高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (11): 20220458.doi: 10.7503/cjcu20220458
董妍红1, 鲁新环1(), 杨璐1, 孙凡棋1, 段金贵2, 郭昊天1, 张钦峻1, 周丹1, 夏清华1(
)
收稿日期:
2022-07-01
出版日期:
2022-11-10
发布日期:
2022-08-24
通讯作者:
鲁新环,夏清华
E-mail:xinhuan003@aliyun.com;xiaqh518@aliyun.com
基金资助:
DONG Yanhong1, LU Xinhuan1(), YANG Lu1, SUN Fanqi1, DUAN Jingui2, GUO Haotian1, ZHANG Qinjun1, ZHOU Dan1, XIA Qinghua1(
)
Received:
2022-07-01
Online:
2022-11-10
Published:
2022-08-24
Contact:
LU Xinhuan,XIA Qinghua
E-mail:xinhuan003@aliyun.com;xiaqh518@aliyun.com
Supported by:
摘要:
采用转动水热晶化的合成方式, 以ZnO为锌源制备了锌钴金属有机骨架(ZnCo-MOF)双功能催化剂材料; 利用X射线衍射(XRD), 傅里叶变换红外光谱(FTIR), 扫描电子显微镜(SEM)和X射线光电子能谱(XPS)等手段表征了催化剂的形貌、 结构和组成. 该催化剂材料在微波加热辅助催化α-蒎烯和α-甲基苯乙烯双烯烃的空气环氧化反应中, 在不加任何引发剂或共还原剂条件下, 能够高转化率、 高选择性地得到环氧化物. 使用转动水热晶化法(110 r/min转速)合成的ZnCo-MOF催化剂拥有最佳的催化活性, 在对α-蒎烯和α-甲基苯乙烯进行催化环氧化反应时分别得到86.3%和99.8%(摩尔分数)的转化率, 对应的环氧化物的选择性分别达到93.8%和94.3%.
中图分类号:
TrendMD:
董妍红, 鲁新环, 杨璐, 孙凡棋, 段金贵, 郭昊天, 张钦峻, 周丹, 夏清华. 双功能金属有机骨架材料的制备及催化烯烃环氧化性能. 高等学校化学学报, 2022, 43(11): 20220458.
DONG Yanhong, LU Xinhuan, YANG Lu, SUN Fanqi, DUAN Jingui, GUO Haotian, ZHANG Qinjun, ZHOU Dan, XIA Qinghua. Preparation of Bifunctional Metal-organic Framework Materials and Application in Catalytic Olefins Epoxidation. Chem. J. Chinese Universities, 2022, 43(11): 20220458.
Fig.1 XRD patterns of ZnCo?MOF(180 °C, 24 h) catalysts synthesized by different methods(A), ZnCo?MOF?H(110 r/min, 24 h) catalysts synthesized at different crystallization temperatures(B), ZnCo?MOF?H(180 ℃, 110 r/min) catalysts under different crystallization time(C) and FTIR profiles of ZnCo?MOF(180 °C, 24 h) synthesized by different methods(D)
Fig.2 SEM images of ZnCo?MOF(180 °C, 24 h, 110 r/min) catalysts synthesized by different methods(A) Rotary hydrothermal method(110 r/min);(B) rotary dry gel method(110 r/min);(C) static hydrothermal method;(D) static dry gel method.
