高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1567-1574.doi: 10.7503/cjcu20190665
收稿日期:
2019-12-13
出版日期:
2020-07-10
发布日期:
2020-05-29
通讯作者:
冯乙巳
E-mail:fengyisi@hfut.edu.cn
基金资助:
Received:
2019-12-13
Online:
2020-07-10
Published:
2020-05-29
Contact:
Yisi FENG
E-mail:fengyisi@hfut.edu.cn
Supported by:
摘要:
以2,3-丁二酮作为光催化剂, 三氟甲基亚磺酸钠作为三氟甲基化试剂, 在可见光诱导下, 采用温和的反应条件高效地实现了烯烃衍生物的氧化三氟甲基化反应, 以52%~78%的收率合成了22个含有三氟甲基酮类结构的化合物(3a~3v). 该反应的特点是用2,3-丁二酮代替昂贵的金属光催化剂, 在可见光范围内从廉价的三氟甲基化试剂中引发出三氟甲基自由基, 并在氧化剂的协同作用下进行烯烃的氧化三氟甲基化反应.
中图分类号:
徐文艺,冯乙巳. 2,3-丁二酮介导的CF3SO2Na与烯烃的氧化三氟甲基化反应[J]. 高等学校化学学报, 2020, 41(7): 1567-1574.
XU Wenyi,FENG Yisi. Oxidative Trifluoromethylation of CF3SO2Na with Olefins Mediated by Diacetyl†[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1567-1574.
Compd. | Appearance | Yield*(%) | m. p./℃ | GC-MS(calcd.), m/z[M+H]+ |
---|---|---|---|---|
3a | White solid | 68 | 39—40 | 189.07(189.04) |
3b | White solid | 65 | 55—58 | 203.07(203.06) |
3c | Colorless liquid | 72 | None | 219.10(219.06) |
3d | Colorless liquid | 62 | None | 207.09(207.04) |
3e | White solid | 78 | 55—56 | 223.04(223.01) |
3f | White solid | 61 | 75—76 | 266.91(266.96) |
3g | White solid | 76 | 33—34 | 245.10(245.11) |
3h | Colorless liquid | 62 | None | 234.05(234.03) |
3i | White solid | 67 | 74—77 | 247.04(247.05) |
3j | White solid | 62 | 78—80 | 237.06(237.02) |
3k | Colorless liquid | 60 | None | 223.04(223.01) |
3l | Yellow liquid | 52 | None | 266.91(266.96) |
3m | Colorless liquid | 55 | None | 203.07(203.06) |
3n | Yellow liquid | 70 | None | 203.07(203.06) |
3o | Colorless liquid | 73 | None | 207.09(207.04) |
3p | Yellow liquid | 72 | None | 266.91(266.96) |
3q | White solid | 57 | 85—87 | 239.01(239.06) |
3r | Yellow solid | 47 | 73—75 | 195.03(195.00) |
3s | Colorless liquid | 61 | None | 203.07(203.06) |
3t | Colorless liquid | 58 | None | 265.07(265.10) |
3u | Colorless liquid | 56 | None | 201.04(201.03) |
3v | Colorless liquid | 61 | None | 215.11(215.06) |
Table 1 Appearance, yields, melting points and GC-MS data for compounds 3a—3v
Compd. | Appearance | Yield*(%) | m. p./℃ | GC-MS(calcd.), m/z[M+H]+ |
---|---|---|---|---|
3a | White solid | 68 | 39—40 | 189.07(189.04) |
3b | White solid | 65 | 55—58 | 203.07(203.06) |
3c | Colorless liquid | 72 | None | 219.10(219.06) |
3d | Colorless liquid | 62 | None | 207.09(207.04) |
3e | White solid | 78 | 55—56 | 223.04(223.01) |
3f | White solid | 61 | 75—76 | 266.91(266.96) |
