Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (2): 326.doi: 10.7503/cjcu20160316
• Polymer Chemistry • Previous Articles
YANG Meiyue1, WANG Wei1,*(), TIAN Zhiqing1, LI Yingying1, YUAN Zhi1,2,*(
)
Received:
2016-05-05
Online:
2017-02-10
Published:
2016-12-26
Contact:
WANG Wei,YUAN Zhi
E-mail:duruo@nankai.edu.cn;zhiy@nankai.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Meiyue, WANG Wei, TIAN Zhiqing, LI Yingying, YUAN Zhi. Preparation of Glycyrrhetinic Acid-modified Sodium Alginate Microgel Spheres for 3D Cell Culture†[J]. Chem. J. Chinese Universities, 2017, 38(2): 326.
Fig.4 Fluorescence curves of pyrene solution with different ALG-GA-N(CH3)2 concentration(A) and CAC value of ALG-GA-N(CH3)2(B)DS=5.68%. c[ALG-GA-N(CH3)2]/(mg·mL-1): a. 0.001; b. 0.05; c. 0.07; d. 0.09; e. 0.15; f. 0.25; g. 1.
Fig.5 Optical images of droplets formation with different Span 80 concentration voil=3.0 mL/h, vwater=1.5 mL/h. Mass fraction of Span 80(%): (A) 0; (B) 2; (C) 5; (D) 8.
Fig.7 Optical images of droplets formation of ALG-GA-N(CH3)2 with different DS of GA-N(CH3)2 c[ALG-GA-N(CH3)2]=12 mg/mL; v(Water)=1.5 mL/h, v(Oil)=6.0 mL/h. (A) DS=4.3%; (B) DS=8.6%; (C) DS=12.0%.
Fig.8 Optical images of droplets formation of ALG-GA-N(CH3)2 with different concentration DS=8.6%; v(Water)=1.5 mL/h, v(Oil)=6.0 mL/h. Concentration of ALG-GA-N(CH3)2/(mg·mL-1): (A) 9; (B) 12; (C) 15; (D) 18.
[1] | Zhang Y. J., Wang S. P., Eghtedari M., Motamedi M., Kotov N. A., Adv. Funct. Mater., 2005, 15(5), 725—731 |
[2] | Tibbitt M. W, Anseth K. S., Biotechnol. Bioeng., 2009, 103(4), 655—663 |
[3] | Drury J. L., Mooney D. J., Biomaterials,2003, 24(24), 4337—4351 |
[4] | Place E. S., George J. H., Williams C. K., Stevens M. M., Chem. Soc. Rev., 2009, 38(4), 1139—1151 |
[5] | Elliott N. T., Yuan F. A. N., J. Pharm. Sci., 2011, 100(1), 59—74 |
[6] | Sakai S., Ito S., Ogushi Y., Hashimoto I., Hosoda N., Biomaterials., 2009, 30(30), 5937—5942 |
[7] | Curcio E., Salerno S., Barbieri G., De B. L, Drioli E., Bader A., Biomaterials,2007, 28(36), 5487—5497 |
[8] | Lin R. Z., Chang H. Y., Biotechnol. J., 2008, 3(9/10),1172—1184 |
[9] | Wu Y., Zhao Z., Guan Y., Zhang Y., Acta Biomater., 2014, 10(5), 1965—1974 |
[10] | Wang D., Cheng D., Guan Y., Zhang Y., Biomacromolecules,2011, 12(3), 578—584 |
[11] | Morimoto Y., Tan W., Tsuda Y., Takeuchi S., Lab. Chip., 2009, 9(15), 2217—2223 |
[12] | Kintses B., Vliet L. D., Devenish S. R., Hollfelder F., Curr. Opin. Chem. Biol., 2010, 14, 548—555 |
[13] | Wang R., Yang W., Song Y., Shen X., Wang J., Zhong X., Sci. Rep., 2015, 5, 9189 |
[14] | Eun Y. J., Utada A. S., Copeland M. F., Takeuchi S., Weibel D. B., ACS Chem. Biol., 2011, 6(3), 260—266 |
[15] | Dolega M. E., Abeille F., Picollet D. N., Gidrol X., Biomaterials,2015, 52, 347—357 |
[16] | Capretto L., Mazzitelli S., Luca G., Nastruzzi C., Acta. Biomater., 2010, 6(2), 429—435 |
