Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (8): 20220196.doi: 10.7503/cjcu20220196
• Physical Chemistry • Previous Articles Next Articles
HE Hongrui, XIA Wensheng(), ZHANG Qinghong, WAN Huilin
Received:
2022-03-30
Online:
2022-08-10
Published:
2022-05-09
Contact:
XIA Wensheng
E-mail:wsxia@xmu.edu.cn
Supported by:
CLC Number:
TrendMD:
HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane[J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196.
Cluster | Interaction with CO2 | Interaction with CH4 | ||||
---|---|---|---|---|---|---|
Active site* | ΔGa/(kJ·mol-1) | ΔGr/(kJ·mol-1) | Active site* | ΔGa/(kJ·mol-1) | ΔGr/(kJ·mol-1) | |
In2O3(S) | In—O(b3) | 87.11 | -262.63 | In—O(b3) | 150.08 | 96.48 |
In2O3(T) | In—O(b3) | 97.07 | -115.77 | In—O(b3) | 163.39 | -274.05 |
In4O6(S) | In—O(b1) | 110.92 | -64.64 | In—O(b1) | 148.74 | -129.54 |
In4O6(T) | In—O(b1) | 134.43 | -105.98 | In—O(b1) | 167.78 | -97.40 |
InO(OH)(S) | In—O(t)I | 8.87 | -98.62 | In—O(t) | 104.01 | -197.57 |
In—O(t)II | 56.82 | 42.97 | ||||
InO(OH)(T) | In—O(t)I | 39.58 | -54.18 | In—O(t) | 108.87 | 15.77 |
In—O(t)II | 44.23 | 1.13 | ||||
In2O2(OH)2(S) | In—O(b2) I | 16.99 | -31.63 | In—O(b2) | 113.09 | -3.72 |
In—O(t) II | 36.90 | -17.20 | ||||
In2O2(OH)2(T) | In—O(b2) I | 41.51 | 6.36 | In—O(b2) | 122.80 | -74.52 |
In—O(t) II | 52.84 | 44.52 | ||||
In3O4(OH)(S) | In—O(3c) I | 19.12 | -56.65 | In—O(b2)I | 51.25 | -241.21 |
In—O(b2)II | 61.34 | 24.64 | In—O(3c)II | 68.74 | -94.31 | |
In—O(b2)III | 5.86 | -66.32 | In—O(b2)III | 52.93 | -54.31 | |
In—O(b2)IV | 9.67 | -57.32 | ||||
In—O(t)V | 71.67 | -3.68 | ||||
In3O4(OH)(T) | In—O(3c)I | 60.29 | 5.02 | In—O(b2)I | 87.19 | -146.02 |
In—O(b2)II | 50.21 | -34.60 | In—O(3c)II | 118.91 | -95.94 | |
In—O(b2)III | 12.05 | -32.01 | In—O(b2)III | 134.98 | -43.97 | |
In—O(b2)IV | 10.88 | -62.76 | ||||
In—O(t)V | 75.77 | 17.28 | ||||
In4O5(OH)2(S) | In—O(b1)I | 18.24 | -55.02 | In—O(b1)I | 79.58 | -59.83 |
In—O(b1)II | 13.89 | -63.68 | In—O(b1)II | 38.74 | -194.68 | |
In—O(t)III | 33.01 | 76.23 | In—O(b1)III | 38.79 | -91.55 | |
In4O5(OH)2(T) | In—O(b1)I | 16.36 | -63.68 | In—O(b1)I | 92.55 | -74.81 |
In—O(b1)II | 34.98 | -52.55 | In—O(b1)II | 123.72 | -84.14 | |
In—O(t)III | 98.41 | 23.81 |
Table 1 Predicted activation free energy barrier(ΔGa) and reaction free energy(ΔGr) for the interaction of singlet/triplet(S/T) clusters with CO2 and CH4 at the level of UB3LYP/SDD+Def2TZVP and 298 K
Cluster | Interaction with CO2 | Interaction with CH4 | ||||
---|---|---|---|---|---|---|
Active site* | ΔGa/(kJ·mol-1) | ΔGr/(kJ·mol-1) | Active site* | ΔGa/(kJ·mol-1) | ΔGr/(kJ·mol-1) | |