3g | White solid | 76 | 33—34 | 245.10(245.11) |
3h | Colorless liquid | 62 | None | 234.05(234.03) |
3i | White solid | 67 | 74—77 | 247.04(247.05) |
3j | White solid | 62 | 78—80 | 237.06(237.02) |
3k | Colorless liquid | 60 | None | 223.04(223.01) |
3l | Yellow liquid | 52 | None | 266.91(266.96) |
3m | Colorless liquid | 55 | None | 203.07(203.06) |
3n | Yellow liquid | 70 | None | 203.07(203.06) |
3o | Colorless liquid | 73 | None | 207.09(207.04) |
3p | Yellow liquid | 72 | None | 266.91(266.96) |
3q | White solid | 57 | 85—87 | 239.01(239.06) |
3r | Yellow solid | 47 | 73—75 | 195.03(195.00) |
3s | Colorless liquid | 61 | None | 203.07(203.06) |
3t | Colorless liquid | 58 | None | 265.07(265.10) |
3u | Colorless liquid | 56 | None | 201.04(201.03) |
3v | Colorless liquid | 61 | None | 215.11(215.06) |
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ | 19F NMR(376 MHz, CDCl3), δ |
---|---|---|---|
3a | 8.02—7.87(m, 2H), 7.70—7.60(m, 1H), 7.59—7.42(m, 2H), 3.81(q, J=10.0 Hz, 2H) | 189.70, 134.18, 133.09, 128.90, 128.30, 123.97(q,J=277.75 Hz), 42.03(q, J=28.2Hz) | -62.04 |
3b | 7.84(d,J=8.2 Hz, 2H), 7.30(d, J=8.3Hz, 2H), 3.77(q, J=10.1 Hz, 2H), 2.44(s, 3H) | 189.29, 145.28, 133.35, 129.57, 128.45, 124.05(q,J=277.75 Hz), 41.92(q, J=28.1 Hz), 21.66 | -62.03 |
3c | 7.93(d, J=8.9 Hz, 2H), 6.98(d, J=8.9 Hz, 2H), 3.90(s, 3H), 3.76(q, J=10.1 Hz, 2H) | 188.11, 164.30, 131.95, 130.77, 124.07(q, J=277.75 Hz), 114.05, 55.55, 41.76(d, J=28.0 Hz) | -61.97 |
3d | 7.98(dd,J=8.8, 5.3 Hz, 2H), 7.19(t, J=8.5 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.11, 166.32(d,J=257.1 Hz), 132.22, 131.12(d, J=9.6 Hz), 123.85(q, J=277.75 Hz), 116.16(d, J=22.2 Hz), 42.07(q, J=28.4 Hz) | -62.04, -102.89 |
3e | 7.88(d, J=8.6 Hz, 2H), 7.49(d, J=8.6 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.53, 140.86, 134.06, 129.73, 129.29, 123.80(q,J=277.75 Hz), 42.11(q, J=28.4 Hz) | -62.01 |
3f | 7.80(d, J=8.5 Hz, 2H), 7.65(d, J=8.5 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.72, 134.44, 132.27, 129.76, 129.62, 123.66(q,J=277.75 Hz), 42.06(q, J=28.5 Hz) | -62.01 |
3g | 7.89(d, J=8.6 Hz, 2H), 7.53(d, J=8.7 Hz, 2H), 3.79(q, J=10.1 Hz, 2H), 1.36(s, 9H) | 189.26, 158.15, 133.25, 129.65, 125.86, 124.10(q,J=277.75 Hz), 41.94(q, J=28.1 Hz), 35.22, 30.95 | -61.99 |
3h | 8.37(d, J=8.9 Hz, 2H), 8.12(d, J=8.9 Hz, 2H), 3.88(q, J=9.7 Hz, 2H) | 188.34, 150.86, 139.89, 129.44, 124.14, 123.51(q,J=278.76 Hz), 42.65(q, J=28.9 Hz) | -61.99 |