[17] | Wang Y. L., Wang J. Y., Analyst,2014, 139(10), 2449—2458 |
[18] | Cho C. S., Seo S. J., Park I. K., Kim S. H., Kim T. H., Hoshiba T., Biomaterials,2006, 27(4), 576—585 |
[19] | Chua K. N., Lim W. S., Zhang P., Lu H., Wen J., Ramakrishna S., Biomaterials,2005, 26(15), 2537—2547 |
[20] | Yang J., Goto M., Ise H., Cho C. S, Akaike T., Biomaterials,2002, 23, 471—479 |
[21] | Park I. K., Yang J., Jeong H. J., Bom H. S., Harada I., Akaike T., Biomaterials,2003, 24(13), 2331—2337 |
[22] | Dai W. G., Saltzman W. M., Biotechnol. Bioeng., 1996, 50, 349—356 |
[23] | Guo H., Yang C. L., Hu Z. P., Wang W., Wu Y. K., Lai Q. Y., Yuan Z., J. Mater. Chem. B., 2013, 1(43), 5933—5941 |
[24] | Negishi M., Irie A., Nagata N., Ichikawa A., Biochim. Biophys. Acta. Biomembr., 1991, 1066(1), 77—82 |
[25] | Ishida S., Sakiya Y., Ichikawa T., Taira Z., Biol. Pharm. Bull., 1993, 16(3), 293—297 |
[26] | Huang W., Wang W., Wang P., Tian Q., Zhang C., Wang C., Acta. Biomater., 2010, 6(10), 3927—3935 |
[27] | Huang W., Wang W., Wang P., Zhang C. N., Tian Q., Zhang Y., J. Mater. Sci. Mater. Med., 2011, 22(4), 853—863 |
[28] | Tian Q., Wang X. H, Wang W., Zhang C. N., Wang P., Yuan Z., Nanomedicine. Nanotechnolog., Biol Med., 2012, 8(6), 870—879 |
[29] | Zhang C., Wang W., Liu T., Wu Y., Guo H., Wang P., Biomaterials,2012, 33(7), 2187—2196 |
[30] | Tian Z., Yang C., Wang W., Yuan Z., ACS. Appl. Mater. Interfaces., 2014, 6(20), 17865—17876 |
[31] | Beseda I., Czollner L., Shah P. S., Khunt R., Gaware R., Kosma P., Bioorg. Med. Chem., 2010, 18(1), 433—454 |
[32] | Song Y. J., Liu F., Sun B., J. Appl. Polym. Sci., 2005, 95(5),1251—1261 |
[33] | Song Y. J., Liu C. G., J. Appl. Polym. Sci., 2006, 101(6), 3781—3790 |
[34] | Pawar S. N., Edgar K. J., Biomacromolecules,2011, 12(11), 4095—4103 |
[35] | Song Y., Sun Q., Zhang T., Jin P., Han L., J. Nanoparticle. Res., 2010, 12(7), 2689—2697 |
[36] | Tan W. H., Takeuchi S., Adv. Mater., 2007, 19(18), 2696—2701 |
[1] | WANG Mingxia, LIU Zhihui, ZHU Zhen, LI Lingfeng, WANG Bowei. Preparation and Properties of Nano Lithium Magnesium Silicate-chitosan-sodium Alginate Composite Scaffold Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3240. |
[2] | WANG Bowei, MA Rui, WU Fan, LIU Zhihui, LI Lingfeng, ZHANG Xiao, LIU Dingkun, YANG Nan, LI Meihui, YANG Defeng, SUN Qi. Preparation and Characterization of Graphene Oxide-sodium Alginate-chitosan Composite Scaffold [J]. Chem. J. Chinese Universities, 2020, 41(9): 2099. |
[3] | YAN Ming,ZHOU Weidong,ZHANG Hong,SHI Junfeng,ZHAO Yunhe,YE Yongming,GUO Jing,YU Yue. PVA Microcrystalline Cross-linking and SA/PAA Double Network Synergistic Modification of SA Fiber † [J]. Chem. J. Chinese Universities, 2020, 41(2): 349. |
[4] | WANG Qiuxian,LI Kai,YANG Beining,YUE Hongyun,YANG Shuting. Sodium Alginate Directed Synthesis of ZnFe2O4 with Micro-nano Structure and Its Performance in Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2039. |