Catalyst | Temperature/℃ | Mass loss(%) | Total loss(%) |
---|---|---|---|
ZnCo?MOF?H?110 | 30—250 | 3.8 | 88.0 |
250—400 | 66.4 | ||
400—650 | 17.8 | ||
ZnCo?MOF?D?110 | 30—250 | 3.2 | 88.6 |
250—400 | 62.8 | ||
400—650 | 22.6 | ||
ZnCo?MOF?H?static | 30—250 | 3.7 | 74.2 |
250—400 | 52.1 | ||
400—650 | 18.4 | ||
ZnCo?MOF?D?static | 30—250 | 4.4 | 85.5 |
250—400 | 61.4 | ||
400—650 | 19.7 |
Table 1 Mass loss rates of different catalysts at different temperature stages
Catalyst | Temperature/℃ | Mass loss(%) | Total loss(%) |
---|---|---|---|
ZnCo?MOF?H?110 | 30—250 | 3.8 | 88.0 |
250—400 | 66.4 | ||
400—650 | 17.8 | ||
ZnCo?MOF?D?110 | 30—250 | 3.2 | 88.6 |
250—400 | 62.8 | ||
400—650 | 22.6 | ||
ZnCo?MOF?H?static | 30—250 | 3.7 | 74.2 |
250—400 | 52.1 | ||
400—650 | 18.4 | ||
ZnCo?MOF?D?static | 30—250 | 4.4 | 85.5 |
250—400 | 61.4 | ||
400—650 | 19.7 |
Fig.6 Effects of ZnCo?MOF prepared by different methods on the epoxidation reaction(A), effects of doping with different metal oxides on the catalytic activity(B)Reaction conditions: solvent: 10 g; catalyst: 30 mg(ZnCo-MOF 180 ℃-24 h-H-110 r/min); olefin[n(α-pinene)/n(α-methylstyrene)=5∶1]: 3 mmol; temperature: 85 ℃; time: 4 h; air flow rate: 30 mL/min.
Fig.7 Effects of different ZnO additions on catalytic activityReaction conditions: solvent: 10 g; catalyst: 30 mg(ZnCo-MOF 180 ℃-24 h-H-110 r/min); olefin[n(α-pinene)/n(α-methylstyrene)=5∶1]: 3 mmol; temperature: 85 ℃; time: 4 h; air flow rate: 30 mL/min.
Fig.8 Effect of different crystallization temperatures(A) and crystallization time(B) on the catalytic activity of ZnCo?MOFReaction conditions: solvent: 10 g; catalyst: 30 mg(ZnCo-MOF 180 ℃-24 h-H-110 r/min); olefin[n(α-pinene)/n(α-methylstyrene)=5∶1]: 3 mmol; temperature: 85 ℃; time: 4 h; air flow rate: 30 mL/min)
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | α?Pinene | No α?Methylstyrene | 58.3 | 58.3 | 93.5 |
2 | α?Pinene | 6∶1 | 72.6 | 75.4 | 92.9 |
α?Methylstyrene | 92.3 | 93.0 | |||
3 | α?Pinene | 5∶1 | 86.3 | 88.6 | 93.8 |
α?Methylstyrene | 99.8 | 94.3 | |||
4 | α?Pinene | 4∶1 | 82.4 | 85.4 | 92.8 |
α?Methylstyrene | 97.5 | 93.5 | |||
5 | α?Pinene | 3∶1 | 80.5 | 84.6 | 92.4 |
α?Methylstyrene | 96.9 | 93.0 | |||
6 | α?Pinene | 2∶1 | 76.3 | 82.3 | 92.3 |
α?Methylstyrene | 94.3 | 92.7 | |||
7 | α?Pinene | 1∶1 | 68.4 | 78.0 | 91.7 |
α?Methylstyrene | 87.7 | 92.0 | |||
8 | α?Pinene | 1∶2 | 57.9 | 73.3 | 90.1 |
α?Methylstyrene | 81.0 | 90.3 | |||
9 | α?Methylstyrene | No α?Pinene | 65.9 | 65.9 | 89.9 |
Table 2 Effects of different reaction molar ratios on the catalytic activity*
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | α?Pinene | No α?Methylstyrene | 58.3 | 58.3 | 93.5 |
2 | α?Pinene | 6∶1 | 72.6 | 75.4 | 92.9 |
α?Methylstyrene | 92.3 | 93.0 | |||
3 | α?Pinene | 5∶1 | 86.3 | 88.6 | 93.8 |
α?Methylstyrene | 99.8 | 94.3 | |||
4 | α?Pinene | 4∶1 | 82.4 | 85.4 | 92.8 |
α?Methylstyrene | 97.5 | 93.5 | |||
5 | α?Pinene | 3∶1 | 80.5 | 84.6 | 92.4 |
α?Methylstyrene | 96.9 | 93.0 | |||
6 | α?Pinene | 2∶1 | 76.3 | 82.3 | 92.3 |
α?Methylstyrene | 94.3 | 92.7 | |||
7 | α?Pinene | 1∶1 | 68.4 | 78.0 | 91.7 |
α?Methylstyrene | 87.7 | 92.0 | |||
8 | α?Pinene | 1∶2 | 57.9 | 73.3 | 90.1 |
α?Methylstyrene | 81.0 | 90.3 | |||
9 | α?Methylstyrene | No α?Pinene | 65.9 | 65.9 | 89.9 |
Fig.9 Epoxidation results under different reaction modesReaction conditions: solvent: 10 g, catalyst: 30 mg(ZnCo-MOF 180 ℃-24 h-H-110), olefin[n(α-pinene)/n(α-methylstyrene)=5∶1]: 3 mmol, temperature: 85 ℃, time: 4 h, air flow rate: 30 mL/min.