3i | 7.89(d,J=8.7 Hz, 2H), 7.20—7.14(m, 2H), 3.71(q, J=10.0 Hz, 2H), 2.26(s, 3H) | 188.52, 168.70, 155.11, 133.24, 131.00, 130.00, 123.88(q, J=277.75 Hz), 122.14, 42.01(q, J=28.3 Hz), 21.06 | -62.04 |
3j | 7.94(d,J=8.3 Hz, 2H), 7.54(d, J=8.2 Hz, 2H), 4.64(s, 2H), 3.82(q, J=10.0 Hz, 2H) | 189.12, 143.57, 135.47, 128.93, 128.74, 123.89(q,J=278.76 Hz), 44.97, 42.08(q, J=28.3 Hz) | -62.03 |
3k | 7.54(d,J=7.7 Hz, 1H), 7.48—7.30(m, 2H), 7.31—7.25(m, 1H), 3.74(q, J=10.0 Hz, 2H) | 193.26, 139.82, 133.89, 132.69, 129.52, 129.10, 127.73, 123.80(q,J=278.76 Hz), 45.71(q, J=28.4 Hz) | -62.14 |
3l | 7.49—7.44(m, 1H), 7.43—7.33(m, 2H), 7.33—7.27(m, 1H), 3.79(q,J=10.0 Hz, 2H) | 192.35, 137.56, 132.95, 131.16, 130.73, 129.66, 127.66, 123.43(q,J=277.75 Hz), 46.06(q, J=28.3 Hz) | -62.22 |
3m | 7.63(d,J=7.8 Hz, 1H), 7.46(t, J=7.4 Hz, 1H), 7.32(t, J=7.7 Hz, 2H), 3.76(q, J=10.1 Hz, 2H), 2.55(s, 3H) | 192.67, 139.54, 135.81, 132.52, 132.45, 131.72, 128.88, 123.49(q,J=277.75 Hz), 44.28(d, J=27.7 Hz), 21.52 | -62.10 |
3n | 7.79—7.70(m, 2H), 7.50—7.34(m, 2H), 3.79(q,J=10.0 Hz, 2H), 2.43(s, 3H) | 189.85, 138.84, 135.80, 134.94, 128.75, 128.74, 125.54,124.03(q, J=277.75 Hz), 42.03(q, J=28.1 Hz), 21.25 | -62.08 |
3o | 7.75—7.69(m, 1H), 7.63(dt, J=9.2, 2.1 Hz, 1H), 7.57—7.46(m, 1H), 7.35(tdd, J=8.2, 2.6, 0.9 Hz, 1H), 3.80(q, J=9.9 Hz, 2H) | 188.55, 162.89(d, J=249.1 Hz), 137.68, 130.68(d, J=7.7 Hz), 124.11(d, J=3.1 Hz), 123.77(q, J=277.75 Hz), 121.31(d, J=21.5 Hz), 115.06(d, J=22.7 Hz), 42.26(q, J=28.6 Hz) | -62.13, -110.94 |
3p | 8.06(s, 1H), 7.86(d,J=9.4 Hz, 1H), 7.77(d, J=9.9 Hz, 1H), 7.40(t, J=7.9 Hz, 1H), 3.79(q, J=9.9 Hz, 2H) | 188.45, 137.36, 137.04, 131.31, 130.48, 126.83, 123.72(q, J=278.76 Hz), 123.27, 42.16(q, J=28.5 Hz) | -62.05 |
3q | 8.40(s, 1H), 8.06—7.85(m, 4H), 7.71—7.54(m, 2H), 3.94(q, J=10.0 Hz, 2H) | 189.59, 135.87, 134.50, 132.24, 130.47, 129.63, 129.14, 128.84, 127.79, 127.13, 124.08(q,J=277.75 Hz), 123.35, 42.04(q, J=28.1 Hz) | -61.88 |
3r | 7.78—7.71(m, 2H), 7.19(dd,J=4.9, 3.9 Hz, 1H), 3.72(q, J=10.1 Hz, 2H) | 182.17, 143.12, 135.71, 133.43, 128.48, 123.62(q,J=278.76 Hz), 42.96(q, J=28.7 Hz) | -61.95 |
3s | 7.96(d,J=7.4 Hz, 2H), 7.64(t, J=7.4 Hz, 1H), 7.52(t, J=7.8 Hz, 2H), 4.40—4.06(m, 1H), 1.48(d, J=7.2 Hz, 3H) | 194.38, 135.6, 133.97, 128.88, 128.56, 125.06(q, J=280.78 Hz), 44.24(q, J=26.5 Hz), 11.67 | -68.29 |
3t | 7.96—7.87(m, 2H), 7.55—7.51(m, 1H), 7.51—7.46(m, 2H), 7.41—7.37(m, 5H), 5.31(q, J=8.2 Hz, 1H) | 191.08, 135.32, 133.77, 129.80, 129.26, 129.17, 128.78, 128.75, 126.86, 124.26(q, J=281.79 Hz), 56.52(q, J=26.6 Hz) | -66.50 |