In2O3(S) | In—O(b3) | 87.11 | -262.63 | In—O(b3) | 150.08 | 96.48 |
In2O3(T) | In—O(b3) | 97.07 | -115.77 | In—O(b3) | 163.39 | -274.05 |
In4O6(S) | In—O(b1) | 110.92 | -64.64 | In—O(b1) | 148.74 | -129.54 |
In4O6(T) | In—O(b1) | 134.43 | -105.98 | In—O(b1) | 167.78 | -97.40 |
InO(OH)(S) | In—O(t)I | 8.87 | -98.62 | In—O(t) | 104.01 | -197.57 |
In—O(t)II | 56.82 | 42.97 | ||||
InO(OH)(T) | In—O(t)I | 39.58 | -54.18 | In—O(t) | 108.87 | 15.77 |
In—O(t)II | 44.23 | 1.13 | ||||
In2O2(OH)2(S) | In—O(b2) I | 16.99 | -31.63 | In—O(b2) | 113.09 | -3.72 |
In—O(t) II | 36.90 | -17.20 | ||||
In2O2(OH)2(T) | In—O(b2) I | 41.51 | 6.36 | In—O(b2) | 122.80 | -74.52 |
In—O(t) II | 52.84 | 44.52 | ||||
In3O4(OH)(S) | In—O(3c) I | 19.12 | -56.65 | In—O(b2)I | 51.25 | -241.21 |
In—O(b2)II | 61.34 | 24.64 | In—O(3c)II | 68.74 | -94.31 | |
In—O(b2)III | 5.86 | -66.32 | In—O(b2)III | 52.93 | -54.31 | |
In—O(b2)IV | 9.67 | -57.32 | ||||
In—O(t)V | 71.67 | -3.68 | ||||
In3O4(OH)(T) | In—O(3c)I | 60.29 | 5.02 | In—O(b2)I | 87.19 | -146.02 |
In—O(b2)II | 50.21 | -34.60 | In—O(3c)II | 118.91 | -95.94 | |
In—O(b2)III | 12.05 | -32.01 | In—O(b2)III | 134.98 | -43.97 | |
In—O(b2)IV | 10.88 | -62.76 | ||||
In—O(t)V | 75.77 | 17.28 | ||||
In4O5(OH)2(S) | In—O(b1)I | 18.24 | -55.02 | In—O(b1)I | 79.58 | -59.83 |
In—O(b1)II | 13.89 | -63.68 | In—O(b1)II | 38.74 | -194.68 | |
In—O(t)III | 33.01 | 76.23 | In—O(b1)III | 38.79 | -91.55 | |
In4O5(OH)2(T) | In—O(b1)I | 16.36 | -63.68 | In—O(b1)I | 92.55 | -74.81 |
In—O(b1)II | 34.98 | -52.55 | In—O(b1)II | 123.72 | -84.14 | |
In—O(t)III | 98.41 | 23.81 |
Cluster | Active site* | q/e | Interaction with CO2 | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS | CO2 in TS | In in free cluster, qIn | O in free cluster, qO | qIn-qO | vTS/cm-1 | ΔGa/(kJ·mol-1) | ||
In2O3(S) | In—O(b3) | -0.184 | 0.184 | 1.878 | -1.131 | 3.009 | 187i | 87.11 |
In2O3(T) | In—O(b3) | -0.143 | 0.143 | 1.869 | -1.009 | 2.878 | 196i | 97.07 |
In4O6(S) | In—O(b1) | -0.103 | 0.103 | 1.956 | -1.416 | 3.372 | 195i | 110.92 |
In4O6(T) | In—O(b1) | -0.105 | 0.105 | 1.972 | -1.214 | 3.186 | 130i | 134.43 |
InO(OH)(S) | In—O(t)I | 0.193 | -0.193 | 1.889 | -1.204 | 3.903 | 170i | 8.87 |
In—O(t)II | 0.181 | -0.181 | 1.870 | -1.054 | 2.924 | 281i | 56.82 | |
InO(OH)(T) | In—O(t)I | 0.172 | -0.172 | 1.883 | -0.663 | 2.546 | 417i | 39.58 |
In—O(t)II | 0.125 | -0.125 | 1.380 | -1.087 | 2.466 | 275i | 44.23 | |
In2O2(OH)2(S) | In—O(b2)I | 0.124 | -0.124 | 2.077 | -1.366 | 3.443 | 199i | 16.99 |
In—O(t)II | 0.154 | -0.154 | 2.075 | -1.158 | 3.233 | 235i | 36.90 | |
In2O2(OH)2(T) | In—O(b2)I | 0.062 | -0.062 | 2.098 | -1.084 | 3.182 | 237i | 41.51 |