Fig.10 Effect of different reaction temperatures(A) and time(B) on the epoxidation of diolefinsReaction conditions: solvent: 10 g, catalyst: 30 mg(ZnCo-MOF 180 ℃-24 h-H-110 r/min), olefin[n(α-pinene)/n(α-methylstyrene)=5∶1]: 3 mmol, temperature: 85 ℃, time: 4 h, air flow rate: 30 mL/min.
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | ![]() | 5∶1 | 87.5 | 88.0 | 93.8 |
![]() | 90.6 | 95.5 | |||
2 | ![]() | 5∶1 | 79.8 | 82.4 | 100 |
![]() | 95.7 | 94.8 | |||
3 | ![]() | 5∶1 | 78.3 | 81.9 | 100 |
![]() | 99.8 | 96.9 | |||
4 | ![]() | 5∶1 | 59.0 | 51.6 | 94.6 |
![]() | 14.2 | 92.4 | |||
5 | ![]() | 5∶1 | 23.6 | 35.2 | 90.7 |
![]() | 93.3 | 96.2 |
Table 3 Results of epoxidation of different diolefins*
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | ![]() | 5∶1 | 87.5 | 88.0 | 93.8 |
![]() | 90.6 | 95.5 | |||
2 | ![]() | 5∶1 | 79.8 | 82.4 | 100 |
![]() | 95.7 | 94.8 | |||
3 | ![]() | 5∶1 | 78.3 | 81.9 | 100 |
![]() | 99.8 | 96.9 | |||
4 | ![]() | 5∶1 | 59.0 | 51.6 | 94.6 |
![]() | 14.2 | 92.4 | |||
5 | ![]() | 5∶1 | 23.6 | 35.2 | 90.7 |
![]() | 93.3 | 96.2 |
1 | Feng L., Shao L. X., Li S. J., Quan W. X., Zhuang J. L., Chem. J. Chinese Universities, 2022, 43(4), 20210867 |
冯丽, 邵兰兴, 李四骏, 全文选, 庄金亮. 高等学校化学学报, 2022, 43(4), 20210867 | |
2 | Zhu J., Xia T., Cui Y., Yang Y., Qian G. A., J. Solid State Chem., 2019, 270, 317—323 |
3 | Du T., Long Y., Tang Q., Li S. L., Liu L. Y., Chem. J. Chinese Universities, 2017, 38(2), 225—230 |
杜涛, 龙渊, 汤琦, 李生璐, 刘丽影. 高等学校化学学报, 2017, 38(2), 225—230 | |
4 | Orcajo G., Andres H. M., Villajos J. A., Martos C., Batas J. A., Calleja G., Int. J. Hydrogen Energy, 2018, 44, 19285—19293 |
5 | Sun H., Yu X., Ma X., Yang X., Ge M., Catal. Today, 2020, 355, 580—586 |
6 | Lu X. H., Tao P. P., Huang F. F., Zhang X. G., Lin Z. C., Pan H. J., Zhang H. F., Zhou D., Xia Q. H., Chem. J. Chinese Universities, 2019, 40(3), 528—535 |
鲁新环, 陶佩佩, 黄锋锋, 张香归, 林志成, 潘海军, 张海福, 周丹, 夏清华. 高等学校化学学报, 2019, 40(3), 528—535 | |