3u | 7.81(d,J=7.7 Hz, 1H), 7.74—7.63(m, 1H), 7.53(d, J=7.8 Hz, 1H), 7.43(t, J=7.5 Hz, 1H), 3.51—3.37(m, 2H), 3.36—3.26(m, 1H) | 196.82, 152.05, 135.78, 130.87, 128.13, 126.48, 124.89(q,J=279.77 Hz), 124.62, 49.69(q, J=27.4 Hz), 27.53(q, J=2.4 Hz) | -67.75 |
3v | 8.06(dd,J=7.9, 1.1 Hz, 1H), 7.53(td, J=7.5, 1.4 Hz, 1H), 7.35(t, J=7.6 Hz, 1H), 7.28(d, J=7.6 Hz, 1H), 3.38—3.20(m, 1H), 3.17—3.03(m, 2H), 2.51(dq, J=13.7, 4.6 Hz, 1H), 2.27(dddd, J=13.4, 11.9, 10.0, 5.8 Hz, 1H) | 190.20, 143.05, 134.15, 131.85, 128.75, 127.77, 127.04, 125.03(q,J=280.78 Hz), 50.83(q, J=25.6 Hz), 27.49, 23.40(q, J=2.6 Hz) | -67.55 |
Table 2 1H NMR, 13C NMR and 19F NMR data for compounds 3a—3v
Compd. | 1H NMR(400 MHz, CDCl3), δ | 13C NMR(101 MHz, CDCl3), δ | 19F NMR(376 MHz, CDCl3), δ |
---|---|---|---|
3a | 8.02—7.87(m, 2H), 7.70—7.60(m, 1H), 7.59—7.42(m, 2H), 3.81(q, J=10.0 Hz, 2H) | 189.70, 134.18, 133.09, 128.90, 128.30, 123.97(q,J=277.75 Hz), 42.03(q, J=28.2Hz) | -62.04 |
3b | 7.84(d,J=8.2 Hz, 2H), 7.30(d, J=8.3Hz, 2H), 3.77(q, J=10.1 Hz, 2H), 2.44(s, 3H) | 189.29, 145.28, 133.35, 129.57, 128.45, 124.05(q,J=277.75 Hz), 41.92(q, J=28.1 Hz), 21.66 | -62.03 |
3c | 7.93(d, J=8.9 Hz, 2H), 6.98(d, J=8.9 Hz, 2H), 3.90(s, 3H), 3.76(q, J=10.1 Hz, 2H) | 188.11, 164.30, 131.95, 130.77, 124.07(q, J=277.75 Hz), 114.05, 55.55, 41.76(d, J=28.0 Hz) | -61.97 |
3d | 7.98(dd,J=8.8, 5.3 Hz, 2H), 7.19(t, J=8.5 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.11, 166.32(d,J=257.1 Hz), 132.22, 131.12(d, J=9.6 Hz), 123.85(q, J=277.75 Hz), 116.16(d, J=22.2 Hz), 42.07(q, J=28.4 Hz) | -62.04, -102.89 |
3e | 7.88(d, J=8.6 Hz, 2H), 7.49(d, J=8.6 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.53, 140.86, 134.06, 129.73, 129.29, 123.80(q,J=277.75 Hz), 42.11(q, J=28.4 Hz) | -62.01 |
3f | 7.80(d, J=8.5 Hz, 2H), 7.65(d, J=8.5 Hz, 2H), 3.78(q, J=9.9 Hz, 2H) | 188.72, 134.44, 132.27, 129.76, 129.62, 123.66(q,J=277.75 Hz), 42.06(q, J=28.5 Hz) | -62.01 |
3g | 7.89(d, J=8.6 Hz, 2H), 7.53(d, J=8.7 Hz, 2H), 3.79(q, J=10.1 Hz, 2H), 1.36(s, 9H) | 189.26, 158.15, 133.25, 129.65, 125.86, 124.10(q,J=277.75 Hz), 41.94(q, J=28.1 Hz), 35.22, 30.95 | -61.99 |
3h | 8.37(d, J=8.9 Hz, 2H), 8.12(d, J=8.9 Hz, 2H), 3.88(q, J=9.7 Hz, 2H) | 188.34, 150.86, 139.89, 129.44, 124.14, 123.51(q,J=278.76 Hz), 42.65(q, J=28.9 Hz) | -61.99 |