In—O(t)II | 0.165 | -0.165 | 2.093 | -1.060 | 3.153 | 251i | 52.84 | |
In3O4(OH)(S) | In—O(3c)I | 0.133 | -0.133 | 2.019 | -1.319 | 3.338 | 145i | 19.12 |
In—O(b2)II | 0.124 | -0.124 | 2.021 | -1.221 | 3.241 | 157i | 61.34 | |
In—O(b2)III | 0.137 | -0.137 | 2.014 | -1.361 | 3.375 | 129i | 5.86 | |
In—O(b2)IV | 0.134 | -0.134 | 2.016 | -1.334 | 3.350 | 135i | 9.67 | |
In—O(t)V | 0.432 | -0.432 | 2.111 | -1.077 | 3.188 | 158i | 71.67 | |
In3O4(OH)(T) | In—O(3c)I | 0.226 | -0.226 | 1.480 | -1.341 | 2.820 | 209i | 60.29 |
In—O(b2)II | 0.245 | -0.245 | 2.030 | -1.046 | 3.076 | 265i | 50.21 | |
In—O(b2)III | 0.213 | -0.213 | 2.029 | -1.273 | 3.202 | 147i | 12.05 | |
In—O(b2)IV | 0.101 | -0.101 | 2.026 | -1.279 | 3.205 | 146i | 10.88 | |
In—O(t)V | 0.254 | -0.254 | 1.486 | -1.377 | 2.863 | 237i | 75.77 | |
In4O5(OH)2(S) | In—O(b1)I | 0.436 | -0.436 | 2.082 | -1.301 | 3.382 | 181i | 18.24 |
In—O(b1)II | 0.171 | -0.171 | 2.014 | -1.407 | 3.421 | 184i | 13.89 | |
In—O(t)III | 0.376 | -0.376 | 2.001 | -1.407 | 3.207 | 186i | 33.01 | |
In4O5(OH)2(T) | In—O(b1)I | 0.144 | -0.144 | 2.014 | -1.327 | 3.340 | 152i | 16.36 |
In—O(b1)II | 0.347 | -0.347 | 2.014 | -1.201 | 3.215 | 197i | 34.98 | |
In—O(t)III | 0.333 | -0.333 | 2.131 | -1.001 | 3.131 | 189i | 98.41 |
Table 2 Natural bond orbital(NBO) charge population(q) and transition state(TS) frequency(vTS) for the interaction of CO2 with singlet/triplet(S/T) indium oxyhydroxide clusters and the activation free energy barrier(ΔGa, 298 K) at the level of UB3LYP/SDD+Def2TZVP
Cluster | Active site* | q/e | Interaction with CO2 | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS | CO2 in TS | In in free cluster, qIn | O in free cluster, qO | qIn-qO | vTS/cm-1 | ΔGa/(kJ·mol-1) | ||
In2O3(S) | In—O(b3) | -0.184 | 0.184 | 1.878 | -1.131 | 3.009 | 187i | 87.11 |
In2O3(T) | In—O(b3) | -0.143 | 0.143 | 1.869 | -1.009 | 2.878 | 196i | 97.07 |
In4O6(S) | In—O(b1) | -0.103 | 0.103 | 1.956 | -1.416 | 3.372 | 195i | 110.92 |
In4O6(T) | In—O(b1) | -0.105 | 0.105 | 1.972 | -1.214 | 3.186 | 130i | 134.43 |
InO(OH)(S) | In—O(t)I | 0.193 | -0.193 | 1.889 | -1.204 | 3.903 | 170i | 8.87 |
In—O(t)II | 0.181 | -0.181 | 1.870 | -1.054 | 2.924 | 281i | 56.82 | |
InO(OH)(T) | In—O(t)I | 0.172 | -0.172 | 1.883 | -0.663 | 2.546 | 417i | 39.58 |
In—O(t)II | 0.125 | -0.125 | 1.380 | -1.087 | 2.466 | 275i | 44.23 | |
In2O2(OH)2(S) | In—O(b2)I | 0.124 | -0.124 | 2.077 | -1.366 | 3.443 | 199i | 16.99 |
In—O(t)II | 0.154 | -0.154 | 2.075 | -1.158 | 3.233 | 235i | 36.90 | |
In2O2(OH)2(T) | In—O(b2)I | 0.062 | -0.062 | 2.098 | -1.084 | 3.182 | 237i | 41.51 |
