., Zones S. I., Stud. Surf. Sci. Catal., 2001, 135, 211—218 |
35 | Gao F., Jaber M., Bozhilov K., Vicente A., Fernandez C., Valtchev V., J. Am. Chem. Soc., 2009, 131(45), 16580—16586 |
36 | El⁃Roz M., Lakiss L., Vicente A., Bozhilov K. N., Thibault⁃Starzyk F., Valtchev V., Chem. Sci., 2014, 5(1), 68—80 |
37 | Xu H., Jiang J. G., Yang B., Zhang L., He M., Wu P., Angew. Chem. Int. Ed., 2014, 53(5), 1355—1359 |
38 | Burel L., Kasian N., Tuel A., Angew. Chem. Int. Ed., 2014, 53(5), 1360—1363 |
39 | Shi D., Xu L., Chen P., Ma T., Lin C., Wang X., Xu D., Sun J., Chem. Commun., 2019, 55(10), 1390—1393 |
40 | Peng M., Jiang J., Liu X., Ma Y., Jiao M., Xu H., Wu H., He M., Wu P., Chem. Eur. J., 2018, 24(50), 13297—13305 |
41 | Groen J. C., Sano T., Moulijn J. A., Pérez⁃Ramírez J., Catal. Today, 2007, 251(1), 21—27 |
42 | Scherzer J., Bass J. L., Catal. Today, 1973, 28(1), 101—115 |
43 | Roth W. D., Nachtigall P., Morris R. E., Čejka J., Chem. Rev., 2014, 114(9), 4807—4837 |
44 | Roth W. J., Gil B., Makowski W., Marszalek B., Eliášová P., Chem. Soc. Rev., 2016, 45(12), 3400—3438 |
45 | Roth W. J., Shvets O. V., Shamzhy M., Chlubná P., Kubů M., Nachtigall P., Čejka J., J. Am. Chem. Soc., 2011, 133(16), 6130—6133 |
46 | Opanasenko M., Parker Wallace O’Neil, Shamzhy M., Montanari E., Bellettato M., Mazur M., Millini R., Čejka J., J. Am. Chem. Soc., 2014, 136(6), 2511—2519 |
47 | Eliášová P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Čejka J., Chem. Soc. Rev., 2015, 44(20), 7177—7206 |
48 | Wheatley P. S., Chlubná⁃Eliášová P., Greer H., Zhou W., Seymour V. R., Dawson D. M., Ashbrook S. E., Pinar A. B., McCusker L. B., Opanasenko M., Čejka J., Morris R. E., Angew. Chem. Int. Ed., 2014, 53(48), 13210—13214 |
49 | Mazur M., Wheatley P. S., Navarro M., Roth W. J., Položij M., Mayoral A., Eliášová P., Nachtigall P., Čejka J., Morris R. E., Nature Chem., 2016, 8, 58—62 |
50 | Kasneryk V., Shamzhy M., Opanasenko M., Wheatley P. S., Morris S. A., Russell S. E., Mayoral A., Trachta M., Čejka J., Morris R. E., Angew. Chem. Int. Ed., 2017, 56(15), 4324—4327 |
51 | Firth D. S., Morris S. A., Wheatley P. S., Russell S. E., Slawin A. M. Z., Dawson D. M., Mayoral A., Opanasenko M., Položij M., Čejka J., Nachtigall P., Morris R. E., Chem. Mater., 2017, 29(13), 5605—5611 |
52 | Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E., Chlubná P., Grajciar L., Položij M., Zukal A., Shvets O., Čejka J., Nature Chem., 2013, 5, 628—633 |
53 | Liu X., Mao W., Jiang J., Lu X., Peng M., Xu H., Han L., Che S. A., Wu P., Chem. Eur. J., 2019, 25(17), 1—11 |
54 | Liu X., Luo Y., Mao W., Jiang J., Xu H., Han L., Sun J., Wu P., Angew. Chem., 2020, 132(3), 1182—1186 |
55 | Navarro M., Morris S. A., Mayoral Á., Čejka J., Morris R. E., J. Mater. Chem. A, 2017, 5(17), 8037—8043 |
56 | Mazur M., Arévalo⁃López A. M., Wheatley P. S., Bignami G. P. M., Ashbrook S. E., Morales⁃García Á., Nachtigall P., Attfield J. P., Čejka J., Morris R. E., J. Mater. Chem. A, 2018, 6(13), 5255—5259 |
57 | Kasneryk V., Shamzhy M., Zhou J., Yue Q., Mazur M., Mayoral A., Luo Z., Morris R. E., Čejka J., Opanasenko M., Nature Commun., 2019, 10(1), 5129 |
58 | Jordá J. L., Rey F., Sastre G., Valencia S., Palomino M., Corma A., Segura A., Errandonea D., Lacomba R., Manjón F. J., Gomis Ó., Kleppe A. K., Jephcoat A. P., Amboage M., Rodríguez‐Velamazán J. A., Angew. Chem. Int. Ed., 2013, 52(40), 10458—10462 |
59 | Liu X., Zhang L., Xu H., Jiang J., Peng M., Wu P., Appl. Catal. A: Gen., 2018, 550, 11—19 |