7 | Lazaro I. A., Forgan R. S., Coord. Chem. Rev., 2019, 380, 230—259 |
8 | Wang J., Schopfer M. P., Sarjeant A., Karlin K. D., J. Am. Chem. Soc., 2009, 131, 450—451 |
9 | Fu Y., Xu L., Shen H., Yang H., Zhang F., Zhu W., Chem. Eng. J., 2016, 299, 135—141 |
10 | Olaf C., Joan S. P., Miquel C., ACS Catal., 2017, 7, 5046—5053 |
11 | Takahiro S., Hisashi Y., ACS Catal., 2019, 9, 3384—3388 |
12 | Zhao W., Yang C. X., Cheng Z. G., Zhang Z.H., Green Chem., 2016, 18, 995—998 |
13 | Luis D., Karine D., Chatel G., Moores A. H., Green Chem., 2017, 19, 2855—2862 |
14 | Yang G. Q., Du H. Y., Liu J., Green Chem., 2017, 19, 675—681 |
15 | Santiago Portillo A., Navalón S., Cirujano F. G., ACS Catal., 2015, 5, 3216—3224 |
16 | Jing R., Lu X. H., Zhang H. F., Tao P. P., Pan H. J., Hu A., Zhou D., Xia Q. H., Chem. J. Chinese Universities, 2019, 40(4), 755—762 |
景润, 鲁新环, 张海福, 陶佩佩, 潘海军, 胡傲, 周丹, 夏清华. 高等学校化学学报, 2019, 40(4), 755—762 | |
17 | Qian W. H., Huang W., Cong Y. F., Li F. S., Chem. J. Chinese Universities, 2019, 40(6), 1178—1183 |
钱文浩, 黄玮, 丛玉凤, 李富盛. 高等学校化学学报, 2019, 40(6), 1178—1183 | |
18 | Wang R.Y., Liu X. F., Yang F., Gao S. Y., Zhou S. J., Kong Y., Appl. Surf. Sci., 2021, 537, 148100 |
19 | Bai C. H., Li A. Q., Yao X., Liu H., Li Y., Green Chem., 2016, 18, 1061—1069 |
20 | Shi D. Y., Wang S. J., Cui C. J., Zhou Q., Chen D., J. Clust. Sci., 2020, 32, 579—584 |
21 | Luz I., León A., Boronat M., Boronat F. X., Llabrési Xamena, Corma A., Catal. Sci. Technol., 2013, 3, 371—379 |
22 | Yang L., Zhang H. F., Tao P. P., Lu X. H., Li X. X., Wang C. L., Wang B. B., Yue F. F., Zhou D., Xia Q. H., ACS Appl. Mater. Interfaces, 2021, 13, 8474-8487 |
23 | Maksimchuk N. V., Kovalenko K. A., Fedin V. P., Kholdeeva O. A., Chem. Commun., 2012, 48, 6812—6814 |
24 | Lida H., Faezeh F., Reat. Kinet. Mech. Cat., 2013, 109, 67—75 |
25 | Liu X. K., Hu M.Y., Wang M. H., Biosens. Bioelectron., 2019, 123, 59—68 |