3i | 7.89(d,J=8.7 Hz, 2H), 7.20—7.14(m, 2H), 3.71(q, J=10.0 Hz, 2H), 2.26(s, 3H) | 188.52, 168.70, 155.11, 133.24, 131.00, 130.00, 123.88(q, J=277.75 Hz), 122.14, 42.01(q, J=28.3 Hz), 21.06 | -62.04 |
3j | 7.94(d,J=8.3 Hz, 2H), 7.54(d, J=8.2 Hz, 2H), 4.64(s, 2H), 3.82(q, J=10.0 Hz, 2H) | 189.12, 143.57, 135.47, 128.93, 128.74, 123.89(q,J=278.76 Hz), 44.97, 42.08(q, J=28.3 Hz) | -62.03 |
3k | 7.54(d,J=7.7 Hz, 1H), 7.48—7.30(m, 2H), 7.31—7.25(m, 1H), 3.74(q, J=10.0 Hz, 2H) | 193.26, 139.82, 133.89, 132.69, 129.52, 129.10, 127.73, 123.80(q,J=278.76 Hz), 45.71(q, J=28.4 Hz) | -62.14 |
3l | 7.49—7.44(m, 1H), 7.43—7.33(m, 2H), 7.33—7.27(m, 1H), 3.79(q,J=10.0 Hz, 2H) | 192.35, 137.56, 132.95, 131.16, 130.73, 129.66, 127.66, 123.43(q,J=277.75 Hz), 46.06(q, J=28.3 Hz) | -62.22 |
3m | 7.63(d,J=7.8 Hz, 1H), 7.46(t, J=7.4 Hz, 1H), 7.32(t, J=7.7 Hz, 2H), 3.76(q, J=10.1 Hz, 2H), 2.55(s, 3H) | 192.67, 139.54, 135.81, 132.52, 132.45, 131.72, 128.88, 123.49(q,J=277.75 Hz), 44.28(d, J=27.7 Hz), 21.52 | -62.10 |
3n | 7.79—7.70(m, 2H), 7.50—7.34(m, 2H), 3.79(q,J=10.0 Hz, 2H), 2.43(s, 3H) | 189.85, 138.84, 135.80, 134.94, 128.75, 128.74, 125.54,124.03(q, J=277.75 Hz), 42.03(q, J=28.1 Hz), 21.25 | -62.08 |
3o | 7.75—7.69(m, 1H), 7.63(dt, J=9.2, 2.1 Hz, 1H), 7.57—7.46(m, 1H), 7.35(tdd, J=8.2, 2.6, 0.9 Hz, 1H), 3.80(q, J=9.9 Hz, 2H) | 188.55, 162.89(d, J=249.1 Hz), 137.68, 130.68(d, J=7.7 Hz), 124.11(d, J=3.1 Hz), 123.77(q, J=277.75 Hz), 121.31(d, J=21.5 Hz), 115.06(d, J=22.7 Hz), 42.26(q, J=28.6 Hz) | -62.13, -110.94 |
3p | 8.06(s, 1H), 7.86(d,J=9.4 Hz, 1H), 7.77(d, J=9.9 Hz, 1H), 7.40(t, J=7.9 Hz, 1H), 3.79(q, J=9.9 Hz, 2H) | 188.45, 137.36, 137.04, 131.31, 130.48, 126.83, 123.72(q, J=278.76 Hz), 123.27, 42.16(q, J=28.5 Hz) | -62.05 |
3q | 8.40(s, 1H), 8.06—7.85(m, 4H), 7.71—7.54(m, 2H), 3.94(q, J=10.0 Hz, 2H) | 189.59, 135.87, 134.50, 132.24, 130.47, 129.63, 129.14, 128.84, 127.79, 127.13, 124.08(q,J=277.75 Hz), 123.35, 42.04(q, J=28.1 Hz) | -61.88 |
3r | 7.78—7.71(m, 2H), 7.19(dd,J=4.9, 3.9 Hz, 1H), 3.72(q, J=10.1 Hz, 2H) | 182.17, 143.12, 135.71, 133.43, 128.48, 123.62(q,J=278.76 Hz), 42.96(q, J=28.7 Hz) | -61.95 |
3s | 7.96(d,J=7.4 Hz, 2H), 7.64(t, J=7.4 Hz, 1H), 7.52(t, J=7.8 Hz, 2H), 4.40—4.06(m, 1H), 1.48(d, J=7.2 Hz, 3H) | 194.38, 135.6, 133.97, 128.88, 128.56, 125.06(q, J=280.78 Hz), 44.24(q, J=26.5 Hz), 11.67 | -68.29 |
3t | 7.96—7.87(m, 2H), 7.55—7.51(m, 1H), 7.51—7.46(m, 2H), 7.41—7.37(m, 5H), 5.31(q, J=8.2 Hz, 1H) | 191.08, 135.32, 133.77, 129.80, 129.26, 129.17, 128.78, 128.75, 126.86, 124.26(q, J=281.79 Hz), 56.52(q, J=26.6 Hz) | -66.50 |