60 | Henkelis S. E., Mazur M., Rice C. M., Bignami G. P. M., Wheatley P. S., Ashbrook S. E., Čejka J., Morris R. E., Nature, 2019, 14, 781—794 |
61 | Henkelis S. E., Mazur M., Rice C. M., Wheatley P. S., Ashbrook S. E., Morris R. E., J. Am. Chem. Soc., 2019, 141(19), 4453—4459 |
62 | Ma Y., Xu H., Liu X., Peng M., Mao W., Han L., Jiang J., Wu P., Chem. Commun., 2019, 55(13), 1883—1886 |
63 | Trachta M., Nachtigall P., Bludský O., Catal. Today, 2015, 243, 32—38 |
64 | Trachta M., Bludský O., Čejka J., Morris R. E., Nachtigall P., ChemPhysChem, 2014, 15(14), 2972—2976 |
65 | Schoemaker D. P., Robson H. E., Broussard L., Third International Conf. Molecular Sieves, Proc., 1973, 138—143 |
66 | Gramlich⁃Meier R., Meier W. M., Smith B. K., Z. Krist⁃Cryst. Mater., 1984, 169(1―4), 201—210 |
67 | Verheyen E., Joos L., Havenbergh K. V., Breynaert E., Kasian N., Gobechiya E., Houthoofd K., Martineau C., Hinterstein M., Taulelle F., Speybroeck V. V., Waroquier M., Bals S., Tendeloo G. V., Kirschhock C. E. A., Martens J. A., Nature Mater., 2012, 11(12), 1059—1064 |
68 | Speybroeck V. V., Hemelsoet K., Joos L., Waroquier M., Bellb R. G., Catlow C. R. A., Chem. Soc. Rev., 2015, 44(20), 7044—7111 |
69 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater., 2019, 31(23), 9777—9787 |
70 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater., 2020, 32(5), 2014—2024 |
71 | Hong X., Chen W., Zhang G., Wu Q., Lei C., Zhu Q., Meng X., Han S., Zheng A., Ma Y., Parvulescu A. N., Müller U., Zhang W., Yokoi T., Bao X., Marler B., De Vos D. E., Kolb U., Xiao F. S., J. Am. Chem. Soc., 2019, 141(45), 18318—18324 |
72 | Lei C., Dong Z., Martínez C., Martínez‐Triguero J., Chen W., Wu Q., Meng X., Parvulescu A. N., de Baerdemaeker T., Müller U., Zheng A., Ma Y., Zhang W., Yokoi T., Marler B., de Vos D. E., Kolb U., Corma A., Xiao F. S., Angew. Chem., 2020, 132(36), 15779—15785 |
73 | Přech J., Čejka J., Catal. Today, 2016, 277, 2—8 |
74 | Liu X., Xu H., Zhang L., Han L., Jiang J., Oleynikov P., Chen L., Wu P., ACS Catal., 2016, 6(12), 8420—8431 |
75 | Verheyen E., Sree S. P., Thomas K., Dendooven J., Prins M. D., Vanbutsele G., Breynaert E., Gilson J. P., Kirschhock C. E. A., Detavernier C., Martens J. A., Chem. Commun., 2014, 50(35), 4610—4612 |
76 | Zhu J., Zhu Y., Zhu L., Rigutto M., van der Made A., Yang C., Pan S., Wang L., Zhu L., Jin Y., Sun Q., Wu Q., Meng X., Zhang D., Han Y., Li J., Chu Y., Zheng A., Qiu S., Zheng X., Xiao F. S., J. Am. Chem. Soc., 2014, 136(6), 2503—2510 |
[1] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[2] | 杨静怡, 施思齐, 彭怀涛, 杨其浩, 陈亮. Ga-C3N4单原子催化剂高效光驱动CO2环加成[J]. 高等学校化学学报, 2022, 43(9): 20220349. |
[3] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[4] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[5] | 唐全骏, 刘颖馨, 孟蓉炜, 张若天, 凌国维, 张辰. 单原子催化在海洋能源领域的应用[J]. 高等学校化学学报, 2022, 43(9): 20220324. |
[6] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[7] | 杨静怡, 李庆贺, 乔波涛. 铱单原子和纳米粒子在N2O分解反应中的协同催化[J]. 高等学校化学学报, 2022, 43(9): 20220388. |
[8] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[9] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[10] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[11] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[12] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[13] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[14] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[15] | 程前, 杨博龙, 吴文依, 向中华. S掺杂Fe-N-C高活性氧还原反应催化剂[J]. 高等学校化学学报, 2022, 43(9): 20220341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||