[5] | LIU Zhihui,QIU Tianyuan,DU Liuyi,YANG Junxing,LIU Kang,WANG Bowei. Preparation and Characterization of Chitosan Alginate Plastic Scaffolds† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1105. |
[6] | WU Jing, GUO Jing, ZHANG Sen, GONG Yumei, ZHANG Hong. Correlativity of Characterization for Sodium Alginate/Antarctic Krill Protein by Salt Concentration† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1701. |
[7] | SHI Zhanping, SHI Mai, ZHANG Wenhui, SHEN Shigang, YUE Zhilian, YANG Hui, DING Liang, PAN Xuefeng. Preparation, Characterization and Toxicological Analysis of Alginate-phospholipid Vesicle Composite Hydrogels† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1270. |
[8] | LI Zhigang, ZHANG Yixuan, ZHANG Qingsong, MA Youwei, HU Tao, BAI Haihui, LIU Pengfei, WANG Ke, ZHANG Xiaoyong. Adsorption Kinetics/Thermodynamic Behavior and Adsorption/Desorption Mechanism of Crystal Violet by Semi-interpenetrating Sodium Alginate/Polyacrylamide Hydrogel† [J]. Chem. J. Chinese Universities, 2017, 38(11): 2118. |
[9] | Zhang Xin, LI Yang, CAO Hong, Ouyang Qiaofeng, Zheng Lanlan, LI Chun. Effect of the Ionic Liquids with Anion Tf2N- on the Whole Cell Catalytic Properties of Penicillium Purpurogenum Li-3 Strain† [J]. Chem. J. Chinese Universities, 2016, 37(10): 1870. |
[10] | GAO Pengbo, FENG Yuhong, LI Jiacheng, YAN Huiqiong, HUANG Junhao, WU Tiantian, HUANG Wenhong. Effect of Modified Sodium Alginate Aggregation Behavior on Electrospun Nanofiber Morphology† [J]. Chem. J. Chinese Universities, 2015, 36(4): 799. |
[11] | GUO Hua, YANG Chengling, WANG Wei, LAI Quanyong, YUAN Zhi. Preparation of Liver-targeted Nano-prodrug Based on Sodium Alginate Derivative and the Study on Antitumor Activity† [J]. Chem. J. Chinese Universities, 2014, 35(8): 1835. |
[12] | ZHU Lina, ZHU Ying, FANG Qun. Recent Progress of Microfluidic Techniques for Protein Crystallization and Screening† [J]. Chem. J. Chinese Universities, 2014, 35(1): 1. |
[13] | YAN Hui-Qiong, LI Jia-Cheng, FENG Yu-Hong, HU Wen-Tao, LIU Ruo-Lin, LIN Qiang. Stability and Release Properties of Drug-loaded Pickering Emulsions by the Modified Sodium Alginate Activated SiO2 Nanoparticles [J]. Chem. J. Chinese Universities, 2013, 34(9): 2164. |
[14] | CAO Hong, SUN Qian, LI Chun, LI Kai-Xiong, LI Jun. Effect of Hydrophilic Ionic Liquid [EMIM]BF4 on the Catalytic Activity of Immobilized β-Glucuronidase [J]. Chem. J. Chinese Universities, 2013, 34(8): 1873. |
[15] | GAO Zhen-Bei, HU Jun, KANG Xiao, XU Chuan-Lian, JU Yong. Synthesis of A-Ring Functional Derivatives of 18β-Glycyrrhetinic Acid and Their Antiproliferative Effect in Tumor Cells [J]. Chem. J. Chinese Universities, 2012, 33(04): 750. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||