3u | 7.81(d,J=7.7 Hz, 1H), 7.74—7.63(m, 1H), 7.53(d, J=7.8 Hz, 1H), 7.43(t, J=7.5 Hz, 1H), 3.51—3.37(m, 2H), 3.36—3.26(m, 1H) | 196.82, 152.05, 135.78, 130.87, 128.13, 126.48, 124.89(q,J=279.77 Hz), 124.62, 49.69(q, J=27.4 Hz), 27.53(q, J=2.4 Hz) | -67.75 |
3v | 8.06(dd,J=7.9, 1.1 Hz, 1H), 7.53(td, J=7.5, 1.4 Hz, 1H), 7.35(t, J=7.6 Hz, 1H), 7.28(d, J=7.6 Hz, 1H), 3.38—3.20(m, 1H), 3.17—3.03(m, 2H), 2.51(dq, J=13.7, 4.6 Hz, 1H), 2.27(dddd, J=13.4, 11.9, 10.0, 5.8 Hz, 1H) | 190.20, 143.05, 134.15, 131.85, 128.75, 127.77, 127.04, 125.03(q,J=280.78 Hz), 50.83(q, J=25.6 Hz), 27.49, 23.40(q, J=2.6 Hz) | -67.55 |
Entry | Catalyst | Oxidant | Solvent | Reaction time/h | Yieldb(%) |
---|---|---|---|---|---|
1 | Rhodamine B | TBHP | DMF | 15 | 11 |
2 | Eosin Y | TBHP | DMF | 15 | 13 |
3 | Ru(bpy)3Cl2 | TBHP | DMF | 15 | 0 |
4 | Mes-Acr-Me+ClO4 | TBHP | DMF | 15 | 5 |
5 | Rose bengal | TBHP | DMF | 15 | Trace |
6 | Fluorescein | TBHP | DMF | 15 | 9 |
7 | 2,3-Butanedione | TBHP | DMF | 15 | 23 |
8 | 2,3-Butanedione | TBHP | DCM | 15 | 0 |
9 | 2,3-Butanedione | TBHP | MeCN | 15 | 36 |
10 | 2,3-Butanedione | TBHP | Acetone | 15 | 28 |
11 | 2,3-Butanedione | TBHP | EtOAc | 15 | 17 |
12 | 2,3-Butanedione | TBHP | THF | 15 | 21 |
13 | 2,3-Butanedione | TBHP | 1,4-Dioxane | 15 | 0 |
14 | 2,3-Butanedione | TBHP | V(MeCN):V(DMF)=1:1 | 15 | 50 |
15c | 2,3-Butanedione | — | V(MeCN):V(DMF)=1:1 | 15 | 29 |
16 | 2,3-Butanedione | K2S2O8 | V(MeCN):V(DMF)=1:1 | 15 | 35 |
17d | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 15 | 62 |
18e | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 68 |
19f | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 0 |
20g | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 0 |
Table 3 Conditions optimization of model reactiona
Entry | Catalyst | Oxidant | Solvent | Reaction time/h | Yieldb(%) |
---|---|---|---|---|---|
1 | Rhodamine B | TBHP | DMF | 15 | 11 |
2 | Eosin Y | TBHP | DMF | 15 | 13 |
3 | Ru(bpy)3Cl2 | TBHP | DMF | 15 | 0 |
4 | Mes-Acr-Me+ClO4 | TBHP | DMF | 15 | 5 |
5 | Rose bengal | TBHP | DMF | 15 | Trace |
6 | Fluorescein | TBHP | DMF | 15 | 9 |
7 | 2,3-Butanedione | TBHP | DMF | 15 | 23 |
8 | 2,3-Butanedione | TBHP | DCM | 15 | 0 |
9 | 2,3-Butanedione | TBHP | MeCN | 15 | 36 |
10 | 2,3-Butanedione | TBHP | Acetone | 15 | 28 |
11 | 2,3-Butanedione | TBHP | EtOAc | 15 | 17 |
12 | 2,3-Butanedione | TBHP | THF | 15 | 21 |
