Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (7): 1549.doi: 10.7503/cjcu20180116
• Polymer Chemistry • Previous Articles Next Articles
WEI Fuzhi1,2, FENG Wei3, XIA Yan1,2, LI Dongfeng1, HOU Ruibin1,2,*(
)
Received:2018-02-09
Online:2018-07-10
Published:2018-06-22
Contact:
HOU Ruibin
E-mail:hrb1018@163.com
Supported by:CLC Number:
TrendMD:
WEI Fuzhi, FENG Wei, XIA Yan, LI Dongfeng, HOU Ruibin. Synthesis and Mesocrystalline Properties of Glassy Liquid Crystal Compounds Based on Tetrathiofuvalene and Cyanobenzene†[J]. Chem. J. Chinese Universities, 2018, 39(7): 1549.
| Compd. | Appearance | Yield(%) | IR(KBr), | MALDI-TOF-MS[M++H](calcd.) |
|---|---|---|---|---|
| 1a | Orange solid | 23.5 | 2916, 2851, 2227, 1603, 1493, 1291, 1249, 1181, 1030, 824 | 1553(1554) |
| 1b | Orange solid | 25.6 | 2921, 2851, 2227, 1603, 1493, 1293, 1248, 1178, 1039, 824 | 1665(1666) |
| 1c | Orange solid | 22.8 | 2921, 2851, 2227, 1603, 1493, 1293, 1248, 1178, 1028, 825 | 1777(1778) |
Table 1 Appearance, yields, IR and MALDI-TOF-MS data of compounds 1a—1c
| Compd. | Appearance | Yield(%) | IR(KBr), | MALDI-TOF-MS[M++H](calcd.) |
|---|---|---|---|---|
| 1a | Orange solid | 23.5 | 2916, 2851, 2227, 1603, 1493, 1291, 1249, 1181, 1030, 824 | 1553(1554) |
| 1b | Orange solid | 25.6 | 2921, 2851, 2227, 1603, 1493, 1293, 1248, 1178, 1039, 824 | 1665(1666) |
| 1c | Orange solid | 22.8 | 2921, 2851, 2227, 1603, 1493, 1293, 1248, 1178, 1028, 825 | 1777(1778) |
| Compd. | 1H NMR(CDCl3, 400 MHz), δ | 13C NMR(CDCl3, 100 MHz), δ |
|---|---|---|
| 1a | 7.69(d, J=8.0 Hz, 8H), 7.63(d, J= 8.0 Hz, 8H), 7.52(d, J=8.0 Hz, 8H), 6.99(d, J=8.0 Hz, 8H), 4.00(t, J=6.1 Hz, 8H), 2.82(t, J=8.0 Hz, 8H), 1.84—1.77(m, 8H), 1.68—1.61(m, 8H), 1.57(m, 8H), 1.52—1.32(m, 32H) | 159.77, 145.23, 132.6—57, 131.31, 128.33, 127.77, 127.06, 119.08, 115.09, 110.10, 109.95, 68.10, 36.23, 29.68, 29.22, 29.00, 28.39, 25.98 |
| 1b | 7.68(d, J=8.1 Hz, 8H), 7.63(d, J=8.2 Hz, 8H), 7.52(d, J=8.4 Hz, 8H), 6.98(d, J=8.5 Hz, 8H), 3.99(t, J=6.2 Hz, 8H), 2.81(t , 8H), 1.80(m, 8H), 1.63(m, 8H), 1.46(s, 8H), 1.41—1.26(m, 48H) | 159.84, 145.29, 132.32, 128.36, 127.10, 119.13, 115.13, 110.12, 68.20, 36.23, 29.76, 29.52, 29.46, 29.40, 29.28, 29.12, 28.52, 26.09 |
| 1c | 7.69(d, J=8.1 Hz, 8H), 7.64(d, J=8.2 Hz, 8H), 7.52(d, J=8.4 Hz, 8H), 7.00(d, J=8.5 Hz, 8H), 4.01(t, J=6.2 Hz, 8H), 2.82(s, 8H), 1.85—1.78(m, 8H), 1.68—1.60(m, 8H), 1.48—1.43(m, 8H), 1.43—1.27(m, 62H) | 159.65, 145.09, 132.40, 131.08, 128.15, 126.89, 118.93, 114.93,109.90, 68.02, 36.13, 29.58, 29.41, 29.34, 29.25, 29.09, 28.95, 28.35, 25.90 |
Table 2 NMR data of compounds 1a—1c
| Compd. | 1H NMR(CDCl3, 400 MHz), δ | 13C NMR(CDCl3, 100 MHz), δ |
|---|---|---|
