高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (5): 20220770.doi: 10.7503/cjcu20220770
李轩2, 亓帅1, 周伟良1, 李小杰1, 景玲胭1, 冯超1, 蒋兴星1, 杨恒攀1, 胡琪1(), 何传新1(
)
收稿日期:
2022-12-21
出版日期:
2023-05-10
发布日期:
2023-02-27
通讯作者:
胡琪,何传新
E-mail:hq2016@szu.edu.cn;hecx@szu.edu.cn
基金资助:
LI Xuan2, QI Shuai1, ZHOU Weiliang1, LI Xiaojie1, JING Lingyan1, FENG Chao1, JIANG Xingxing1, YANG Hengpan1, HU Qi1(), HE Chuanxin1(
)
Received:
2022-12-21
Online:
2023-05-10
Published:
2023-02-27
Contact:
HU Qi, HE Chuanxin
E-mail:hq2016@szu.edu.cn;hecx@szu.edu.cn
Supported by:
摘要:
化石燃料的过度使用带来了严峻的环境污染问题, 积极探索开发绿色可持续的能源转换和存储技术是目前研究的重要方向. 以氢燃料和空气为动力的质子交换膜燃料电池和金属空气电池在众多能源技术中脱颖而出. 但其工作过程中涉及的氧还原反应(ORR)严重制约了清洁能源技术的广泛使用. 纤维结构催化材料具有其比表面积高、 几何结构可调及制备简单便捷等优势, 在氧还原领域备受关注. 本文综合评述了纤维结构催化材料金属活性中心的可控调节, 介绍了纤维结构电催化材料在氧还原反应电催化方面的最新进展, 揭示了纤维结构氧还原催化剂在电催化ORR反应中的构效关系, 讨论了纤维结构电催化材料在ORR电催化中面临的挑战和机遇.
中图分类号:
TrendMD:
李轩, 亓帅, 周伟良, 李小杰, 景玲胭, 冯超, 蒋兴星, 杨恒攀, 胡琪, 何传新. 纤维基氧化还原电催化剂的研究进展. 高等学校化学学报, 2023, 44(5): 20220770.
LI Xuan, QI Shuai, ZHOU Weiliang, LI Xiaojie, JING Lingyan, FENG Chao, JIANG Xingxing, YANG Hengpan, HU Qi, HE Chuanxin. Advances in Nanofiber-based Electrocatalysts for Oxygen Reduction Reaction. Chem. J. Chinese Universities, 2023, 44(5): 20220770.
Fig.1 Schematic illustration of Zn⁃air battery(ZAB)(A)[7] and schematic illustration of PEMFC(B)[8](A) Copyright 2022, the authors; (B) Copyright 2018, American Chemical Society.
Fig.2 Catalyst development strategies(A) and ORR volcano plot for metals(B)[25]Copyright 2017, the American Association for the Advancement of Science.
Type | Catalyst | Characteristics |
---|---|---|
Metal nanoparticles encapsulated carbon nanofiber hybrids | Single metal nanoparticles encapsulatedcarbon nanofibers hybrids | Only one metal species in hybrids, and the metal exist as nanoparticles |
Multi⁃metal nanoparticles encapsulated carbon nanofibers hybrids | The number of metal species is more than two, and the metal species exist as nanoparticles | |
Metal single atoms encapsulated carbon nanofiber hybrids | Single metal atoms encapsulated carbonnanofiber hybrids | Only one metal species in hybrid system, and the coordination of metal atom is adjustable |
Dual⁃metal atoms encapsulated carbon nanofiber hybrids | The number of metal species is more than two, and the configuration of metal species is metal single atoms | |
Metal cluster encapsulated nanofiber hybrids | Metal species size is less than 1 nm | |
Heteroatom⁃doped carbon nanofiber hybrids | In hybrid system, no metal is included. The active sites are nonmetal elements, including N, O, P, F, S and Se. |
Table 1 Classification of nanofiber-based electrocatalysts toward ORR
Type | Catalyst | Characteristics |
---|---|---|
Metal nanoparticles encapsulated carbon nanofiber hybrids | Single metal nanoparticles encapsulatedcarbon nanofibers hybrids | Only one metal species in hybrids, and the metal exist as nanoparticles |
Multi⁃metal nanoparticles encapsulated carbon nanofibers hybrids | The number of metal species is more than two, and the metal species exist as nanoparticles | |
Metal single atoms encapsulated carbon nanofiber hybrids | Single metal atoms encapsulated carbonnanofiber hybrids | Only one metal species in hybrid system, and the coordination of metal atom is adjustable |
Dual⁃metal atoms encapsulated carbon nanofiber hybrids | The number of metal species is more than two, and the configuration of metal species is metal single atoms | |
Metal cluster encapsulated nanofiber hybrids | Metal species size is less than 1 nm | |
Heteroatom⁃doped carbon nanofiber hybrids | In hybrid system, no metal is included. The active sites are nonmetal elements, including N, O, P, F, S and Se. |
Fig.4 Geometry of a 2.6 nm particle showing the (111) and (100) facets and the coordination numbers of atoms comprising these facets and edges(A) and size dependence of specific activity(blue diamond) and mass activity(red square) of Pt/C for oxygen reduction reaction at 0.93 V(B)[64]Copyright 2011, American Chemical Society.
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Thorny Ag NFs | 0.1 mol/L KOH | 1.041 | 0.848 | 3.91 | [ |
CNT/Ag1/CNF | 0.1 mol/L KOH | 0.874 | 0.724 | 3.87 | [ |
PAN/Ga⁃75 nanofibers | 0.1 mol/L KOH | 0.84 | 0.71 | 3.1 | [ |
Ni/CNF⁃750 | 0.1 mol/L KOH | 0.93 | 0.72 | 3.7 | [ |
Pt/CNT | 0.1 mol/L KOH | 0.958 | 0.885 | — | [ |
Pd/PNCNF | 0.1 mol/L KOH | 0.92 | — | 3.55 | [ |
Co⁃NGT | 0.1 mol/L KOH | 0.964 | 0.837 | 3.9 | [ |
Co⁃N⁃C/CNF | 0.1 mol/L KOH | — | 0.859 | 3.6 | [ |
CoO x ⁃CoP/N⁃CNTs | 0.1 mol/L KOH | 0.96 | 0.81 | 3.9 | [ |
CoO x @CoN y /NCNF | 0.1 mol/L KOH | — | 0.78 | 3.84 | [ |
Co3O4-x bubbles nanofiber | 0.1 mol/L KOH | — | 0.81 | 3.9 | [ |
Fe⁃Fe3C/Fe3N@NCNFs | 0.1 mol/LKOH | 0.998 | 0.85 | 3.8 | [ |
Fe⁃N⁃CNP⁃CNF | 0.1 mol/L KOH | 0.86 | 0.77 | 3.65 | [ |
Table 2 Overview of previously reported metal catalysts and their performance toward ORR
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Thorny Ag NFs | 0.1 mol/L KOH | 1.041 | 0.848 | 3.91 | [ |
CNT/Ag1/CNF | 0.1 mol/L KOH | 0.874 | 0.724 | 3.87 | [ |
PAN/Ga⁃75 nanofibers | 0.1 mol/L KOH | 0.84 | 0.71 | 3.1 | [ |
Ni/CNF⁃750 | 0.1 mol/L KOH | 0.93 | 0.72 | 3.7 | [ |
Pt/CNT | 0.1 mol/L KOH | 0.958 | 0.885 | — | [ |
Pd/PNCNF | 0.1 mol/L KOH | 0.92 | — | 3.55 | [ |
Co⁃NGT | 0.1 mol/L KOH | 0.964 | 0.837 | 3.9 | [ |
Co⁃N⁃C/CNF | 0.1 mol/L KOH | — | 0.859 | 3.6 | [ |
CoO x ⁃CoP/N⁃CNTs | 0.1 mol/L KOH | 0.96 | 0.81 | 3.9 | [ |
CoO x @CoN y /NCNF | 0.1 mol/L KOH | — | 0.78 | 3.84 | [ |
Co3O4-x bubbles nanofiber | 0.1 mol/L KOH | — | 0.81 | 3.9 | [ |
Fe⁃Fe3C/Fe3N@NCNFs | 0.1 mol/LKOH | 0.998 | 0.85 | 3.8 | [ |
Fe⁃N⁃CNP⁃CNF | 0.1 mol/L KOH | 0.86 | 0.77 | 3.65 | [ |
Fig.5 Activity of ORR catalysts in PEMF(A—F) and molecular dynamics(MD) simulations for surface energy and specific energy(G—K)[102](A) The fuel cell polarization and powder density curves of Pt-Ni UHT, Pt-Co UHT, and Pt/C(60%) under 250 kPa H2-O2; (B)the fuel cell polarization and powder density curves of Pt-Ni UHT, Pt-Co UHT, and Pt/C(60%) under 100 kPa H2-O2; (C) catalytic mass activity at 0.9 V(vs. RHE) at different pressures; (D) ECSAs of the catalyst at 100 kPa pressures; (E) the retention of MA (solid lines) and ECSA (dashed lines) for catalyst through ADT-1; (F) the retention of MA(solid lines) and ECSA(dashed lines) for catalyst through ADT-2; (G) the model of Pt nanoparticles for theoretical calculation of exposed geometry surface area; (H) model of Pt nanotube for theoretical calculation of exposed geometry surface area; (I) calculated surface energy of the initial and final states of Pt nanoparticles; (J)calculated surface energy of the initial and final states of Pt nanotube; (K) comparison of Pt-Ni UHT, Pt-Co UHT, Pt/C, and other catalysts based on mass activity and dual durability in H2-O2 PEMFCs. Copyright 2022, American Chemical Society.
Fig.6 Model and density functional theory simulation of nonnoble metal⁃embedding and nitrogen⁃containing carbon nanofiber(A—C)[106] and free energy pathways of CoNi⁃C/N for ORR(D)[107](A—C) Copyright 2019, American Chemical Society; (D) Copyright 2021, Science China Press and Springer-Verlag GmbH Germany.
Fig.7 The models of stable adsorption configuration of OER/ORR intermediate(OOH*, O*, and OH*) on CoN4/C and Co cluster|CoN4/C(A), free energy diagram of two models at U=0 V and U=1.23 V(B), ORR on CoN4/C(C) and OER on CoN4/C(D)[136]Copyright 2019, Wiley‐VCH Verlag GmbH & Co. KGaA.
Fig.8 TEM, XAS characterizations and DFT calculations of the ORR activity and selectivity for M⁃CNT catalysts[140](A) High resolution TEM image of Fe-CNT, Pd-CNT, Co-CNT, and Mn-CNT; (B) aberration-corrected HAADF-STEM images of Fe-CNT, Pd-CNT, Co-CNT and Mn-CNT; (C) corresponding Fourier transformed EXAFS spectra of Fe-CNT, Pd-CNT, Co-CNT, and Mn-CNT are plotted in R space at the bottom panel in comparison to their bulk metal foil and metal oxide control samples; (D) all examined configurations for single Fe atom coordinated in two dimensio⁃nal carbon material with and without O species, Green, red, and gray colors denote Fe, O(or N), and C atoms, respectively; (E) the calculated ORR activity volcano plot for 2e- pathway to H2O2.
Fig.9 Magnified HAADF⁃STEM images of the (Fe,Co)/CNT(A) and EEL spectrum of the red rectangle in (A, B), Fe K⁃edge XANES spectra of the (Fe,Co)/CNT(C), Fourier transformed (FT) k3⁃weighted χ(k)⁃function of the EXAFS spectra for the Fe K⁃edge of the (Fe,Co)/CNT(D), the corresponding Fe K⁃edge EXAFS fitting curves of the (Fe,Co)/CNT(E) and proposed architecture of Fe⁃Co dual sites(F)[149]Copyright 2018, the authors.
