Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (11): 20220457.doi: 10.7503/cjcu20220457
• Physical Chemistry • Previous Articles Next Articles
LIU Yang1, LI Wangchang1, ZHANG Zhuxia2(), WANG Fang3, YANG Wenjing4, GUO Zhen4, CUI Peng(
)
Received:
2022-07-01
Online:
2022-11-10
Published:
2022-09-06
Contact:
ZHANG Zhuxia,CUI Peng
E-mail:zhangzhuxia@tyut.edu.cn;pcui@mail.gufe.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring[J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457.
Geometry | d(Sc1—C1)/ nm | d(Sc2—C1)/ nm | d(Sc3—C1)/ nm | d(Sc2—C2)/ nm | d(Sc3—C2)/ nm | d(Sc1—Sc2)/ nm | d(Sc1—Sc3)/ nm | d(Sc2—Sc3)/ nm | d(C1—C2)/ nm |
---|---|---|---|---|---|---|---|---|---|
Bat ray cluster in C80 | 0.209 | 0.223 | 0.224 | 0.214 | 0.214 | 0.336 | 0.337 | 0.416 | 0.129 |
Trifoliate cluster in C80 | 0.209 | 0.224 | 0.224 | 0.213 | 0.214 | 0.362 | 0.371 | 0.397 | 0.130 |
Bat ray cluster in C80?[ | 0.208 | 0.227 | 0.227 | 0.212 | 0.211 | 0.354 | 0.378 | 0.394 | 0.128 |
Trifoliate cluster in C80?[ | 0.209 | 0.223 | 0.223 | 0.213 | 0.214 | 0.377 | 0.353 | 0.398 | 0.130 |
Bat ray [ in cluster C80 | 0.200 | 0.229 | 0.222 | 0.215 | 0.201 | 0.341 | 0.371 | 0.399 | 0.129 |
Table 1 Geometric parameters of Sc3C2 clusters
Geometry | d(Sc1—C1)/ nm | d(Sc2—C1)/ nm | d(Sc3—C1)/ nm | d(Sc2—C2)/ nm | d(Sc3—C2)/ nm | d(Sc1—Sc2)/ nm | d(Sc1—Sc3)/ nm | d(Sc2—Sc3)/ nm | d(C1—C2)/ nm |
---|---|---|---|---|---|---|---|---|---|
Bat ray cluster in C80 | 0.209 | 0.223 | 0.224 | 0.214 | 0.214 | 0.336 | 0.337 | 0.416 | 0.129 |
Trifoliate cluster in C80 | 0.209 | 0.224 | 0.224 | 0.213 | 0.214 | 0.362 | 0.371 | 0.397 | 0.130 |
Bat ray cluster in C80?[ | 0.208 | 0.227 | 0.227 | 0.212 | 0.211 | 0.354 | 0.378 | 0.394 | 0.128 |
Trifoliate cluster in C80?[ | 0.209 | 0.223 | 0.223 | 0.213 | 0.214 | 0.377 | 0.353 | 0.398 | 0.130 |
Bat ray [ in cluster C80 | 0.200 | 0.229 | 0.222 | 0.215 | 0.201 | 0.341 | 0.371 | 0.399 | 0.129 |
System | IP/eV | EA/eV |
---|---|---|
Benzene | 8.86 | -2.10 |
[ | 5.88 | 1.05 |
Sc3C2@C80 | 6.68 | 2.87 |
Sc3C2@C80?[ | 6.15 | 2.63 |
Table 2 Electron ionization potential(IP) and electron affinity(EA)
System | IP/eV | EA/eV |
---|---|---|
Benzene | 8.86 | -2.10 |
[ | 5.88 | 1.05 |
Sc3C2@C80 | 6.68 | 2.87 |
Sc3C2@C80?[ | 6.15 | 2.63 |
1 | Goswami S., Ray D., Otake K. I., Kung C. W., Garibay S. J., Islamoglu T., Atilgan A., Cui Y., Cramer C. J., Hupp J. T., Farha O. K., Chem. Sci., 2018, 9(19), 4477—4482 |
2 | Dogru M., Handloser M., Auras F., Kunz T., Medina D., Hartschuh A., Knochel P., Bein T., Angew. Chem. Int. Ed., 2013, 52(10), 2920—2924 |
3 | Guo J., Xu Y., Jin S., Chen L., Kaji T., Honsho Y., Addicoat M. A., Kim J., Saeki A., Ihee H., Ihee H., Seki S., Irle S., Hiramoto M., Gao J., Jiang D., Nat. Commun., 2013, 4(1), 2736 |
4 | He L., Chen C., Li F., Zhu Y. Z., Zheng J. Y., Chem. J. Chinese Universities, 2012, 33(6),1205—1213 |
贺林, 陈晨, 李飞, 朱义州, 郑健禺. 高等学校化学学报, 2012, 33(6),1205—1213 | |
5 | Nie X., Kulkarni A., Sholl D. S., J. Phys. Chem. Lett., 2015, 6(9), 1586—1591 |
6 | Ray D., Goswami S., Duan J., Hupp J. T., Cramer C. J., Gagliardi L., Chem. Mater., 2021, 33(4), 1182—1189 |
7 | Sheberla D., Bachman J. C., Elias J. S., Sun C. J., Shao⁃Horn Y., Dincă M., Nat. Mater., 2016, 16(2), 220—224 |
8 | Peeks M. D., Claridge T. D., Anderson H. L., Nature, 2017, 541(7636), 200—203 |
9 | Toriumi N., Muranaka A., Kayahara E., Yamago S., Uchiyama M., J. Am. Chem. Soc., 2015, 137(1), 82—85 |
10 | Iwamoto T., Watanabe Y., Sadahiro T., Haino T., Yamago S., Angew. Chem. Int. Ed. Engl., 2011, 50(36), 8342—8344 |
11 | Stergiou A., Rio J., Griwatz J. H., Arcon D., Wegner H. A., Ewels C. P., Tagmatarchis N., Angew. Chem. Int. Ed. Engl., 2019, 58(49), 17745—17750 |