13 | 2,3-Butanedione | TBHP | 1,4-Dioxane | 15 | 0 |
14 | 2,3-Butanedione | TBHP | V(MeCN):V(DMF)=1:1 | 15 | 50 |
15c | 2,3-Butanedione | — | V(MeCN):V(DMF)=1:1 | 15 | 29 |
16 | 2,3-Butanedione | K2S2O8 | V(MeCN):V(DMF)=1:1 | 15 | 35 |
17d | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 15 | 62 |
18e | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 68 |
19f | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 0 |
20g | 2,3-Butanedione | H2O2 | V(MeCN):V(DMF)=1:1 | 18 | 0 |
[1] | Krik K. L ., Org. Process Res. & Dev., 2008, 12, 305—321 |
[2] | Yuan L., Li Z. Z., Jiang S. M., Zhu Y., Xia L. L., Li L., Zhao C. Q., Jiang T., Lei Q., Tang S., Chem. J. Chinese Universities, 2018, 39(2), 241—246 |
( 袁莉, 李增增, 蒋圣明, 朱勇, 夏绿露, 李岚, 赵传奇, 蒋婷, 雷千, 唐石. 高等学校化学学报, 2018, 39(2), 241—246) | |
[3] |
Furuya T., Kamlet A. S., Ritter T., Nature, 2011, 473(7348), 470—477
doi: 10.1038/nature10108 URL |
[4] |
Yang B., Xu X. H., Qing F. L., Org. Lett., 2015, 17(8), 1906—1909
URL pmid: 25806665 |
[5] | Zhang Y. C., Wen C. X., Zhang C. J., Li J. Z., Chem. Res. Chinese Universities, 2018, 34(4), 552—558 |
[6] |
Gillis E. P., Eastman K. J., Hill M. D., J. Med. Chem., 2015, 58(21), 8315—8359
URL pmid: 26200936 |
[7] | Han C. H., Salyer A. E., Kim E. H., Jiang X. Y., Jarrard R. E., Powers M. S., Kirchhoff A. M., Salvador T. K., Chester J. A., Hockerman G. H., Colby D. A., J. Med.Chem., 2013, 56(6), 2456—2465 |
[8] | Isanbor C., Hagan D. O., J. Fluorine Chem., 2006, 37(30), 303—319 |
[9] |
Maji A., Hazra A., Maiti D., Org. Lett., 2014, 16(17), 4524—4527
doi: 10.1021/ol502071g URL |
[10] |
Ishikawa T., Sonehara T., Minakawa M., Org. Lett., 2016, 18(6), 1422—1425
URL pmid: 26954725 |
[11] |
Lu Q., Liu C., Huang Z., Ma Y., Zhang J., Lei A. W., Chem. Comm., 2014, 50(91), 14101—14104
URL pmid: 25278113 |
[12] | Itoh K., Mikami K., Org. Lett., 2005, 7(4), 649—651 |
[13] |
Itoh Y., Houk K. N., Mikami K., J. Org. Chem., 2006, 71, 8918—8925
URL pmid: 17081023 |
[14] |
Malpani Y. R., Biswas B. K., Han H. S., Jung Y. S., Han S. B., Org. Lett., 2018, 20(7), 1693—1697
doi: 10.1021/acs.orglett.8b00410 URL |
[15] | Noritake S., Shibata N., Nakamura S., Toru T., Shiro M., Eur. J. Org. Chem., 2008, 3465—3468 |
[16] | Itoh Y., Mikami K., Org. Lett., 2005, 7(22), 4883—4885 |
[17] |
Mikami K., Tomita Y., Ichikava Y., Amikura K., Itoh Y., Org. Lett., 2006, 8(21), 4671—4673
URL pmid: 17020274 |
[18] | He Z. B., Zhang R., Hu M. Y., Li L. C., Ni C. F., Hu J. B., Chem. Sci., 2013, 4(9), 3478—3483 |
[19] | Li L., Chen Q. Y., Guo Y., J. Flu. Chem., 2014, 167(1), 79—83 |
[20] | Tomita R., Yasu Y., Koike T., Akita M., Angew. Chem. Int. Ed., 2014, 53(28), 7144—7148 |
[21] | Panday P., Garg P., Singh A., Asian J. Org. Chem., 2018, 7(1), 111—115 |
[22] |
Novak P., Lishchynskyi A., Grushin V. V., J. Am. Chem. Soc., 2012, 134(39), 16167—16170
URL pmid: 22998369 |
[23] |
Wu Y. B., Lu G. P., Yuan T., Chem. Comm., 2016, 52(94), 13668—13670
doi: 10.1039/c6cc08178a URL pmid: 27822575 |
[24] | Zhao L., Li P. H., Zhang H., Wang L., Org. Chem. Front., 2019, 6(1), 87—93 |
[25] | Deb A., Manna S., Modak A., Angew. Chem. Int. Ed., 2013, 52(37), 9747—9750 |
[26] | Itoh A., Yamaguchi E., Kamito Y., Synthesis, 2018, 50(16), 3161—3168 |
[27] | Coyle J. D., Marr G., J. Org. Chem., 1973, 60, 153—156 |
[28] |
Li L., Mu X., Liu W., Li C. J., J. Am. Chem. Soc., 2016, 138(18), 5809—5812
URL pmid: 27137478 |
[1] | 王倩颖, 崔树勋. 通过自由基抑制剂研究聚多巴胺的形成机理[J]. 高等学校化学学报, 2020, 41(6): 1378-1383. |
[2] | 王蕊,徐梅,谢家文,叶盛英,宋贤良. 水热反应条件对多孔球状Bi2WO6光催化剂结构及性能的影响[J]. 高等学校化学学报, 2020, 41(6): 1320-1328. |
[3] | 户志远, 万秋香, 周航, 宋传君, 常俊标. 5,5,8aβ-三甲基-6β-羟基-反八氢-1-萘酮的合成及在Phenylspirodrimane类混源萜天然产物骨架构建中的应用[J]. 高等学校化学学报, 2020, 41(5): 955-959. |
[4] | 薛云,晏秘,申妍铭,毛会玲,王晨,程琥,庄金亮. 锚定基团对HKUST-1/TEMPO共催化体系催化性能的影响[J]. 高等学校化学学报, 2020, 41(5): 1068-1075. |
[5] | 吴春晓, 艾心, 陈英鑫, 崔志远, 李峰. 卤素原子的引入对二苯甲基自由基光稳定性、光物理性质及电致发光器件性能的影响[J]. 高等学校化学学报, 2020, 41(5): 972-980. |
[6] | 左晓玲, 吴翀, 黄安荣, 罗姣莲, 李竹玉, 王梦, 周颖, 余洪钠, 郭建兵. 可见光响应的荧光增白剂基多功能光引发体系[J]. 高等学校化学学报, 2020, 41(4): 811-820. |
[7] | 杨瑾,曹艳,张乃东. 可见光/H2O2体系中的协同敏化[J]. 高等学校化学学报, 2020, 41(3): 505-511. |
[8] | 唐裕才,屈煌,张文熙,王菲菲,王钢. 无金属条件下I2/TBHP体系促进磺酰肼与烯醇硅醚自由基偶联反应合成α-磺酰基酮[J]. 高等学校化学学报, 2020, 41(1): 118-124. |
[9] | 张丹枫, 赵毛雨, 郭宁, 唐颂超, 郑安呐. “一锅法”N-(2-苯甲酰胺苯基)-水杨醛亚胺/TiCl4·2THF催化乙烯聚合[J]. 高等学校化学学报, 2019, 40(9): 2012-2019. |
[10] | 宋丽, 林家祥, 黄定海. 步进扫描差示扫描量热法研究不同链结构的聚乙烯类聚烯烃热力学特性[J]. 高等学校化学学报, 2019, 40(8): 1740-1747. |
[11] | 冉诗雅, 沈海峰, 李晓楠, 王子路, 郭正虹, 方征平. 三氟甲烷磺酸稀土盐对聚丙烯热稳定性的影响及机理[J]. 高等学校化学学报, 2019, 40(6): 1333-1340. |
[12] | 吴姗姗, 魏缠玲, 赵丽娟, 田央, 王霞, 龚波林. 新型磁性限进分子印迹复合材料的制备及富集性能[J]. 高等学校化学学报, 2019, 40(6): 1150-1157. |
[13] | 鲁新环, 陶佩佩, 黄锋锋, 张香归, 林志成, 潘海军, 张海福, 周丹, 夏清华. 纳米SnO2高效催化烯烃与H2O2环氧化反应研究[J]. 高等学校化学学报, 2019, 40(3): 528-535. |
[14] | 张晓涛, 王延安, 惠嘉, 石艳, 付志峰, 杨万泰. 四丁基碘化铵催化甲基丙烯酸甲酯的可逆-休眠自由基溶液聚合[J]. 高等学校化学学报, 2019, 40(2): 366-371. |
[15] | 蔡延超,牛鹏飞,沈振陆,李美超. 伯胺在电催化媒介ABNO作用下的自氧化偶联反应[J]. 高等学校化学学报, 2019, 40(11): 2308-2313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||