26 | Yu W. T., Luo M.B., Yang Y. X., J. Solid State Chem., 2019, 269, 264—270 |
27 | Pappas D. K., Boningari T., Boolchand P., Smirniotis P. G., J. Catal., 2016, 334, 1—13 |
28 | Zhang H. F., Lu X. H., Yang L., Hu Y., Yuan M. Y., Wang C. L., Liu Q. R., Yue F. F., Zhou D., Xia Q. H., Mol. Catal., 2021, 499, 111300 |
29 | Kong A. G., Mao C. Y., Lin Q. P., Wei X., Bu X. H., Feng P. Y., Dalton T., 2015, 44, 6748—6754 |
[1] | 冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 超薄Sm-MOF纳米片的合成及可见光催化降解芥子气模拟剂性能[J]. 高等学校化学学报, 2022, 43(4): 20210867. |
[2] | 闭格宁, 肖小华, 李攻科. 微波辅助萃取多物理场耦合模型的构建及验证[J]. 高等学校化学学报, 2022, 43(3): 20210739. |
[3] | 李海勃, 肖长发, 江龙, 黄云, 淡宜. MCM-41分子筛负载氯化铝催化丙烯酸甲酯与1-辛烯共聚[J]. 高等学校化学学报, 2021, 42(9): 2974. |
[4] | 王勇, 董彪, 孙娇, 董德录, 孙连坤. 基于分子筛模板的银/硅铝无定形结构复合材料的合成及光谱性质[J]. 高等学校化学学报, 2021, 42(10): 3233. |
[5] | 王鹏, 刘欢, 杨妲. 一氧化碳参与不饱和烃类化合物羰基化反应的研究进展[J]. 高等学校化学学报, 2021, 42(10): 3024. |
[6] | 郭淑佳, 王森, 张莉, 秦张峰, 王鹏飞, 董梅, 王建国, 樊卫斌. ZSM-5分子筛酸位分布及其甲醇制烯烃催化性能的定向管理与调控[J]. 高等学校化学学报, 2021, 42(1): 227. |
[7] | 张俊, 王彬, 潘莉, 马哲, 李悦生. 含咪唑离子聚乙烯离聚体的合成与性能[J]. 高等学校化学学报, 2020, 41(9): 2070. |
[8] | 徐文艺,冯乙巳. 2,3-丁二酮介导的CF3SO2Na与烯烃的氧化三氟甲基化反应[J]. 高等学校化学学报, 2020, 41(7): 1567. |
[9] | 周春妮, 郑子昂, 彭望明, 王洪波, 张玉敏, 王亮, 肖标. 微波辅助下铑催化二芳基膦酰胺与炔烃的C—H活化/环化反应[J]. 高等学校化学学报, 2020, 41(4): 726. |
[10] | 梁龙琪, 陈彩玲, 于影, 李雨昕, 李春光, 施展. 氨基酸包覆的YVO4∶Eu纳米粒子的合成、 发光及细胞成像性能[J]. 高等学校化学学报, 2020, 41(3): 425. |
[11] | 林俊洁, 王爽, 李伟强, 崔鑫, 黄超. 微波辅助无催化剂高效串联环化合成吡啶[2,3⁃d]嘧啶衍生物[J]. 高等学校化学学报, 2020, 41(12): 2749. |
[12] | 张荣慧, 闵灯, 王来来, 谢文健. 气相氟化合成氢氟烯烃催化剂的研究进展[J]. 高等学校化学学报, 2020, 41(10): 2199. |
[13] | 秦文兵, 林伟锋, 李鑫, 熊威, 刘国凯. 亲电二氟甲基试剂S⁃(二氟甲基)硫𬭩盐对1,1⁃偕二氰基烯烃的二氟甲基化: 二氟甲基取代全碳中心的有效构建[J]. 高等学校化学学报, 2020, 41(10): 2230. |
[14] | 张丹枫, 赵毛雨, 郭宁, 唐颂超, 郑安呐. “一锅法”N-(2-苯甲酰胺苯基)-水杨醛亚胺/TiCl4·2THF催化乙烯聚合[J]. 高等学校化学学报, 2019, 40(9): 2012. |
[15] | 宋丽, 林家祥, 黄定海. 步进扫描差示扫描量热法研究不同链结构的聚乙烯类聚烯烃热力学特性[J]. 高等学校化学学报, 2019, 40(8): 1740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||