12 | Iwamoto T., Watanabe Y., Takaya H., Haino T., Yasuda N., Yamago S., Chem. Eur. J., 2013, 19(42), 14061—14068 |
13 | Iwamoto T., Slanina Z., Mizorogi N., Guo J., Akasaka T., Nagase S., Takaya H., Yasuda N., Kato T., Yamago S., Chem. Eur. J., 2014, 20(44), 14403—14409 |
14 | Nakanishi Y., Omachi H., Matsuura S., Miyata Y., Kitaura R., Segawa Y., Itami K., Shinohara H., Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3102—3106 |
15 | Zhao C., Meng H., Nie M., Wang X., Cai Z., Chen T., Wang D., Wang C., Wang T., J. Phys. Chem. C, 2019, 123(19), 12514—12150 |
16 | Zhang J., Zhao C., Meng H., Nie M., Li Q., Xiang J., Zhang Z., Wang C., Wang T., Carbon, 2020, 161, 694—701 |
17 | Yuan K., Guo Y. J., Zhao X., J. Phys. Chem. C, 2015, 119(9), 5168—5179 |
18 | Jasti R., Bhattacharjee J., Neaton J. B., Bertozzi C. R., J. Am. Chem. Soc., 2008, 130(52), 17646—17647 |
19 | Segawa Y., Miyamoto S., Omachi H., Matsuura S., Senel P., Sasamori T., Tokitoh N., Itami K., Angew. Chem. Int. Ed. Engl., 2011, 50(14), 3244—3248 |
20 | Shinohara H., Inakuma M., Hayashi N., Sato H., Saito Y., Kato T., Bandow S., J. Phys. Chem., 1994, 98(35), 8597—8599 |
21 | Iiduka Y., Wakahara T., Nakahodo T., Tsuchiya T., Sakuraba A., Maeda Y., Akasaka T., Yoza K., Horn E., Kato T., Liu M. T. H., Mizorogi N., Kobayashi K., Nagase S., J. Am. Chem. Soc., 2005, 127(36), 12500—12501 |
22 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams Ding F., Lipparini F.,Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 09, Rev. D.01, Gaussian Inc., Wallingford CT, 2013 |
23 | Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J., J. Am. Chem. Soc., 1994, 98(45), 11623—11627 |
24 | Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132(15), 154104 |
25 | te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T., Comput. Theor. Chem., 2001, 22(9), 931—967 |
26 | Becke A. D., Phys. Rev. A: Gen. Phys., 1988, 38(6), 3098—3100 |
27 | Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
28 | Lu T., Chen F., J. Mol. Graph. Model., 2012, 38, 314—323 |
29 | Zhang J., Lu T., PhysChemChemPhys, 2021, 23(36), 20323—20328 |
30 | Johnson E. R., Keinan S., Mori⁃Sanchez P., Contreras⁃Garcia J., Cohen A. J., Yang W., J. Am. Chem. Soc., 2010, 132(18), 6498—6506 |
31 | Humphrey W., Dalke A., Schulten K., J. Mol. Graph. Model., 1996, 14(1), 33—38 |
32 | Fang H., Cong H., Suzuki M., Bao L., Yu B., Xie Y., Mizorogi N., Olmstead M. M., Balch A. L., Nagase S., Akasaka T., Lu X., J. Am. Chem. Soc., 2014, 136(29), 10534—10540 |
33 | Rezac J., de la Lande A., J. Chem. Theory Comput., 2015, 11(2), 528—537 |
34 | Morokuma K., J. Chem. Phys., 1971, 55(3), 1236—1244 |
35 | Ziegler T., Rauk A., Theor. Chem. Acc., 1977, 46(1), 1—10 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[4] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[5] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[6] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[7] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[8] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[9] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[10] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[11] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[12] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[13] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[14] | LIU Changhui, LIANG Guojun, LI Yanlu, CHENG Xiufeng, ZHAO Xian. Density Functional Theory Study of NH3 Adsorption on Boron Nanotubes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2263. |
[15] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||