In—O(t)II | 0.165 | -0.165 | 2.093 | -1.060 | 3.153 | 251i | 52.84 | |
In3O4(OH)(S) | In—O(3c)I | 0.133 | -0.133 | 2.019 | -1.319 | 3.338 | 145i | 19.12 |
In—O(b2)II | 0.124 | -0.124 | 2.021 | -1.221 | 3.241 | 157i | 61.34 | |
In—O(b2)III | 0.137 | -0.137 | 2.014 | -1.361 | 3.375 | 129i | 5.86 | |
In—O(b2)IV | 0.134 | -0.134 | 2.016 | -1.334 | 3.350 | 135i | 9.67 | |
In—O(t)V | 0.432 | -0.432 | 2.111 | -1.077 | 3.188 | 158i | 71.67 | |
In3O4(OH)(T) | In—O(3c)I | 0.226 | -0.226 | 1.480 | -1.341 | 2.820 | 209i | 60.29 |
In—O(b2)II | 0.245 | -0.245 | 2.030 | -1.046 | 3.076 | 265i | 50.21 | |
In—O(b2)III | 0.213 | -0.213 | 2.029 | -1.273 | 3.202 | 147i | 12.05 | |
In—O(b2)IV | 0.101 | -0.101 | 2.026 | -1.279 | 3.205 | 146i | 10.88 | |
In—O(t)V | 0.254 | -0.254 | 1.486 | -1.377 | 2.863 | 237i | 75.77 | |
In4O5(OH)2(S) | In—O(b1)I | 0.436 | -0.436 | 2.082 | -1.301 | 3.382 | 181i | 18.24 |
In—O(b1)II | 0.171 | -0.171 | 2.014 | -1.407 | 3.421 | 184i | 13.89 | |
In—O(t)III | 0.376 | -0.376 | 2.001 | -1.407 | 3.207 | 186i | 33.01 | |
In4O5(OH)2(T) | In—O(b1)I | 0.144 | -0.144 | 2.014 | -1.327 | 3.340 | 152i | 16.36 |
In—O(b1)II | 0.347 | -0.347 | 2.014 | -1.201 | 3.215 | 197i | 34.98 | |
In—O(t)III | 0.333 | -0.333 | 2.131 | -1.001 | 3.131 | 189i | 98.41 |
Cluster | Active site* | q/e | Interaction with CH4 | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS | CH4 in TS | In in free cluster, qIn | O in free cluster, qO | qIn-qO | vTS/cm-1 | ΔGa/(kJ·mol-1) | ||
In2O3(S) | In—O(b3) | -0.068 | 0.068 | 1.863 | -1.246 | 3.109 | 1566i | 150.08 |
In2O3(T) | In—O(b3) | -0.023 | 0.023 | 1.846 | -1.069 | 2.915 | 1479i | 163.39 |
In4O6(S) | In—O(b1) | -0.013 | 0.013 | 1.932 | -1.344 | 3.276 | 1411i | 148.74 |
In4O6(T) | In—O(b1) | -0.034 | 0.034 | 1.967 | -1.031 | 2.998 | 1345i | 167.78 |
InO(OH)(S) InO(OH)(T) | In—O(t) | 0.213 | -0.213 | 1.921 | -1.151 | 3.072 | 1676i | 104.01 |
In—O(t) | 0.237 | -0.237 | 1.956 | -0.904 | 2.860 | 1218i | 108.87 | |
In2O2(OH)2(S) In2O2(OH)2(T) | In—O(b2) | 0.079 | -0.079 | 2.051 | -1.312 | 3.363 | 1511i | 113.09 |
In—O(b2) | 0.059 | -0.059 | 2.056 | -1.079 | 3.135 | 1627i | 122.80 | |
In3O4(OH)(S) | In—O(b2)I | 0.012 | -0.012 | 2.002 | -1.348 | 3.349 | 1293i | 51.25 |
In—O(3c)II | 0.002 | -0.002 | 1.874 | -1.322 | 3.196 | 1406i | 68.74 | |
In—O(b2)III | 0.014 | -0.014 | 1.978 | -1.305 | 3.283 | 1347i | 52.93 | |
In3O4(OH)(T) | In—O(b2)I | 0.020 | -0.020 | 2.003 | -1.329 | 3.332 | 1469i | 87.19 |
In—O(3c)II | 0.032 | -0.032 | 1.374 | -1.130 | 2.504 | 1476i | 118.91 | |
In—O(b2)III | 0.023 | -0.023 | 1.374 | -1.050 | 2.424 | 1509i | 134.98 | |
In4O5(OH)2(S) | In—O(b1)I | 0.011 | -0.011 | 2.013 | -1.040 | 3.052 | 1376i | 79.58 |
In—O(b1)II | 0.067 | -0.067 | 2.081 | -1.252 | 3.333 | 1460i | 38.74 | |
In—O(b1)III | 0.077 | -0.077 | 2.086 | -1.245 | 3.331 | 1462i | 38.79 | |
In4O5(OH)2(T) | In—O(b1)I | 0.039 | -0.039 | 2.062 | -1.139 | 3.201 | 1545i | 92.55 |
In—O(b1)II | 0.082 | -0.082 | 1.415 | -1.297 | 2.711 | 1496i | 123.72 |
Table 3 Natural bond orbital(NBO) charge population(q) and transition state(TS) frequency(vTS) for the interaction of CH4 with singlet/triplet(S/T) indium oxyhydroxide clusters and the activation free energy barrier (ΔGa, 298 K) at the level of UB3LYP/SDD+Def2TZVP
Cluster | Active site* | q/e | Interaction with CH4 | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS | CH4 in TS | In in free cluster, qIn | O in free cluster, qO | qIn-qO | vTS/cm-1 | ΔGa/(kJ·mol-1) | ||
In2O3(S) | In—O(b3) | -0.068 | 0.068 | 1.863 | -1.246 | 3.109 | 1566i | 150.08 |
In2O3(T) | In—O(b3) | -0.023 | 0.023 | 1.846 | -1.069 | 2.915 | 1479i | 163.39 |
In4O6(S) | In—O(b1) | -0.013 | 0.013 | 1.932 | -1.344 | 3.276 | 1411i | 148.74 |
In4O6(T) | In—O(b1) | -0.034 | 0.034 | 1.967 | -1.031 | 2.998 | 1345i | 167.78 |
InO(OH)(S) InO(OH)(T) | In—O(t) | 0.213 | -0.213 | 1.921 | -1.151 | 3.072 | 1676i | 104.01 |
In—O(t) | 0.237 | -0.237 | 1.956 | -0.904 | 2.860 | 1218i | 108.87 | |
In2O2(OH)2(S) In2O2(OH)2(T) | In—O(b2) | 0.079 | -0.079 | 2.051 | -1.312 | 3.363 | 1511i | 113.09 |
In—O(b2) | 0.059 | -0.059 | 2.056 | -1.079 | 3.135 | 1627i | 122.80 | |
In3O4(OH)(S) | In—O(b2)I | 0.012 | -0.012 | 2.002 | -1.348 | 3.349 | 1293i | 51.25 |
In—O(3c)II | 0.002 | -0.002 | 1.874 | -1.322 | 3.196 | 1406i | 68.74 | |
In—O(b2)III | 0.014 | -0.014 | 1.978 | -1.305 | 3.283 | 1347i | 52.93 | |
In3O4(OH)(T) | In—O(b2)I | 0.020 | -0.020 | 2.003 | -1.329 | 3.332 | 1469i | 87.19 |
In—O(3c)II | 0.032 | -0.032 | 1.374 | -1.130 | 2.504 | 1476i | 118.91 | |
In—O(b2)III | 0.023 | -0.023 | 1.374 | -1.050 | 2.424 | 1509i | 134.98 | |
In4O5(OH)2(S) | In—O(b1)I | 0.011 | -0.011 | 2.013 | -1.040 | 3.052 | 1376i | 79.58 |
In—O(b1)II | 0.067 | -0.067 | 2.081 | -1.252 | 3.333 | 1460i | 38.74 | |
In—O(b1)III | 0.077 | -0.077 | 2.086 | -1.245 | 3.331 | 1462i | 38.79 | |
In4O5(OH)2(T) | In—O(b1)I | 0.039 | -0.039 | 2.062 | -1.139 | 3.201 | 1545i | 92.55 |
In—O(b1)II | 0.082 | -0.082 | 1.415 | -1.297 | 2.711 | 1496i | 123.72 |
1 | Xu W., Chen Y., Song M., Liu X., Zhao Y., Zhang M., Zhang C., J. Phys. Chem. C, 2020, 124(15), 8110—8118 |
2 | Koytsoumpa E. I., Bergins C., Kakaras E., J. Supercrit. Fluid, 2018, 132, 3—16 |
3 | Chakravartula Srivatsa S., Bhattacharya S., J. CO2 Util., 2018, 26, 397—407 |
4 | Cong L., Zhao Y., Li S., Sun Y., Chin. J. Catal., 2017, 38(5), 899—907 |
5 | Wang Z. Q., Wang D., Gong X. Q., ACS Catal., 2019, 10(1), 586—594 |
6 | Yang C., Mu R., Wang G., Song J., Tian H., Zhao Z. J., Gong J., Chem. Sci., 2019, 10(11), 3161—3167 |
7 | Bowker M., ChemCatChem, 2019, 11(17), 4238—4246 |
8 | Higham M. D., Quesne M. G., Catlow C. R. A., Dalton Trans., 2020, 49(25), 8478—8497 |
9 | Zheng H., Narkhede N., Han L., Zhang H., Li Z., Res. Chem. Intermed., 2019, 46(3), 1749—1769 |
10 | Li S., Guo L., Ishihara T., Catal. Today, 2020, 339, 352—361 |
11 | Sha F., Han Z., Tang S., Wang J., Li C., ChemSusChem, 2020, 13(23), 6160—6181 |
12 | Kattel S., Ramírez P. J., Chen J. G., Rodriguez J. A., Liu P., Science, 2017, 355(6331), 1296—1299 |
13 | Dang S., Qin B., Yang Y., Wang H., Cai J., Han Y., Li S., Gao P., Sun Y., Sci. Adv., 2020, 6(25), eaaz2060 |
14 | Rui N., Zhang F., Sun K., Liu Z., Xu W., Stavitski E., Senanayake S. D., Rodriguez J. A., Liu C. J., ACS Catal., 2020, 10(19), 11307—11317 |
15 | Posada⁃Borbon A., Gronbeck H., Phys. Chem. Chem. Phys., 2019, 21(39), 21698—21708 |
16 | Wang W., Chen Y., Zhang M., Surf. Interfaces, 2021, 25, 101244 |
17 | Ye J., Liu C., Ge Q., J. Phys. Chem. C, 2012, 116(14), 7817—7825 |
18 | Ye J., Liu C., Mei D., Ge Q., ACS Catal., 2013, 3(6), 1296—1306 |
19 | Lei Y., Chu C., Li S., Sun Y., J. Phys. Chem. C, 2014, 118(15), 7932—7945 |
20 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009 |
21 | Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37(2), 785—789 |
22 | Becke A. D., Phys. Rev. A, 1988, 38(6), 3098—3100 |
23 | Dolg M., Stoll H., Preuss H., J. Chem. Phys., 1989, 90(3), 1730—1734 |
24 | Purvis G. D., Bartlett R. J., J. Chem. Phys., 1982, 76(4), 1910—1918 |
25 | Watts J. D., Gauss J., Bartlett R. J., J. Chem. Phys., 1993, 98(11), 8718—8733 |
26 | Raghavachari K., Trucks G. W., Pople J. A., Head⁃Gordon M., Chem. Phys. Lett., 2013, 589, 37—40 |
27 | Bauschlicher C. W. Jr., Astrophys. J. Lett., 1998, 509, 125—127 |
28 | Glendening E. D., Badenhoop J. K., Reed A. D., Carpenter J. E., Weinhold F., NBO 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, 1996 |
29 | Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys., 2005, 7(18), 3297—3305 |
30 | Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L., J. Computl. Chem., 2001, 22(9), 976—984 |
31 | Wagner M., Meyer B., Setvin M., Schmid M., Diebold U., Nat. Catal., 2021, 592, 722—725 |
32 | Qin B., Zhou Z., Li S., Gao P., J. CO2 Util., 2021, 49, 101543 |
33 | Liu S., Winter L. R., Chen J. G., ACS Catal., 2020, 10(4), 2855—2871 |
34 | Chen Y., Zhai Z., Liu J., Zhang J., Geng Z., Lyu H., