高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (2): 475-491.doi: 10.7503/cjcu20200652
收稿日期:
2020-09-04
出版日期:
2021-02-10
发布日期:
2020-12-28
通讯作者:
于然波
E-mail:ranboyu@ustb.edu.cn
基金资助:
Received:
2020-09-04
Online:
2021-02-10
Published:
2020-12-28
Contact:
YU Ranbo
E-mail:ranboyu@ustb.edu.cn
Supported by:
摘要:
电催化水分解制氢是可以形成闭环的生产过程, 起始原料与副产物均为水、 过程清洁无污染, 是极具希望的产氢策略. 目前制约其发展的瓶颈之一是价格昂贵的Pt基贵金属催化剂. 为推动电催化分解水制氢的普及, 亟待开发低成本非贵金属催化剂. 在众多备选非贵金属催化材料中, 纳米层状结构二硫化钼(MoS2)因催化效果可期、 价格低而获得了广泛关注. 然而, 通常条件下易于获得的层状结构2H相MoS2大面积的基面部分显示惰性, 仅在片层边缘处存在少量活性位点, 且导电性较差, 因而尚不能替代Pt基催化剂, 而如何增加其活性位点数量和提高其导电性成为亟待解决的问题; 另一方面, 1T相MoS2虽然活性高、 导电性好, 但却存在制备困难及稳定性差的问题. 鉴于此, 研究者通过对纳米MoS2进行掺杂改性实现了其活性与稳定性的有效提升. 本文对非贵金属纳米MoS2催化剂掺杂改性的方法、 机理及其电催化水解制氢性能的相关研究进行了总结与讨论. 作为典型的非贵金属电解水析氢催化剂, MoS2具有巨大发展潜力, 本文能够对相关非贵金属催化剂的研发提供有益的参考.
中图分类号:
陈晓煜, 于然波. 纳米二硫化钼的掺杂及催化电解水产氢的研究进展[J]. 高等学校化学学报, 2021, 42(2): 475-491.
CHEN Xiaoyu, YU Ranbo. Research Progress on Doping of Molybdenum Disulfide and Hydrogen Evolution Reaction[J]. Chemical Journal of Chinese Universities, 2021, 42(2): 475-491.
Fig.1 Relationship between the exchange current density of different HER catalyst materials and hydrogen adsorption free energy(ΔGH*)[43]Copyright 2014, Royal Society of Chemisty.
Fig.2 Side view and top view of the structural polytypes of 2H(hexagonal symmetry), 3R(rhombohedral symmetry) and 1T MoS2(rhombohedral symmetry)[71]Dark purple and yellow atoms are indicated as Mo and S, respectively. Copyright 2012, SpringerNature.
Catalyst | Method | Electrolyte | Overpotential*/ mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Ni?MoS2 | One?step hydrothermal method | 0.5 mol/L H2SO4 | 173 | 69 | [ |
Re?MoS2 | CVD | 0.5 mol/L H2SO4 | 169 | 56 | [ |
MoS2 | — | 0.5 mol/L H2SO4 | 300 | 103 | [ |
Co?MoS2 | Exfoliation doping | 0.5 mol/L H2SO4 | 220 | 92 | [ |
Ni?MoS2 | Exfoliation doping | 0.5 mol/L H2SO4 | 353 | 103 | [ |
Ni?Co doped 2H?MoS2 | Co?precipitation hydrothermal method | 1 mol/L KOH | 87 | 40.3 | [ |
Ni?Co doped 1T?MoS2 | Co?precipitation hydrothermal method | 1 mol/L KOH | 70 | 38.1 | [ |
Table 1 HER performance parameters of Ni, Co atomic doped MoS2
Catalyst | Method | Electrolyte | Overpotential*/ mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Ni?MoS2 | One?step hydrothermal method | 0.5 mol/L H2SO4 | 173 | 69 | [ |
Re?MoS2 | CVD | 0.5 mol/L H2SO4 | 169 | 56 | [ |
MoS2 | — | 0.5 mol/L H2SO4 | 300 | 103 | [ |
Co?MoS2 | Exfoliation doping | 0.5 mol/L H2SO4 | 220 | 92 | [ |
Ni?MoS2 | Exfoliation doping | 0.5 mol/L H2SO4 | 353 | 103 | [ |
Ni?Co doped 2H?MoS2 | Co?precipitation hydrothermal method | 1 mol/L KOH | 87 | 40.3 | [ |
Ni?Co doped 1T?MoS2 | Co?precipitation hydrothermal method | 1 mol/L KOH | 70 | 38.1 | [ |
Fig.4 Electron structure of the local bonding environment and active site in RexMo1-xS2 alloy[77](A) RexMo1-xS2 structure model alloy monolayer with random distribution of Re atoms. Mo atom is green, Re atom is red, S atom is yellow. (B) As shown in type 1 and type 8, they are the most active and the least active points, respectively(according to DOS calculation).Copyright 2018, Wiley-VCH.
Fig.5 Schematic representation of the formation of porous hybrid nanostructures combining amorphous Ni?Co complexes with 1T phase MoS2[84]Copyright 2017, Springer Nature.
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
P?MoS2 | Calcination | — | 120 | 57 | [ |
P/O?MoS2 | Electrochemical deposition and heat treatment | 130 | 217 | 49 | [ |
O?MoS2 | Hydrothermal method | 120 | — | 55 | [ |
N?MoS2 | One?step sintering | 35 | — | 41 | [ |
Amorphous P?MoS2 | Hydrothermal method | 167 | 219 | 39 | [ |
Table 2 HER performance parameters of non-metal atomic doped MoS2a
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
P?MoS2 | Calcination | — | 120 | 57 | [ |
P/O?MoS2 | Electrochemical deposition and heat treatment | 130 | 217 | 49 | [ |
O?MoS2 | Hydrothermal method | 120 | — | 55 | [ |
N?MoS2 | One?step sintering | 35 | — | 41 | [ |
Amorphous P?MoS2 | Hydrothermal method | 167 | 219 | 39 | [ |
Fig.8 Schematic of the chemical etching process to introduce single S?vacancies(A), SEM and HRTEM images of P?MoS2(B, D) and MoS2?60 s(C, E), STEM image together with the line profiles extracted from the areas marked with purple rectangles of a CVD?grown monolayer MoS2 flake film after etching(yellow dotted circles represent the S?vacancies)(F, G) and EPR spectra of etched MoS2 with different etching durations compared to P?MoS2(H)[107]Copyright 2020, American Chemical Society.
Catalyst | Method | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
S vacancy in MoS2 | Plasma reduction | 183 | 77.6 | [ |
S vacancy in MoS2 | Hydrothermal?etching | 131 | 48 | [ |
V?MoS2/VGN@CP | Plasma deposition?solvothermal method | 128 | 50 | [ |
Table 3 HER performance parameters of atomic-level vacancies doped MoS2a
Catalyst | Method | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
S vacancy in MoS2 | Plasma reduction | 183 | 77.6 | [ |
S vacancy in MoS2 | Hydrothermal?etching | 131 | 48 | [ |
V?MoS2/VGN@CP | Plasma deposition?solvothermal method | 128 | 50 | [ |
Fig.9 Structural models of defect?free and defect?rich structures(A) and as?designed synthetic pathways to obtain the above two structures(B)[110]Copyright 2013, Wiley-VCH.
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Defect rich MoS2 | Hydrothermal method | 120 | — | 50 | [ |
Mesoporous MoS2 | Template method | 150—200 | — | 50 | [ |
Porous 1T?MoS2 | Liquid ammonia assisted lithiation | — | 154 | 43 | [ |
Defect rich MoS2 | Ball milling | — | 176 | 63 | [ |
Table 4 HER performance parameters of MoS2 with in-plane defectsa
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Defect rich MoS2 | Hydrothermal method | 120 | — | 50 | [ |
Mesoporous MoS2 | Template method | 150—200 | — | 50 | [ |
Porous 1T?MoS2 | Liquid ammonia assisted lithiation | — | 154 | 43 | [ |
Defect rich MoS2 | Ball milling | — | 176 | 63 | [ |
Fig.10 HER performance of different samples in alkaline media(A), corresponding Tafel slopes(B), stability tests of different samples(C) and free energy of each step of water splitting: initial state, intermediate state, final state and transition state(D), ΔGW and ΔGOH(the chemisorption energies of hydro-xides on MoS2 and hybrids)(E)[121](D) ΔGR presents the free energy change of the reaction, ΔGw represents water splitting kinetic energy barrier. Mo, S, Ni, O, H represented by light blue, yellow, green, red, pink, respectively.Copyright 2018, Wiley-VCH.
Catalyst | Method | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
1T‐MoS2/NiS2 | Hydrothermal method | 116 | 72 | [ |
MoS2/Co(OH)2 | Li ion exfoliation and hydrothermal method | 128 | 76 | [ |
1T‐MoS2/SWNT | Solvothermal | 108 | 36 | [ |
MoS2‐Ni3S2/NF | Two step hydrothermal method | 98 | 61 | [ |
MoS2/Au | LPCVD | — | 61 | [ |
MoS2‐Ni3S2/C | Solvothermal method and heat treatment | 233 | 95 | [ |
Table 5 HER performance parameters of MoS2 composited with heterostructuresa
Catalyst | Method | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
1T‐MoS2/NiS2 | Hydrothermal method | 116 | 72 | [ |
MoS2/Co(OH)2 | Li ion exfoliation and hydrothermal method | 128 | 76 | [ |
1T‐MoS2/SWNT | Solvothermal | 108 | 36 | [ |
MoS2‐Ni3S2/NF | Two step hydrothermal method | 98 | 61 | [ |
MoS2/Au | LPCVD | — | 61 | [ |
MoS2‐Ni3S2/C | Solvothermal method and heat treatment | 233 | 95 | [ |
Fig.12 Schematic diagram of the synthesis of 3D mesoporous G@N‐MoS2 heterostructures[134](A) Two‐step CVD method, including CVD growth of mesoporous graphene on porous MgO templates at a high temperature, and then the in situ deposition of N‐MoS2 at a low temperature; (B) schematic representation of G@N‐MoS2. C, Mo, S and N atoms are marked by gray, green, yellow, red balls, respectively. Copyright 2018, Wiley-VCH.
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Mesoporous G@N?MoS2 | CVD | — | 243 | 82.5 | [ |
CoS2@MoS2/RGO | Hydrothermal method | — | 98 | 37.4 | [ |
MoS2 /N?RGO | Hydrothermal method | 5 | 56 | 41.3 | [ |
N?rGO/MoS2/Ni(OH)2 | Two step hydrothermal method | — | 223 | 86.0 | [ |
Table 6 HER performance parameters of MoS2 composited with multiple materialsa
Catalyst | Method | Onset potential/mV | Overpotentialb/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
Mesoporous G@N?MoS2 | CVD | — | 243 | 82.5 | [ |
CoS2@MoS2/RGO | Hydrothermal method | — | 98 | 37.4 | [ |
MoS2 /N?RGO | Hydrothermal method | 5 | 56 | 41.3 | [ |
N?rGO/MoS2/Ni(OH)2 | Two step hydrothermal method | — | 223 | 86.0 | [ |
57 | Topsøe H., Clausen B. S., Massoth F. E.; Eds.: Anderson J. R., Boudart M., Catalysis: Science and Technology, Springer Berlin Heidelberg, Berlin, 1996, 1—269 |
58 | Wilcoxon J. P., J. Phys. Chem. B,2000, 104, 7334—7343 |
59 | Tributsch H., Bennett J. C., J. Electroanal. Chem. Interfacial Electrochem.,1977, 81, 97—111 |
60 | Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc.,2005, 152, J23 |
61 | Bonde J., Moses P. G., Jaramillo T. F., Nørskov J. K., Chorkendorff I., Faraday Discuss.,2009, 140, 219—231 |
62 | Jaramillo T. F., Jorgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I., Science,2007, 317, 100—102 |
63 | Bruix A., Fuchtbauer H. G., Tuxen A., Walton A. S., Andersen M., Porsgaard S., Besenbacher F., Hammer B., Lauritsen J. V., ACS Nano,2015, 9, 9322—9330 |
64 | Alexiev V., Prins R., Weber T., Phys. Chem. Chem. Phys.,2001, 3, 5326—5336 |
65 | Dong L., Guo S., Wang Y., Zhang Q., Gu L., Pan C., Zhang J., J. Mater. Chem. A,2019, 7, 27603—27611 |
66 | Li H., Tsai C., Koh A. L., Cai L., Contryman A. W., Fragapane A. H., Zhao J., Han H. S., Manoharan H. C., Abild⁃Pedersen F., Nørskov J. K., Zheng X., Nat. Mater.,2016, 15, 48—53 |
67 | Ambrosi A., Sofer Z., Pumera M., Chem. Commun.,2015, 51, 8450—8453 |
68 | Tang Q., Jiang D. E., ACS Catal.,2016, 6, 4953—4961 |
69 | Ma F., Liang Y., Zhou P., Tong F., Wang Z., Wang P., Liu Y., Dai Y., Zheng Z., Huang B., Mater. Chem. Phys.,2020, 244, 122642 |
70 | Hao Y., Wang Y. T., Xu L. C., Yang Z., Liu R. P., Li X. Y., Appl. Surf. Sci.,2019, 469, 292—297 |
71 | Ji L., Yan P., Zhu C., Ma C., Wu W., Wei C., Shen Y., Chu S., Wang J., Du Y., Chen J., Yang X., Xu Q., Appl. Catal. B,2019, 251, 87—93 |
72 | Wang D., Zhang X., Bao S., Zhang Z., Fei H., Wu Z., J. Mater. Chem. A,2017, 5, 2681—2688 |
73 | Ambrosi A., Pumera M., Chem. Eur. J.,2018, 24, 18551—18555 |
74 | Xiong Q., Zhang X., Wang H., Liu G., Wang G., Zhang H., Zhao H., Chem. Commun.,2018, 54, 3859—3862 |
75 | Luo R., Luo M., Wang Z., Liu P., Song S., Wang X., Chen M., Nanoscale,2019, 11, 7123—7128 |
76 | Wang D., Zhang X., Shen Y., Wu Z., RSC Adv.,2016, 6, 16656—16661 |
77 | Yang S. Z., Gong Y., Manchanda P., Zhang Y. Y., Ye G., Chen S., Song L., Pantelides S. T., Ajayan P. M., Chisholm M. F., Zhou W., Adv. Mater.,2018, 30, 1803477 |
78 | Shi Y., Zhou Y., Yang D. R., Xu W. X., Wang C., Wang F. B., Xu J. J., Xia X. H., Chen H. Y., J. Am. Chem. Soc.,2017, 139, 15479—15485 |
79 | Chen M., Jian X., Wu H., Huang J., Liu W., Liu Y., Nanotechnology,2020, 31, 205403 |
80 | Tadi K. K., Palve A. M., Pal S., Sudeep P. M., Narayanan T. N., Nanotechnology,2016, 27, 275402 |
81 | Lau T. H. M., Lu X., Kulhavý J., Wu S., Lu L., Wu T. S., Kato R., Foord J. S., Soo Y. L., Suenaga K., Tsang S. C. E., Chem. Sci.,2018, 9, 4769—4776 |
82 | Kong X., Wang N., Zhang Q., Liang J., Wang M., Wei C., Chen X., Zhao Y., Zhang X., ChemistrySelect,2018, 3, 9493—9498 |
83 | Wang Y., Sun W., Ling X., Shi X., Li L., Deng Y., An C., Han X., Chem. Eur. J., 2020, 26, 4097—4103 |
84 | Li H., Chen S., Jia X., Xu B., Lin H., Yang H., Song L., Wang X., Nat. Commun.,2017, 8, 15377 |
85 | Tsai C., Abild⁃Pedersen F., Nørskov J. K., Nano Lett.,2014, 14, 1381—1387 |
86 | Guo J., Liu C., Sun Y., Sun J., Zhang W., Si T., Lei H., Liu Q., Zhang X., J. Solid State Chem.,2018, 263, 84—87 |
87 | Chen A., He Y., Cui R., Zhang J., Pu Y., Yang J., Li X. A., Mater. Lett.,2018,233, 246—249 |
88 | Deng Y., Liu Z., Wang A., Sun D., Chen Y., Yang L., Pang J., Li H., Li H., Liu H., Zhou W., Nano Energy,2019, 62, 338—347 |
89 | Liu Y., Wang Y. M., Yakobson B. I., Wood B. C., Phys. Rev. Lett.,2014, 113, 028304 |
90 | Ye R., del Angel⁃Vicente P., Liu Y., Arellano⁃Jimenez M. J., Peng Z., Wang T., Li Y., Yakobson B. I., Wei S. H., Yacaman M. J., Tour J. M., Adv. Mater.,2016, 28, 1427—1432 |
91 | Huang X., Leng M., Xiao W., Li M., Ding J., Tan T. L., Lee W. S. V., Xue J., Adv. Funct. Mater.,2017, 27, 1604943 |
92 | Xie J., Zhang J., Li S., Grote F., Zhang X., Zhang H., Wang R., Lei Y., Pan B., Xie Y., J. Am. Chem. Soc.,2013, 135, 17881—17888 |
93 | Chen Z., Ha Y., Liu Y., Wang H., Yang H., Xu H., Li Y., Wu R., ACS Appl. Mater. Interfaces,2018, 10, 7134—7144 |
94 | Li Y., Wei X., Chen L., Shi J., He M., Nat. Commun.,2019, 10, 5335 |
95 | Xiao W., Liu P., Zhang J., Song W., Feng Y. P., Gao D., Ding J., Adv. Energy Mater.,2017, 7, 1602086 |
96 | Wang D., Xie Y., Wu Z., Nanotechnology,2019, 30, 205401 |
97 | Nowotny J., Alim M. A., Bak T., Idris M. A., Ionescu M., Prince K., Sahdan M. Z., Sopian K., Mat Teridi M. A., Sigmund W., Chem. Soc. Rev.,2015, 44, 8424—8442 |
98 | Ouyang Y., Ling C., Chen Q., Wang Z., Shi L., Wang J., Chem. Mater.,2016, 28, 4390—4396 |
99 | Jiao S., Fu X., Zhang L., Zeng Y. J., Huang H., Nano Today,2020, 31, 100833 |
100 | Shu H., Zhou D., Li F., Cao D., Chen X., ACS Appl. Mater. Interfaces,2017, 9, 42688—42698 |
101 | Asahi R., Morikawa T., Irie H., Ohwaki T., Chem. Rev.,2014, 114, 9824—9852 |
1 | Norskov J. K., Christensen C. H., Science,2006, 312, 1322 |
2 | Wang J., Wang K., Wang F. B., Xia X. H., Nat. Commun.,2014, 5, 5285 |
3 | Bae S. Y., Jeon I. Y., Mahmood J., Baek J. B., Chem. Eur. J.,2018, 24, 18158—18179 |
102 | Deng J., Li H., Xiao J., Tu Y., Deng D., Yang H., Tian H., Li J., Ren P., Bao X., Energy Environ. Sci.,2015, 8, 1594—1601 |
103 | Shi Y., Chen G., Liu F., Yue X., Chen Z., ACS Energy Lett.,2018, 3, 1683—1692 |
104 | Liu Z., Hu J., Jiao H., Li L., Zheng G., Chen Y., Huang Y., Zhang Q., Shen C., Chen Q., Zhou H., Adv. Mater.,2017, 29, 1606774 |
4 | Zhao G. Q., Yuan Z., Wang L., Guo Z., Chem. J. Chinese Universities, 2020, 41(7), 1575—1581(赵国庆, 袁钊, 王连, 郭卓, 高等学校化学学报, 2020, 41(7), 1575—1581) |
5 | Liu K., Zhong H., Meng F., Zhang X., Yan J., Jiang Q., Mater. Chem. Front.,2017, 1, 2155—2173 |
105 | Cheng C. C., Lu A. Y., Tseng C. C., Yang X., Hedhili M. N., Chen M. C., Wei K. H., Li L. J., Nano Energy,2016, 30, 846—852 |
106 | Wang X., Zhang Y., Si H., Zhang Q., Wu J., Gao L., Wei X., Sun Y., Liao Q., Zhang Z., Ammarah K., Gu L., Kang Z., Zhang Y., J. Am. Chem. Soc.,2020, 142, 4298—4308 |
107 | Ye G., Gong Y., Lin J., Li B., He Y., Pantelides S. T., Zhou W., Vajtai R., Ajayan P. M., Nano Lett.,2016, 16, 1097—1103 |
108 | Li L., Qin Z., Ries L., Hong S., Michel T., Yang J., Salameh C., Bechelany M., Miele P., Kaplan D., Chhowalla M., Voiry D., ACS Nano,2019, 13, 6824—6834 |
6 | Sharma S., Ghoshal S. K., Renew. Sust. Energ. Rev.,2015, 43, 1151—1158 |
7 | Liu X., Dai L., Nat. Rev. Mater.,2016, 1, 16064 |
109 | Zhao Y., Tang M. T., Wu S., Geng J., Han Z., Chan K., Gao P., Li H., J. Catal.,2020, 382, 320—328 |
110 | Xie J., Zhang H., Li S., Wang R., Sun X., Zhou M., Zhou J., Lou X. W., Xie Y., Adv. Mater.,2013, 25, 5807—5813 |
8 | Yan B., Liu D., Feng X., Shao M., Zhang Y., Chem. Res. Chinese Universities,2020, 36(3), 425—430 |
9 | Yu X., Yu Z. Y., Zhang X. L., Li P., Sun B., Gao X., Yan K., Liu H., Duan Y., Gao M. R., Wang G., Yu S. H., Nano Energy,2020, 71, 104652 |
111 | Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S., J. Am. Chem. Soc.,2016, 138, 7965—7972 |
112 | Li Y., Yin K., Wang L., Lu X., Zhang Y., Liu Y., Yan D., Song Y., Luo S., Appl. Catal. B,2018, 239, 537—544 |
10 | Yan Y., He T., Zhao B., Qi K., Liu H., Xia B. Y., J. Mater. Chem. A,2018, 6, 15905—15926 |
11 | Zhu Q., Qu Y., Liu D., Ng K. W., Pan H., ACS Appl. Nano Mater.,2020, 3, 6270—6296 |
113 | Kagkoura A., Tzanidis I., Dracopoulos V., Tagmatarchis N., Tasis D., Chem. Commun.,2019, 55, 2078—2081 |
114 | Zhang Z., Yue C., Hu J., Nano,2017, 12, 1750116 |
115 | Kibsgaard J., Chen Z., Reinecke B. N., Jaramillo T. F., Nat. Mater.,2012, 11, 963—969 |
116 | Zhang L. F., Ke X., Ou G., Wei H., Wang L. N., Wu H., Sci. China Mater.,2017, 60, 849—856 |
12 | Benck J. D., Hellstern T. R., Kibsgaard J., Chakthranont P., Jaramillo T. F., ACS Catal.,2014, 4, 3957—3971 |
13 | Lasia A., Int. J. Hydrogen Energy,2019, 44, 19484—19518 |
117 | Paton K. R., Varrla E., Backes C., Smith R. J., Khan U., O’Neill A., Boland C., Lotya M., Istrate O. M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Pettersson H., Long E., Coelho J., O’Brien S. E., McGuire E. K., Sanchez B. M., Duesberg G. S., McEvoy N., Pennycook T. J., Downing C., Crossley A., Nicolosi V., Coleman J. N., Nat. Mater.,2014, 13, 624—630 |
118 | Cheng L., Huang W., Gong Q., Liu C., Liu Z., Li Y., Dai H., Angew. Chem. Int. Ed.,2014, 53, 7860—7863 |
14 | Barbir F.; Ed.: Barbir F., PEM Fuel Cells(Second Edition), Academic Press, Boston, 2013, 33—72 |
15 | Pinto A. M. F. R., Oliveira V. B., Falcão D. S.; Eds.: Pinto A. M. F. R., Oliveira V. B., Falcão D. S., Direct Alcohol Fuel Cells for Portable Applications, Academic Press, London, 2018, 17—80 |
119 | Zhang B. Q., Chen J. S., Niu H. L., Mao C. J., Song J. M., Nanoscale,2018, 10, 20266—20271 |
120 | Chen X., Wang Z., Wei Y., Zhang X., Zhang Q., Gu L., Zhang L., Yang N., Yu R., Angew. Chem. Int. Ed.,2019, 58, 17621—17624 |
16 | Voiry D., Yamaguchi H., Li J., Silva R., Alves D. C. B., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M., Nat. Mater.,2013, 12, 850—855 |
17 | Jiang N., Tang Q., Sheng M., You B., Jiang D. E., Sun Y., Catal. Sci. Technol., 2016, 6, 1077—1084 |
18 | Togano H., Asai K., Oda S., Ikeno H., Kawaguchi S., Oka K., Wada K., Yagi S., Yamada I., Mater. Chem. Front.,2020, 4, 1519—1529 |
121 | Zhu Z., Yin H., He C. T., Al-Mamun M., Liu P., Jiang L., Zhao Y., Wang Y., Yang H. G., Tang Z., Wang D., Chen X. M., Zhao H., Adv. Mater.,2018, 30, 1801171 |
122 | Zhu H., Du M., Zhang M., Zou M., Yang T., Fu Y., Yao J., J. Mater. Chem. A,2014, 2, 7680—7685 |
19 | Jia Y., Chen J., Yao X., Mater. Chem. Front.,2018, 2, 1250—1268 |
20 | Fang L., Jiang Z., Xu H., Liu L., guan Y., Gu X., Wang Y., J. Catal.,2018, 357, 238—246 |
123 | Yan Y., Xia B., Li N., Xu Z., Fisher A., Wang X., J. Mater. Chem. A,2015, 3, 131—135 |
124 | Wang H., Zhang Q., Yao H., Liang Z., Lee H. W., Hsu P. C., Zheng G., Cui Y., Nano Lett.,2014, 14, 7138—7144 |
21 | Li S., Yang N., Liao L., Luo Y., Wang S., Cao F., Zhou W., Huang D., Chen H., ACS Appl. Mater. Interfaces,2018, 10, 37038—37045 |
22 | Zhang W., Ma X., Zhong C., Ma T., Deng Y., Hu W., Han X., Front. Chem.,2018, 6, 569—578 |
125 | Ma Y., Dai Y., Guo M., Niu C., Huang B., Nanoscale,2011, 3, 3883—3887 |
126 | Liu Q., Fang Q., Chu W., Wan Y., Li X., Xu W., Habib M., Tao S., Zhou Y., Liu D., Xiang T., Khalil A., Wu X., Chhowalla M., Ajayan P. M., Song L., Chem. Mater.,2017, 29, 4738—4744 |
23 | Yang J., Shin H. S., J. Mater. Chem. A,2014, 2, 5979—5985 |
24 | Liu H., Ma X., Rao Y., Liu Y., Liu J., Wang L., Wu M., ACS Appl. Mater. Interfaces,2018, 10, 10890—10897 |
25 | Hao Q., Li S., Liu H., Mao J., Li Y., Liu C., Zhang J., Tang C., Catal. Sci. Technol.,2019, 9, 3099—3108 |
26 | Wu Z., Guo J., Wang J., Liu R., Xiao W., Xuan C., Xia K., Wang D., ACS Appl. Mater. Interfaces,2017, 9, 5288—5294 |
127 | Zhang X., Zhang Y., Li F., Easton C. D., Bond A. M., Zhang J., Appl. Catal. B,2019, 249, 227—234 |
128 | Miao J., Xiao F. X., Yang H. B., Khoo S. Y., Chen J., Fan Z., Hsu Y. Y., Chen H. M., Zhang H., Liu B., Sci. Adv.,2015, 1, e1500259 |
129 | Zhang W., Li D., Zhang L., She X., Yang D., J. Energy Chem.,2019, 39, 39—53 |
27 | Li H., Wen P., Itanze D. S., Kim M. W., Adhikari S., Lu C., Jiang L., Qiu Y., Geyer S. M., Adv. Mater.,2019, 31, 1900813 |
28 | Hu G., Tang Q., Jiang D. E., Phys. Chem. Chem. Phys.,2016, 18, 23864—23871 |
29 | Men Y., Li P., Zhou J., Cheng G., Chen S., Luo W., ACS Catal.,2019, 9, 3744—3752 |
130 | Yang Y., Zhang K., Lin H., Li X., Chan H. C., Yang L., Gao Q., ACS Catal.,2017, 7, 2357—2366 |
131 | Shi J., Ma D., Han G. F., Zhang Y., Ji Q., Gao T., Sun J., Song X., Li C., Zhang Y., Lang X. Y., Zhang Y., Liu Z., ACS Nano,2014, 8, 10196—10204 |
30 | Liu Q., Tang C., Lu S., Zou Z., Gu S., Zhang Y., Li C. M., Chem. Commun.,2018, 54, 12408—12411 |
31 | Xiong J., Cai W., Shi W., Zhang X., Li J., Yang Z., Feng L., Cheng H., J. Mater. Chem.,2017, 5, 24193—24198 |
132 | Wang C. P., Kong L. J., Sun H., Zhong M., Cui H. J., Zhang Y. H., Wang D. H., Zhu J., Bu X. H., ChemElectroChem,2019, 6, 5603—5609 |
133 | Van Drunen J., Pilapil B. K., Makonnen Y., Beauchemin D., Gates B. D., Jerkiewicz G., ACS Appl. Mater. Interfaces,2014, 6, 12046—12061 |
134 | Tang C., Zhong L., Zhang B., Wang H. F., Zhang Q., Adv. Mater.,2018, 30, 1705110 |
135 | Guo Y., Gan L., Shang C., Wang E., Wang J., Adv. Funct. Mater.,2017, 27, 1602699 |
136 | Tang Y. J., Wang Y., Wang X. L., Li S. L., Huang W., Dong L. Z., Liu C. H., Li Y. F., Lan Y. Q., Adv. Energy Mater.,2016, 6, 1600116 |
137 | Pandey A., Mukherjee A., Chakrabarty S., Chanda D., Basu S., ACS Appl. Mater. Interfaces,2019, 11, 42094—42103 |
32 | Guan J., Li C., Zhao J., Yang Y., Zhou W., Wang Y., Li G. R., Appl. Catal. B,2020, 269, 118600 |
33 | Jin H., Liu X., Vasileff A., Jiao Y., Zhao Y., Zheng Y., Qiao S. Z., ACS Nano,2018, 12, 12761—12769 |
34 | Wei H., Xi Q., Chen X. A., Guo D., Ding F., Yang Z., Wang S., Li J., Huang S., Adv. Sci.,2018, 5, 1700733 |
35 | Huang Y., Gong Q., Song X., Feng K., Nie K., Zhao F., Wang Y., Zeng M., Zhong J., Li Y., ACS Nano,2016, 10, 11337—11343 |
36 | Han Q., Cui S., Pu N., Chen J., Liu K., Wei X., Int. J. Hydrogen Energy,2010, 35, 5194—5201 |
37 | Zhang X., Li Y., Guo Y., Hu A., Li M., Hang T., Ling H., Int. J. Hydrogen Energy,2019, 44, 29946—29955 |
38 | Su J., Yang Y., Xia G., Chen J., Jiang P., Chen Q., Nat. Commun.,2017, 8, 14969 |
39 | Krstajić N. V., Jović V. D., Gajić⁃Krstajić L., Jović B. M., Antozzi A. L., Martelli G. N., Int. J. Hydrogen Energy,2008, 33, 3676—3687 |
40 | Zhou Q., Li Z. Y., Wang F., Chem. J. Chinese Universiities, 2019, 40(8), 1717—1725(周琦, 李志洋, 汪帆, 高等学校化学学报,2019, 40(8), 1717—1725) |
41 | Voiry D., Fullon R., Yang J., de Carvalho Castro e Silva C., Kappera R., Bozkurt I., Kaplan D., Lagos M. J., Batson P. E., Gupta G., Mohite Aditya D., Dong L., Er D., Shenoy V. B., Asefa T., Chhowalla M., Nat. Mater.,2016, 15, 1003—1009 |
42 | Hinnemann B., Moses P. G., Bonde J., Jørgensen K. P., Nielsen J. H., Horch S., Chorkendorff I., Nørskov J. K., J. Am. Chem. Soc.,2005, 127, 5308—5309 |
43 | Rasamani K. D., Alimohammadi F., Sun Y., Mater. Today,2017, 20, 83—91 |
44 | Morales⁃Guio C. G., Stern L. A., Hu X., Chem. Soc. Rev.,2014, 43, 6555—6569 |
45 | Simon P., Gogotsi Y., Nat. Mater.,2008, 7, 845—854 |
46 | Aricò A. S., Bruce P., Scrosati B., Tarascon J. M., van Schalkwijk W., Nat. Mater.,2005, 4, 366—377 |
47 | Kim S. G., Kim S. H., Park J., Kim G. S., Park J. H., Saraswat K. C., Kim J., Yu H. Y., ACS Nano,2019, 13, 10294—10300 |
48 | Jiao Y., Hafez A. M., Cao D., Mukhopadhyay A., Ma Y., Zhu H., Small,2018, 14, 1800640 |
49 | Yang C., Wang H. F., Xu Q., Chem. Res. Chinese Universities,2020, 36(1), 10—23 |
50 | Toh R. J., Sofer Z., Luxa J., Sedmidubský D., Pumera M., Chem. Commun.,2017, 53, 3054—3057 |
51 | Wang Q. H., Kalantar⁃Zadeh K., Kis A., Coleman J. N., Strano M. S., Nat. Nanotechnol.,2012, 7, 699—712 |
52 | Nam G., He Q., Wang X., Yu Y., Chen J., Zhang K., Yang Z., Hu D., Lai Z., Li B., Adv. Mater.,2019, 31, 1807764 |
53 | Tan D., Willatzen M., Wang Z. L., Nano Energy,2019, 56, 512—515 |
54 | Acerce M., Voiry D., Chhowalla M., Nat. Nanotechnol.,2015,10, 313—318 |
55 | Shi Y., Zhang B., Inorg. Chem. Front.,2018, 5, 1490—1492 |
138 | Debata S., Banerjee S., Sharma P. K., Electrochim. Acta,2019, 303, 257—267 |
56 | Li X., Zhu H., J. Materiomics,2015, 1, 33—44 |
[1] | 周帅, 王娟. 碳掺氧缺型TiO2纤维的无外碳源制备及光催化性能[J]. 高等学校化学学报, 2021, 42(Album-4): 1-8. |
[2] | 刘瀚林, 尹琳琳, 陈西凤, 李国栋. 氧化铟基纳米催化剂用于二氧化碳选择性加氢的研究进展[J]. 高等学校化学学报, 2021, 42(Album-2): 1-16. |
[3] | 王伟, 卢香超, 周立军, 鲁艺珍, 曹阳. 基于二维压电材料功能性器件的设计、 构筑与性能研究[J]. 高等学校化学学报, 2021, 42(2): 595-606. |
[4] | 林生晃, 傅年庆, 鲍桥梁. 单元素二维材料及其衍生物作为电荷传输层在太阳能电池中应用的研究进展[J]. 高等学校化学学报, 2021, 42(2): 412-431. |
[5] | 刘志刚, 李家宝, 杨剑, 马浩, 王赪胤, 郭鑫, 汪国秀. 新型石墨化氮化碳/锡/氮掺杂碳复合物的制备及储钠性能[J]. 高等学校化学学报, 2021, 42(2): 633-642. |
[6] | 邓亚茜, 吴志坦, 吕伟, 陶莹, 杨全红. 二维材料的凝胶化及电化学储能应用[J]. 高等学校化学学报, 2021, 42(2): 380-396. |
[7] | 陈明华, 李宏武, 范鹤, 李誉, 刘威铎, 夏新辉, 陈庆国. 二维过渡金属硫族化合物在超级电容器中的研究进展[J]. 高等学校化学学报, 2021, 42(2): 539-555. |
[8] | 辛伟闻, 闻利平. 二维材料用于渗透能转换的研究进展[J]. 高等学校化学学报, 2021, 42(2): 445-455. |
[9] | 史江维, 孟楠楠, 郭亚梅, 于一夫, 张兵 . 二维材料用于电催化析氢的研究进展[J]. 高等学校化学学报, 2021, 42(2): 492-503. |
[10] | 董其政, 翟锦. 基于二维材料的仿生纳流体通道在能量转化中的应用[J]. 高等学校化学学报, 2021, 42(2): 432-444. |
[11] | 余强敏, 张致远, 罗雨婷, 李洋, 成会明, 刘碧录. 金属性二维过渡金属硫化物的溶剂热合成及电催化析氢性能[J]. 高等学校化学学报, 2021, 42(2): 654-661. |
[12] | 马骏, 钟洋, 张珊珊, 黄仪珺, 张利鹏, 李亚平, 孙晓明, 夏振海. 高效催化氧还原及氧析出反应的掺杂石墨炔的设计与理论计算[J]. 高等学校化学学报, 2021, 42(2): 624-632. |
[13] | 张鑫, 赵付来, 王宇, 梁雪静, 冯奕钰, 封伟. 碲化锗场效应晶体管的制备及电学性能[J]. 高等学校化学学报, 2020, 41(9): 2032-2037. |
[14] | 曹芷源, 孙慧, 苏彬. 量子点电化学发光研究进展及展望[J]. 高等学校化学学报, 2020, 41(9): 1945-1955. |
[15] | 黄加玲,刘凤娇,王婷婷,刘翠娥,郑凤英,王振红,李顺兴. 氮硫共掺杂碳量子点对胃液pH值的精确检测[J]. 高等学校化学学报, 2020, 41(7): 1513-1520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||