| 1a | 7.69(d, J=8.0 Hz, 8H), 7.63(d, J= 8.0 Hz, 8H), 7.52(d, J=8.0 Hz, 8H), 6.99(d, J=8.0 Hz, 8H), 4.00(t, J=6.1 Hz, 8H), 2.82(t, J=8.0 Hz, 8H), 1.84—1.77(m, 8H), 1.68—1.61(m, 8H), 1.57(m, 8H), 1.52—1.32(m, 32H) | 159.77, 145.23, 132.6—57, 131.31, 128.33, 127.77, 127.06, 119.08, 115.09, 110.10, 109.95, 68.10, 36.23, 29.68, 29.22, 29.00, 28.39, 25.98 |
| 1b | 7.68(d, J=8.1 Hz, 8H), 7.63(d, J=8.2 Hz, 8H), 7.52(d, J=8.4 Hz, 8H), 6.98(d, J=8.5 Hz, 8H), 3.99(t, J=6.2 Hz, 8H), 2.81(t , 8H), 1.80(m, 8H), 1.63(m, 8H), 1.46(s, 8H), 1.41—1.26(m, 48H) | 159.84, 145.29, 132.32, 128.36, 127.10, 119.13, 115.13, 110.12, 68.20, 36.23, 29.76, 29.52, 29.46, 29.40, 29.28, 29.12, 28.52, 26.09 |
| 1c | 7.69(d, J=8.1 Hz, 8H), 7.64(d, J=8.2 Hz, 8H), 7.52(d, J=8.4 Hz, 8H), 7.00(d, J=8.5 Hz, 8H), 4.01(t, J=6.2 Hz, 8H), 2.82(s, 8H), 1.85—1.78(m, 8H), 1.68—1.60(m, 8H), 1.48—1.43(m, 8H), 1.43—1.27(m, 62H) | 159.65, 145.09, 132.40, 131.08, 128.15, 126.89, 118.93, 114.93,109.90, 68.02, 36.13, 29.58, 29.41, 29.34, 29.25, 29.09, 28.95, 28.35, 25.90 |
| Compd. | Second heating process | Second cooling process | |||||
|---|---|---|---|---|---|---|---|
| ΔHc(J/mol) | ΔHd(J/mol) | ||||||
| 1a | 11.54 | 101.21 | 5.53 | -5.16 | 98.48 | 8.32 | 284 |
| 1b | 9.86 | 108.40 | 7.86 | -7.75 | 104.43 | 2.96 | 292 |
| 1c | 8.50 | 108.56 | 2.46 | -11.09 | 105.07 | 5.98 | 278 |
Table 3 DSC and TGA measurement results of target compounds
| Compd. | Second heating process | Second cooling process | |||||
|---|---|---|---|---|---|---|---|
| ΔHc(J/mol) | ΔHd(J/mol) | ||||||
| 1a | 11.54 | 101.21 | 5.53 | -5.16 | 98.48 | 8.32 | 284 |
| 1b | 9.86 | 108.40 | 7.86 | -7.75 | 104.43 | 2.96 | 292 |
| 1c | 8.50 | 108.56 | 2.46 | -11.09 | 105.07 | 5.98 | 278 |
| [1] | Zhang X. Y., Hsu C. H., Ren X. K., Gu Y., Song B., Sun H. J., Yang S., Chen E. Q., Tu Y. F., Li X. H., Yang X. M., Li Y. W., Zhu X. L., Angew. Chem. Int. Ed., 2015, 54(1), 114—117 |
| [2] | Miyajima D., Araoka F., Takezoe H., Kim J., Kato K., Takata M., Aida T., Science, 2012, 336(6078), 209—213 |
| [3] | Chen L., Mali K. S., Puniredd S. R., Baumgarten M., Parvez K., Pisula W., Feyter S. D., Müllen K., J. Am. Chem. Soc., 2013, 135(36), 13531—13537 |
| [4] | Eimura H., Miller D. S., Wang X. G., Abbott N. L., Kato T., Chem. Mater., 2016, 28(4), 1170—1178 |
| [5] | Chen L., Puniredd S. R., Tan Y. Z., Baumgarten M., Zschieschang U., Enkelmann V., Pisula W., Feng X. L., Klauk H., Müllen K., J. Am. Chem. Soc., 2012, 134(43), 17869—17872 |
| [6] | Li W. S., Yamamoto Y., Fukushima T., Saeki A., Seki S., Tagawa S., Masunaga H., Sasaki S., Takata M., Aida T., J. Am. Chem. Soc., 2008, 130(28), 8886—8887 |
| [7] | Yasuda T., Shimizu T., Liu F., Ungar G., Kato T., J. Am. Chem. Soc., 2011, 133(34), 13437—13444 |
| [8] | Akutagawa T., Ohta T., Hasegawa T., Nakamura T., Christensen C. A., Becher J., PNAS, 2002, 99(8) 5028—5033 |
| [9] | Coronado E., Day P., Chem. Rev., 2004, 104(11), 5419—5448 |
| [10] | Talham D. R., Chem.Rev., 2004, 104(11), 5479—5502 |
| [11] | Bryce M. R., Adv. Mater., 1999, 11(1), 11—23 |
| [12] | Zhao B. T. ,Ma S. X., Tao J. J., Zhu W. M., Chem. J. Chinese Universities, 2017, 38(2), 193—199 |
| (赵邦屯, 马书修, 陶晶晶, 朱卫民.高等学校化学学报,2017, 38(2), 193—199) | |
| [13] | Miyajima D., Araoka F., Takezoe H., Kim J., Kato K., Takata M., Aida T., Angew. Chem. Int. Ed., 2011, 50(34), 7865—7869 |
| [14] | Pintre I.C., Serrano J. L., Ros M. B., Ortega J., Alonso I., Martínez-Perdiguero J., Folcia C. L., Etxebarria J., Goc F., Amabilino D. B., Puigmartí-Luis J., Gomar-Nadal E.,Chem. Commun., 2008, 2523—2525 |
| [15] | Kim D. Y., Wang L., Cao Y., Yu X. F., Cheng S. Z. D., Kuo S. W., Song D. H., Lee S. H., Lee M. H., Jeong K. U., J. Mater. Chem., 2012, 22, 16382—16389 |
| [16] | Jiang S., Wang H., Hou R. H., Zhong K. l., Yin B. Z., Heterocycles, 2012, 85(12), 3021—3028 |
| [17] | Hou R. B., Zhong K. l., Huang Z. G., Jin L. Y., Yin B. Z., Tetrahedron, 2011 67(6), 1238—1244 |
| [18] | Yelamaggad C. V., Shashikala I. S., Li Q., Chem. Mater., 2007, 19(26), 6561—6568 |
| [19] | Saez I. M., Goodby J. W., J. Mater. Chem., 2005, 15, 26—40 |
| [20] | Wang Y., Yoon H. G., Bisoyi H. K., Kumar S., Li Q., J. Mater. Chem., 2012, 22, 20363—20367 |
| [21] | Andreu R., Barberá J., Garín J., Orduna J., Serrano J. L., Sierra T., Leriche P., Sallé M., Riou A., Jubault M., Gorgues A., J. Mater. Chem., 1998, 8(4), 881—887 |
| [22] | Setia S., Sidiq S., Pal S. K., Tetrahedron Lett., 2012, 53(47), 6446—6450 |
| [1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
| [2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
| [3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
| [4] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
| [5] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
| [6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
| [7] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
| [8] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
| [9] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
| [10] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
| [11] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
| [12] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
| [13] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
| [14] | LIU Changhui, LIANG Guojun, LI Yanlu, CHENG Xiufeng, ZHAO Xian. Density Functional Theory Study of NH3 Adsorption on Boron Nanotubes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2263. |
| [15] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||