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Co⁃N/CNFs | 0.1 mol/L HClO4 | 0.82 | 0.78 | 3.4 | [ |
Co@MCM | 0.1 mol/L KOH | 0.95 | 0.86 | 3.7 | [ |
FeSA/B, N⁃CNT | 0.1 mol/L KOH | — | 0.933 | 3.95 | [ |
S, N⁃Fe/N/C⁃CNT | 0.1 mol/L KOH | — | 0.85 | 4.0 | [ |
CNT/PC | 0.1 mol/L KOH | — | 0.88 | 4.0 | [ |
Fe⁃N⁃CNTAs⁃5⁃900 | 0.1 mol/L KOH | 0.97 | 0.88 | ca. 4.0 | [ |
p⁃Fe⁃N⁃CNF | 0.1 mol/L HClO4 | 0.85 | 0.74 | 3.2 | [ |
Co SA@NCF/CNF | 0.1 mol/L KOH | — | 0.88 | ca.4.0 | [ |
Fe⁃N/CNT⁃2 | 0.1 mol/L KOH | 0.96 | 0.938 | 3.98 | [ |
Fe/N⁃CNRs | 0.1 mol/L KOH | 1.10 | 0.90 | ca.4.0 | [ |
p⁃FePc/CNTs | 0.1 mol/L KOH | — | 0.88 | 3.9 | [ |
SAFe⁃SWCNT | 0.1 mol/L KOH | — | 0.93 | ca.4.0 | [ |
f⁃FeCo⁃CNT | 0.1 mol/L KOH | 0.96 | 0.87 | ca.4.0 | [ |
Fe⁃N⁃C⁃900 | 0.1 mol/L KOH | 1.006 | 0.9 | ca.4.0 | [ |
Co3Fe7@Co/Fe⁃SAC | 0.1 mol/L KOH | — | 0.841 | 3.8 | [ |
Fe, Co SAs⁃PNCF | 0.1 mol/L KOH | 1.04 | 0.93 | 4.01 | [ |
Pt1Co100/N⁃GCNT | 0.1 mol/L HClO4 | — | 0.85 | ca.4.0 | [ |
(Fe,Co)/CNT | 0.1 mol/L KOH | 1.15 | 0.954 | ca.4.0 | [ |
Pt3Co@Pt⁃SAC | 0.1 mol/L HClO4 | 0.86 | 0.943 | 3.98 | [ |
Table 3 Overview of previously reported metal single atom-based catalysts and their performance toward ORR
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Co⁃N/CNFs | 0.1 mol/L HClO4 | 0.82 | 0.78 | 3.4 | [ |
Co@MCM | 0.1 mol/L KOH | 0.95 | 0.86 | 3.7 | [ |
FeSA/B, N⁃CNT | 0.1 mol/L KOH | — | 0.933 | 3.95 | [ |
S, N⁃Fe/N/C⁃CNT | 0.1 mol/L KOH | — | 0.85 | 4.0 | [ |
CNT/PC | 0.1 mol/L KOH | — | 0.88 | 4.0 | [ |
Fe⁃N⁃CNTAs⁃5⁃900 | 0.1 mol/L KOH | 0.97 | 0.88 | ca. 4.0 | [ |
p⁃Fe⁃N⁃CNF | 0.1 mol/L HClO4 | 0.85 | 0.74 | 3.2 | [ |
Co SA@NCF/CNF | 0.1 mol/L KOH | — | 0.88 | ca.4.0 | [ |
Fe⁃N/CNT⁃2 | 0.1 mol/L KOH | 0.96 | 0.938 | 3.98 | [ |
Fe/N⁃CNRs | 0.1 mol/L KOH | 1.10 | 0.90 | ca.4.0 | [ |
p⁃FePc/CNTs | 0.1 mol/L KOH | — | 0.88 | 3.9 | [ |
SAFe⁃SWCNT | 0.1 mol/L KOH | — | 0.93 | ca.4.0 | [ |
f⁃FeCo⁃CNT | 0.1 mol/L KOH | 0.96 | 0.87 | ca.4.0 | [ |
Fe⁃N⁃C⁃900 | 0.1 mol/L KOH | 1.006 | 0.9 | ca.4.0 | [ |
Co3Fe7@Co/Fe⁃SAC | 0.1 mol/L KOH | — | 0.841 | 3.8 | [ |
Fe, Co SAs⁃PNCF | 0.1 mol/L KOH | 1.04 | 0.93 | 4.01 | [ |
Pt1Co100/N⁃GCNT | 0.1 mol/L HClO4 | — | 0.85 | ca.4.0 | [ |
(Fe,Co)/CNT | 0.1 mol/L KOH | 1.15 | 0.954 | ca.4.0 | [ |
Pt3Co@Pt⁃SAC | 0.1 mol/L HClO4 | 0.86 | 0.943 | 3.98 | [ |
Fig.10 Illustration of the three types of nitrogen in heteroatom⁃doped carbon material(A)[168], electrochemical test of honeycomb carbon nanofibers(HCNFs) toward ORR and 3⁃in⁃1 effect of HCNFs promoting O2⁃to⁃H2O2 conversion(B)[177] and schematic illustration of N, F⁃MCFs ORR catalysts(C)[185](A) Copyright 2011, American Chemical Society; (B) Copyright 2021, the authors; (C) Copyright 2019, the authors.
Fig.11 Preparation route to of N, F, B co⁃doped nanofiber⁃based catalysts(A), architecture of N, F, B co⁃doped nanofiber(B), C1s XPS survey(C), N1s XPS survey(D), B1s XPS survey(E), F1s XPS survey(F), LSV curves of ND⁃CFs, TD⁃CFs, and commercial Pt/C in an O2⁃saturated 0.1 mol/L KOH solution at 1600 r/min(G), charge/discharge polarization curves of Zn⁃air batteries using TD⁃CFs, Pt/C+RuO2 and Vulcan XC⁃72 catalyst for air electrodes(H)[188]Copyright 2018, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.
101 | Yoon K. R., Hwang C. K., Kim S. H., Jung J. W., Chae J. E., Kim J., Lee K. A., Lim A., Cho S. H., Singh J. P., Kim J. M., Shin K., Moon B. M., Park H. S., Kim H. J., Chae K. H., Ham H. C., Kim I. D., Kim J. Y., ACS Nano, 2021, 15, 11218—11230 |
102 | Liu J., Liu S., Yan F., Wen Z., Chen W., Liu X., Liu Q., Shang J., Yu R., Su D., Shui J., J. Am. Chem. Soc., 2022, 144(41), 19106—19114 |
103 | Deng C., Tan J., Toe C.Y., Li X., Li G., Jiang X., Wei S., Yang H., Hu Q., He C., J. Mater. Chem. A, 2022, 10(33), 17217—17224 |
104 | Wang S., Wang J., Wang X., Li L., Qin J., Cao M., J. Energy Chem., 2021, 53, 422—432 |
105 | Chen J., Li L., Yang L., Chen C., Wang S., Huang Y., Cao D., Chin. J. Chem. Eng., 2022, 43, 161—168 |
106 | Ha Y., Kang S., Ham K., Lee J., Kim H., J. Phys. Chem. Lett., 2019, 10(11), 3109—3114 |
107 | Wang Y., Tong M., Wang L., Liu X., Tian C., Fu H., Sci. China Mater., 2021, 64(11), 2719—2728 |
108 | Lin S. Y., Xia L. X., Zhang L., Feng J. J., Zhao Y., Wang A. J., Chem. Eng. J., 2021, 424, 130559 |
109 | Wang X., Li Y., Jin T., Meng J., Jiao L., Zhu M., Chen J., Nano Lett., 2017, 17(12), 7989—7994 |
110 | Bian Y., Wang H., Gao Z., Hu J., Liu D., Dai L., Nanoscale, 2020, 12(27), 14615—14625 |
111 | Sarabaegi M., Roushani M., Hosseini H., Abbasi S., Surf. Interfaces, 2021, 25, 101207 |
112 | Shi X., He B., Zhao L., Gong Y., Wang R., Wang H., J. Power Sources, 2021, 482, 228955 |
113 | Zhang X., Wang Z., Wang K., Xie K., Wu L., Diam. Relat. Mater., 2021, 119, 108566 |
114 | Hu D., Wang R., Du P., Li G., Wang Y., Fan D., Pan X., Ceram. Int., 2022, 48(5), 6549—6555 |
115 | Ren Y., Wang H., Zhang T., Ma L., Ye P., Zhong Y., Hu Y., Chin. Chem. Lett., 2021, 32(7), 2243—2248 |
116 | Wang Z., Ang J., Zhang B., Zhang Y., Ma X.Y.D., Yan T., Liu J., Che B., Huang Y., Lu X., Appl. Catal. B: Environ., 2019, 254, 26—36 |
117 | Kazakova M. A., Morales D. M., Andronescu C., Elumeeva K., Selyutin A. G., Ishchenko A.V., Golubtsov G. V., Dieckhöfer S., Schuhmann W., Masa J., Catal. Today, 2020, 357, 259—268 |
118 | Tang X., Cao R., Li L., Huang B., Zhai W., Yuan K., Chen Y., J. Mater. Chem. A, 2020, 8(48), 25919—25930 |
119 | Chae S. H., Muthurasu A., Kim T., Kim J. S., Khil M. S., Lee M., Kim H., Lee J. Y., Kim H. Y., Appl. Catal. B: Environ., 2021, 293, 120209 |
120 | Chen D., Li G., Chen X., Zhang Q., Sui J., Li C., Zhang Y., Hu J., Yu J., Yu L., Dong L., J. Colloid Interf. Sci., 2021, 593, 204—213 |
121 | Ye X., Han Z., Yan Q., Feng J. J., Mei L. P., Zhang L., Wang A. J., J. Power Sources, 2021, 506, 230225 |
122 | Wang Z., Cheng L., Zhang R., Lv W., Wang W., J. Alloys Compd., 2021, 857, 158249 |
123 | Sui X., Zhang L., Li J., Doyle‐Davis K., Li R., Wang Z., Sun X., Adv. Energy Mater., 2021, 12, 2102556 |
124 | Jin Z., Li P., Fang Z., Yu G., Acc. Chem. Res., 2022, 55(5), 759—769 |
125 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120(21), 11900—11955 |
126 | Zhang H., Chung H. T., Cullen D. A., Wagner S., Kramm U. I., More K. L., Zelenay P., Wu G., Energ. Environ. Sci., 2019, 12(8), 2548—2558 |
127 | Qu X., Han Y., Chen Y., Lin J., Li G., Yang J., Jiang Y., Sun S., Appl. Catal. B: Environ., 2021, 295, 120311 |
128 | Wang Y., Tao L., Chen R., Li H., Su H., Zhang N., Liu Q., Wang S., Chem. Res. Chinese Universities, 2020, 36(3), 453—458 |
129 | Li Y., Zhu X., Li L., Li F., Zhang X., Li Y., Zheng Z., Small, 2021, 18(7), 2105487 |
130 | Wang Q., Feng Q., Lei Y., Tang S., Xu L., Xiong Y., Fang G., Wang Y., Yang P., Liu J., Liu W., Xiong X., Nat. Commun., 2022, 13(1), 3689 |
131 | Shen T., Huang X., Xi S., Li W., Sun S., Hou Y., J. Energy Chem., 2022, 68, 184—194 |
132 | Zhao C. X., Li B. Q., Liu J. N., Zhang Q., Angew. Chem. Int. Ed., 2021, 60(9), 4448—4463 |
133 | Cheng Q., Yang L., Zou L., Zou Z., Chen C., Hu Z., Yang H., ACS Catalysis, 2017, 7(10), 6864—6871 |
134 | Yang L., Zhang X., Yu L., Hou J., Zhou Z., Lv R., Adv. Mater., 2022, 34(5), 2105410 |
135 | Zhang W., Chu J., Li S., Li Y., Li L., J. Energy Chem., 2020, 51, 323—332 |
136 | Ji D., Fan L., Li L., Peng S., Yu D., Song J., Ramakrishna S., Guo S., Adv. Mater., 2019, 31(16), 1808267 |
137 | Zhang H., Zhou W., Chen T., Guan B. Y., Li Z., Lou X. W., Energ. Environ. Sci., 2018, 11(8), 1980—1984 |
138 | Zhao C. X., Liu J. N., Wang J., Wang C., Guo X., Li X. Y., Chen X., Song L., Li B. Q., Zhang Q., Sci. Adv., 2022, 8(11), eabn5091 |
139 | Yang L., Yu L., Huang Z. H., Kang F., Lv R., J. Energy Chem., 2022, 75, 430—440 |
140 | Jiang K., Back S., Akey A. J., Xia C., Hu Y., Liang W., Schaak D., Stavitski E., Norskov J. K., Siahrostami S., Wang H., Nat. Commun., 2019, 10(1), 3997 |
141 | Pedersen A., Barrio J., Li A., Jervis R., Brett D. J. L., Titirici M. M., Stephens I. E. L., Adv. Energy Mater., 2021, 12, 2102715 |
142 | Li R., Wang D., Adv. Energy Mater., 2022, 12, 2103564 |
143 | Jiang M., Wang F., Yang F., He H., Yang J., Zhang W., Luo J., Zhang J., Fu C., Nano Energy, 2022, 93, 106793 |
144 | Jiang Y., Deng Y. P., Liang R., Chen N., King G., Yu A., Chen Z., J. Am. Chem. Soc., 2022, 144(11), 4783—4791 |
145 | Zhang Q., Kumar P., Zhu X., Daiyan R., Bedford N. M., Wu K. H., Han Z., Zhang T., Amal R., Lu X., Adv. Energy Mater., 2021, 11(17), 2100303 |
146 | Zhao X., Wang F., Kong X. P., Fang R., Li Y., J. Am. Chem. Soc., 2021, 143(39), 16068—16077 |
147 | Wan W., Zhao Y., Wei S., Triana C.A., Li J., Arcifa A., Allen C. S., Cao R., Patzke G. R., Nat. Commun., 2021, 12(1), 5589 |
148 | Chen J., Li H., Fan C., Meng Q., Tang Y., Qiu X., Fu G., Ma T., Adv. Mater., 2020, 32(30), e2003134 |
149 | Wang J., Liu W., Luo G., Li Z., Zhao C., Zhang H., Zhu M., Xu Q., Wang X., Zhao C., Qu Y., Yang Z., Yao T., Li Y., Lin Y., Wu Y., Li Y., Energ. Environ. Sci., 2018, 11(12), 3375—3379 |
150 | Sun H., Wang M., Du X., Jiao Y., Liu S., Qian T., Yan Y., Liu C., Liao M., Zhang Q., Meng L., Gu L., Xiong J., Yan C., J. Mater. Chem. A, 2019, 7(36), 20952—20957 |
151 | Chen P., Zhou T., Xing L., Xu K., Tong Y., Xie H., Zhang L., Yan W., Chu W., Wu C., Xie Y., Angew. Chem. Int. Ed., 2017, 56(2), 610—614 |
152 | Sa Y. J., Seo D. J., Woo J., Lim J. T., Cheon J. Y., Yang S. Y., Lee J. M., Kang D., Shin T. J., Shin H. S., Jeong H. Y., Kim C. S., Kim M. G., Kim T. Y., Joo S. H., J. Am. Chem. Soc., 2016, 138(45), 15046—15056 |
153 | Zhu C., Fu S., Song J., Shi Q., Su D., Engelhard M. H., Li X., Xiao D., Li D., Estevez L., Du D., Lin Y., Small, 2017, 13(15), 1603407 |
154 | Hu B. C., Wu Z. Y., Chu S. Q., Zhu H. W., Liang H. W., Zhang J., Yu S. H., Energ. Environ. Sci., 2018, 11(8), 2208—2215 |
155 | Xia D., Yang X., Xie L., Wei Y., Jiang W., Dou M., Li X., Li J., Gan L., Kang F., Adv. Funct. Mater., 2019, 29(49), 1906174 |
156 | Gong X., Zhu J., Li J., Gao R., Zhou Q., Zhang Z., Dou H., Zhao L., Sui X., Cai J., Zhang Y., Liu B., Hu Y., Yu A., Sun S. H., Wang Z., Chen Z., Adv. Funct. Mater., 2020, 31(8), 2008085 |
157 | Xu H., Xi S., Li J., Liu S., Lyu P., Yu W., Sun T., Qi D. C., He Q., Xiao H., Lin M., Wu J., Zhang J., Lu J., J. Mater. Chem. A, 2020, 8(34), 17683—17690 |
158 | Meng Y., Li J. C., Zhao S. Y., Shi C., Li X. Q., Zhang L., Hou P. X., Liu C., Cheng H. M., Appl. Catal. B: Environ., 2021, 294, 120239 |
159 | Wang Y., Kumar A., Ma M., Jia Y., Wang Y., Zhang Y., Zhang G., Sun X., Yan Z., Nano Res., 2020, 13(4), 1090—1099 |
160 | Ma L., Li J., Zhang Z., Yang H., Mu X., Gu X., Jin H., Chen D., Yan S., Liu S., Mu S., Nano Res., 2021, 15(3), 1966—1972 |
161 | Liu B., Wang S., Feng R., Ni Y., Song F., Liu Q., ACS Appl. Mater. Interfaces, 2022, 14(34), 38739—38749 |
162 | Cheng X., Wang Y., Lu Y., Zheng L., Sun S., Li H., Chen G., Zhang J., Appl. Catal. B: Environ., 2022, 306, 121112 |
163 | Liu B., Feng R., Busch M., Wang S., Wu H., Liu P., Gu J., Bahadoran A., Matsumura D., Tsuji T., Zhang D., Song F., Liu Q., ACS Nano, 2022, 16(9), 14121—14133 |
164 | Zhuang Z., Chen W., J. Colloid Interf. Sci., 2019, 538, 699—708 |
165 | Zheng X., Li P., Dou S., Sun W., Pan H., Wang D., Li Y., Energ. Environ. Sci., 2021, 14(5), 2809—2858 |
166 | Qi S., Wang D., Li W., Zhang R., Liu F., Zhang J., Liu Z., Guo Y., Wang F., Wen G., Nanoscale, 2019, 11(37), 17425—17435 |
167 | Zhou M., Wang H. L., Guo S., Chem. Soc. Rev., 2016, 45(5), 1273—1307 |
168 | Sheng Z. H., Shao L., Chen J. J., Bao W. J., Wang F. B., Xia X. H., ACS Nano, 2011, 5(6), 4350—4358 |
169 | Liang H. W., Wu Z. Y., Chen L. F., Li C., Yu S. H., Nano Energy, 2015, 11, 366—376 |
170 | Kaur P., Kim D. E., Verma G., Park J. S., Sekhon S. S., J. Ind. Eng. Chem., 2021, 96, 307—314 |
171 | Massaglia G., Margaria V., Sacco A., Castellino M., Chiodoni A., Pirri F. C., Quaglio M., Int. J. Hydrogen Energy, 2019, 44(9), 4442—4449 |
172 | Jindal A., Gautam D. K., Basu S., J. Electroanal. Chem., 2016, 775, 198—204 |
173 | Liu D., Zhang X., Sun Z., You T., Nanoscale, 2013, 5(20), 9528—9531 |
174 | Miao Y. E., Yan J., Ouyang Y., Lu H., Lai F., Wu Y., Liu T., Appl. Surf. Sci., 2018, 443, 266—273 |
175 | Marbaniang P., Ingavale S., Karuppanan P., Swami A., Kakade B., Int. J. Hydrogen Energy, 2021, 46(17), 10268—10280 |
176 | Gong K., Du F., Xia Z.,Durstock M., Dai L., Science, 2008, 323(5915), 760—764 |
177 | Dong K., Liang J., Wang Y., Xu Z., Liu Q., Luo Y., Li T., Li L., Shi X., Asiri A. M., Li Q., Ma D., Sun X., Angew. Chem. Int. Ed., 2021, 60(19), 10583—10587 |
178 | Yang H., Wu Y., Lin Q., Fan L., Chai X., Zhang Q., Liu J., He C., Lin Z., Angew. Chem. Int. Ed., 2018, 57(47), 15476—15480 |
179 | Zhong R. S., Qin Y. H., Niu D. F., Tian J. W., Zhang X. S., Zhou X. G., Sun S. G., Yuan W. K., J. Power Sources, 2013, 225, 192—199 |
1 | Cheng F., Chen J., Chem. Soc. Rev., 2012, 41(6), 2172—2192 |
2 | Tian X., Lu X. F., Xia B. Y., Lou X. W., Joule, 2020, 4(1), 45—68 |
3 | Snitkoff⁃Sol R. Z., Friedman A., Honig H. C., Yurko Y., Kozhushner A., Zachman M. J., Zelenay P., Bond A. M., Elbaz L., Nat. Catal., 2022, 5(2), 163—170 |
4 | Tang H., Geng K., Wu L., Liu J., Chen Z., You W., Yan F., Guiver M. D., Li N., Nat. Energy, 2022, 7, 153—162 |
5 | Tang M., Zhang S., Chen S., Chem. Soc. Rev., 2022, 51(4), 1529—1546 |
6 | Yang Y., Peltier C. R., Zeng R., Schimmenti R., Li Q., Huang X., Yan Z., Potsi G., Selhorst R., Lu X., Xu W., Tader M., Soudackov A. V., Zhang H., Krumov M., Murray E., Xu P., Hitt J., Xu L., Ko H. Y., Ernst B. G., Bundschu C., Luo A., Markovich D., Hu M., He C., Wang H., Fang J., Robert A., DiStasio J., Kourkoutis L. F., Singer A., Noonan K. J. T., Xiao L., Zhuang L., Pivovar B. S., Zelenay P., Herrero E., Feliu J. M., Suntivich J., Giannelis E. P., Hammes⁃Schiffer S., Arias T., Mavrikakis M., Mallouk T. E., Brock J. D., Muller D. A., DiSalvo F. J., Coates G. W., Abruña H. D., Chem. Rev., 2022, 122(6), 6117—6321 |
7 | Zhang T., Wu N., Zhao Y., Zhang X., Wu J., Weng J., Li S., Huo F., Huang W., Adv. Sci., 2022, 9(6), 2103954 |
8 | Gewirth A. A., Varnell J. A., DiAscro A. M., Chem. Rev., 2018, 118(5), 2313—2339 |
9 | Wu J., Yang H., Acc. Chem. Res., 2013, 46(8), 1848—1857 |
10 | Tang Z., Nie Z., Yuan M., Lai Q., Liang Y., ChemElectroChem, 2021, 8(17), 3311—3317 |
11 | Qian Z., Wang Z., Zhao N., Xu J., Macromol. Rapid Commun., 2018, 39(14), 1700724 |
12 | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., J. Mater. Chem. A, 2017, 5(3), 1211—1220 |
13 | Nie G., Zhao X., Luan Y., Jiang J., Kou Z., Wang J., Nanoscale, 2020, 12(25), 13225—13248 |
14 | Nie G., Zhang Z., Wang T., Wang C., Kou Z., ACS Appl. Mater. Interfaces, 2021, 13(32), 37961—37978 |
15 | Nonoyama N., Okazaki S., Weber A. Z., Ikogi Y., Yoshida T., J. Electrochem. Soc., 2011, 158(4), B416 |
16 | Yang J., Liu W., Xu M., Liu X., Qi H., Zhang L., Yang X., Niu S., Zhou D., Liu Y., Su Y., Li J. F., Tian Z. Q., Zhou W., Wang A., Zhang T., J. Am. Chem. Soc., 2021, 143(36), 14530—14539 |
17 | Zhang X., Guo S., Qin Y., Li C., Chem. Res. Chinese Universities, 2021, 37(3), 379—393 |
18 | Wan L., Xu Z., Xu Q., Wang P., Wang B., Energ. Environ. Sci., 2022, 15, 1882—1892 |
19 | Lu L., Cao X., Shen Z., Li L., Huo J., Chen W., Liu C., Liu H., Sustain. Mater. Techno., 2020, 26, e00221 |
20 | Li W., Liu B., Liu D., Guo P., Liu J., Wang R., Guo Y., Tu X., Pan H., Sun D., Fang F., Wu R., Adv. Mater., 2022, 34(17), 2109605 |
21 | Ma J., Habrioux A., Luo Y., Ramos⁃Sanchez G., Calvillo L., Granozzi G., Balbuena P. B., Alonso⁃Vante N., J. Mater. Chem. A, 2015, 3(22), 11891—11904 |
22 | Arai T., Takashi O., Amemiya K., Takahashi T., SAE Int. J. Alt. Power, 2017, 6(1), 145—150 |
23 | Ge X., Sumboja A., Wuu D., An T., Li B., Goh F. W. T., Hor T. S. A., Zong Y., Liu Z., ACS Catalysis, 2015, 5(8), 4643—4667 |
24 | Douka A. I., Yang H., Huang L., Zaman S., Yue T., Guo W., You B., Xia B. Y., EcoMat, 2020, 3(1), e12067 |
25 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science, 2017, 355(6321), 146 |
26 | Asset T., Chattot R., Fontana M., Mercier⁃Guyon B., Job N., Dubau L., Maillard F., ChemPhysChem, 2018, 19(13), 1552—1567 |
27 | Qiao Z., Wang C., Zeng Y., Spendelow J. S., Wu G., Small, 2021, 17, 2006805 |
28 | Tian X., Zhao X., Su Y. Q., Wang L., Wang H., Dang D., Chi B., Liu H., Hensen E. J. M., Lou X. W. D., Xia B. Y., Science, 2019, 366(6467), 850—856 |
29 | Gao L., Sun T., Tan X., Liu M., Xue F., Wang B., Zhang J., Lu Y. F., Ma C., Tian H., Yang S., Smith S. C., Huang H., Appl. Catal. B: Environ., 2022, 303, 120918 |
30 | Han A., Wang X., Tang K., Zhang Z., Ye C., Kong K., Hu H., Zheng L., Jiang P., Zhao C., Zhang Q., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(35), 19262—19271 |
31 | Stephens I. E. L., Bondarenko A. S., Grønbjerg U., Rossmeisl J., Chorkendorff I., Energ. Environ. Sci., 2012, 5(5), 6744 |
32 | Gao L., Li X., Yao Z., Bai H., Lu Y., Ma C., Lu S., Peng Z., Yang J., Pan A., Huang H., J. Am. Chem. Soc., 2019, 141(45), 18083—18090 |
33 | Zhou L., Deng X., Lu Q., Yang G., Zhou W., Shao Z., Energ. Fuel., 2020, 34(9), 11527—11535 |
34 | Huang L., Su Y. Q., Qi R., Dang D., Qin Y., Xi S., Zaman S., You B., Ding S., Xia B. Y., Angew. Chem. Int. Ed., 2021, 60, 25530 |
35 | Zhao Z., Liu Z., Zhang A., Yan X., Xue W., Peng B., Xin H. L., Pan X., Duan X., Huang Y., Nat. Natotechnol., 2022, 17(9), 968—975 |
36 | Yang C. L., Wang L. N., Yin P., Liu J., Chen M. X., Yan Q. Q., Wang Z. S., Xu S. L., Chu S. Q., Cui C., Ju H., Zhu J., Lin Y., Shui J., Liang H. W., Science, 2021, 374(6566), 459—464 |
37 | Wu D., Shen X., Pan Y., Yao L., Peng Z., ChemNanoMat, 2019, 6(1), 32—41 |
38 | Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049 |
39 | Wang R., Liu B., You S., Li Y., Zhang Y., Wang D., Tang B., Sun Y., Zou J., Chem. Eng. J., 2022, 430, 132720 |
40 | Wang X. R., Liu J. Y., Liu Z. W., Wang W. C., Luo J., Han X. P., Du X. W., Qiao S. Z., Yang J., Adv. Mater., 2018, 30(23), 1800005 |
41 | Zhu W., Pei Y., Douglin J. C., Zhang J., Zhao H., Xue J., Wang Q., Li R., Qin Y., Yin Y., Dekel D. R., Guiver M. D., Appl. Catal. B: Environ., 2021, 299, 120656 |
42 | Xie X., He C., Li B., He Y., Cullen D. A., Wegener E. C., Kropf A. J., Martinez U., Cheng Y., Engelhard M. H., Bowden M. E., Song M., Lemmon T., Li X. S., Nie Z., Liu J., Myers D. J., Zelenay P., Wang G., Wu G., Ramani V., Shao Y., Nat. Catal., 2020, 3(12), 1044—1054 |
43 | Zhou Z., Kong Y., Tan H., Huang Q., Wang C., Pei Z., Wang H., Liu Y., Wang Y., Li S., Liao X., Yan W., Zhao S., Adv. Mater., 2022, 34, 2106541 |
44 | Wang J., Li H., Liu S., Hu Y., Zhang J., Xia M., Hou Y., Tse J., Zhang J., Zhao Y., Angew. Chem. Int. Ed., 2021, 60(1), 181—185 |
180 | Panomsuwan G., Saito N., Ishizaki T., ACS Appl. Mater. Interfaces, 2016, 8(11), 6962—6971 |
181 | Park J.E., Kim M. J., Lim M. S., Kang S. Y., Kim J. K., Oh S. H., Her M., Cho Y. H., Sung Y. E., Appl. Catal. B: Environ., 2018, 237, 140—148 |
182 | Patil B., Satilmis B., Uyar T., J. Power Sources, 2020, 451, 227799 |
183 | Lu M., Chen X., Xu Y., Liu R., Xie X., Mater. Chem. Front., 2022, 6(10), 1301—1309 |
184 | Xu M., Wu L., Zhu M., Wang Z., Huang Z. H., Wang M. X., Carbon, 2022, 193, 242—257 |
185 | Gong T., Qi R., Liu X., Li H., Zhang Y., Nano⁃Micro Lett., 2019, 11(1), 9 |
186 | He Z., Wei P., Chen N., Han J., Lu X., Chem. Eur. J., 2021, 27(4), 1423—1429 |
187 | Li G., Pei L., Wu Y., Zhu B., Hu Q., Yang H., Zhang Q., Liu J., He C., J. Mater. Chem. A, 2019, 7(18), 11223—11233 |
188 | Wang L., Wang Y., Wu M., Wei Z., Cui C., Mao M., Zhang J., Han X., Liu Q., Ma J., Small, 2018, 14(20), 1800737 |
45 | Hu H., Wang J., Cui B., Zheng X., Lin J., Deng Y., Han X., Angew. Chem. Int. Ed., 2021, 61, e202114441 |
46 | Jiang L., van Dijk B., Wu L., Maheu C., Hofmann J. P., Tudor V., Koper M. T. M., Hetterscheid D. G. H., Schneider G. F., ACS Catal., 2021, 12(1), 173—182 |
47 | Liu Z., Qin A., Zhang K., Lian P., Yin X., Tan H., Nano Energy, 2021, 90, 106540 |
48 | Zeng Y., Wu G., Chinese J. Catal., 2021, 42(12), 2149—2163 |
49 | Durst J., Chatenet M., Maillard F., Phys. Chem. Chem. Phys., 2012, 14(37), 13000—13009 |
50 | Shinozaki K., Zack J. W., Richards R. M., Pivovar B. S., Kocha S. S., J. Electrochem. Soc., 2015, 162(10), F1144—F1158 |
51 | Liu M., Wang L., Zhao K., Shi S., Shao Q., Zhang L., Sun X., Zhao Y., Zhang J., Energ. Environ. Sci., 2019, 12(10), 2890—2923 |
52 | Wang H., Wang X., Li M., Zheng L., Guan D., Huang X., Xu J., Yu J., Adv. Mater., 2020, 32(44), 2002559 |
53 | Nørskov J. K., J. Rossmeisl A. L., Lindqvist L., J. Phys. Chem. B, 2004, 108(46), 17886—17892 |
54 | Yang H., Wu Y., Li G., Lin Q., Hu Q., Zhang Q., Liu J., He C., J. Am. Chem. Soc., 2019, 141(32), 12717—12723 |
55 | Yang H., Lin Q., Zhang C., Yu X., Cheng Z., Li G., Hu Q., Ren X., Zhang Q., Liu J., He C., Nat. Commun., 2020, 11(1), 593 |
56 | Hu Q., Li G., Li G., Liu X., Zhu B., Chai X., Zhang Q., Liu J., He C., Adv. Energy Mater., 2019, 9(14), 1803867 |
57 | Gan L., Du H., Li B., Kang F., Carbon, 2008, 46(15), 2140—2143 |
58 | Peera S. G., Tintula K. K., Sahu A. K., Shanmugam S., Sridhar P., Pitchumani S., Electrochim. Acta, 2013, 108, 95—103 |
59 | Wu R., Xue Y., Qian X., Liu H., Zhou K., Chan S. H., Tey J. N., Wei J., Zhu B., Huang Y., Int. J. Hydrogen Energy, 2013, 38(36), 16677—16684 |
60 | Li M., Wu X., Zeng J., Hou Z., Liao S., Electrochim. Acta, 2015, 182, 351—360 |
61 | Fu K., Wang Y., Mao L., Jin J., Yang S., Li G., Electrochim. Acta, 2016, 215, 427—434 |
62 | Melke J., Peter B., Habereder A., Ziegler J., Fasel C., Nefedov A., Sezen H., Woll C., Ehrenberg H., Roth C., ACS Appl. Mater. Interfaces, 2016, 8(1), 82—90 |
63 | Sebastián D., Ruíz A. G., Suelves I., Moliner R., Lázaro M. J., Baglio V., Stassi A., Aricò A. S., Appl. Catal. B: Environ., 2012, 115/116, 269—275 |
64 | Shao M., Peles A., Shoemaker K., Nano Lett., 2011, 11(9), 3714—3719 |
65 | Jiang Y., Zhang J., Qin Y. H., Niu D. F., Zhang X. S., Niu L., Zhou X. G., Lu T. H., Yuan W. K., J. Power Sources, 2011, 196(22), 9356—9360 |
66 | Karuppanan K. K., Raghu A. V., Panthalingal M. K., Ramanathan S., Kumaresan T., Pullithadathil B., J. Mater. Chem. A, 2018, 6(26), 12768—12781 |
67 | Kim G. Y., Yoon K. R., Shin K., Jung J. W., Henkelman G., Ryu W. H., Small, 2021, 17(47), e2103755 |
68 | Zhang K., Feng C., He B., Dong H., Dai W., Lu H., Zhang X., J. Electroanal. Chem., 2016, 781, 198—203 |
69 | Ji Y., Cho Y. i., Jeon Y., Lee C., Park D. H., Shul Y. G., Appl. Catal. B: Environ., 2017, 204, 421—429 |
70 | Li D., Lv C., Liu L., Xia Y., She X., Guo S., Yang D., ACS Centeral Sci., 2015, 1(5), 261—269 |
71 | Zhao W., Yuan P., She X., Xia Y., Komarneni S., Xi K., Che Y., Yao X., Yang D., J. Mater. Chem. A, 2015, 3(27), 14188—14194 |
72 | Wei J., Chen H., He J., Huang Z., Qin H., Xiao X., Ni H., Chi H., He J., Carbon, 2023, 201, 856—863 |
73 | Zhang B., Zhao Y., Li L., Li Y., Zhang J., Shao G., Zhang P., Nano Res., 2022, 16, 545—554 |
74 | Pan L., Chen G., Chen G., Chen D., Diam. Relat. Mater., 2022, 127, 109178 |
75 | Luo H., Jiang W. J., Niu S., Zhang X., Zhang Y., Yuan L. P., He C., Hu J. S., Small, 2020, 16(20), 2001171 |
76 | Li B., Ge X., Goh F. W., Hor T. S., Geng D., Du G., Liu Z., Zhang J., Liu X., Zong Y., Nanoscale, 2015, 7(5), 1830—1838 |
77 | Liu T., Guo Y. F., Yan Y. M., Wang F., Deng C., Rooney D., Sun K. N., Carbon, 2016, 106, 84—92 |
78 | Xue H., Wang T., Gong H., Guo H., Fan X., Song L., Xia W., Feng Y., He J., Catalysts, 2017, 7(6), 189 |
79 | Song L., Tang J., Wang T., Wu C., Ide Y., He J., Yamauchi Y., Chem. Eur. J., 2019, 25(27), 6807—6813 |
80 | Wang H., Zhou Y., Zhang S., Deng C., Chem. Eng. J., 2021, 407, 127043 |
81 | Selvakumar K., Ulaganathan M., Kumar S. M. S., Thangamuthu R., Periasamy P., Ragupathy P., ChemistrySelect, 2019, 4(17), 5160—5167 |
82 | Wang F., Liu T., Guo Y., Li W., Qi J., Rooney D., Sun K., RSC Adv., 2017, 7(55), 34763—34769 |
83 | Gao J., Wang J., Zhou L., Cai X., Zhan D., Hou M., Lai L., ACS Appl. Mater. Interfaces, 2019, 11(10), 10364—10372 |
84 | Feng L., Ding R., Chen Y., Wang J., Xu L., J. Power Sources, 2020, 452, 227837 |
85 | Shi Q., Zheng Y., Li W., Tang B., Qin L., Yang W., Liu Q., Catal. Sci. Technol., 2020, 10(15), 5060—5068 |
86 | Chen Y., Qiao S., Tang Y., Du Y., Zhang D., Wang W., Zhang H., Sun X., Liu C., ACS Nano, 2022, 16(9), 15273—15285 |
87 | Panomsuwan G., Saito N., Ishizaki T., RSC Adv., 2016, 6(115), 114553—114559 |
88 | Ji D., Peng S., Safanama D., Yu H., Li L., Yang G., Qin X., Srinivasan M., Adams S., Ramakrishna S., Chem. Mater., 2017, 29(4), 1665—1675 |
89 | Li Q., Zhao J., Wu M., Li C., Han L., Liu R., ChemistrySelect, 2019, 4(2), 722—728 |
90 | Ding W., Zhu H., Lu L., Zhang J., Yu H., Zhao H., J. Alloys Compd., 2020, 848, 156605 |
91 | Li N., Liu L., Wang K., Niu J., Zhang Z., Dou M., Wang F., Chem. Eur. J., 2021, 27(42), 10987—10997 |
92 | Peng H., Zhang M., Xie X., Zhang M., Ma G., Liu C., Catal. Today, 2022, 400/401, 115—123 |
93 | Wu Z. Y., Xu X. X., Hu B. C., Liang H. W., Lin Y., Chen L. F., Yu S. H., Angew. Chem. Int. Ed., 2015, 54(28), 8179—8183 |
94 | Zhang L., Guo Q., Pitcheri R., Fu Y., Li J., Qiu Y., J. Power Sources, 2019, 413, 233—240 |
95 | Li S., Zhao W., Zhang N., Luo Y., Tang Y., Du G., Wang C., Zhang X., Li L., Energ. Fuel., 2021, 35(10), 9017—9028 |
96 | Kakoria A., Devi B., Anand A., Halder A., Koner R. R., Sinha⁃Ray S., ACS Appl. Nano Mater., 2018, 2(1), 64—74 |
97 | Liu G., Xia X., Zhao C., Zhang X., Zhang W., J. Colloid Interf. Sci., 2021, 588, 627—636 |
98 | Bogdanovskaya V., Vernigor I., Radina M., Andreev V., Korchagin O., Catalysts, 2021, 11(3), 335 |
99 | Wang J., Liu L., Chou S., Liu H., Wang J., J. Mater. Chem. A, 2017, 5(4), 1462—1471 |
100 | Nasim F., Ali H., Waseem A., Nadeem M. A., Nadeem M. A., Int. J. Hydrogen Energy, 2022, 47(94), 39898—39907 |
[1] | 王军, 杜石谦, 陶李. 高温聚合物电解质膜燃料电池催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220722. |
[2] | 李瑞松, 苗政培, 李静, 田新龙. 中空贵金属纳米材料氧还原催化的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220730. |
[3] | 池丽萍, 牛壮壮, 廖洁, 唐凯斌, 高敏锐. 过渡金属氧化物插层化学及其电催化应用的新进展[J]. 高等学校化学学报, 2023, 44(5): 20220740. |
[4] | 徐佳宁, 白文静, 楼雨寒, 于海鹏, 窦烁. 电催化氧化木质素解聚: 温和高效的生物质增值策略[J]. 高等学校化学学报, 2023, 44(5): 20220749. |
[5] | 张潇然, 郑建云, 吕艳红, 王双印. 绿色路径C-N偶联合成尿素的最新研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220717. |
[6] | 鲍春竹, 向中华. 非热解共价有机聚合物基氧还原电催化材料[J]. 高等学校化学学报, 2023, 44(5): 20220715. |
[7] | 刘至辰, 张宏伟, 张博稳, 陈鹏, 袁珮. 吸附法制备金属/碳催化剂用于5-羟基甲基糠醛高效电催化氧化的研究[J]. 高等学校化学学报, 2023, 44(1): 20220631. |
[8] | 李姿若, 张红娟, 朱国勋, 夏伟, 汤静. 负载酞菁铁的氮掺杂中空碳球的电催化氧还原性能[J]. 高等学校化学学报, 2023, 44(1): 20220677. |
[9] | 匡华艺, 陈晨. 贵金属纳米框架设计合成及电催化性能的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220586. |
[10] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[11] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[12] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[13] | 吴玉, 李轩, 杨恒攀, 何传新. 钴单原子的双重限域制备策略及高效CO2电还原性能[J]. 高等学校化学学报, 2022, 43(9): 20220343. |
[14] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[15] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||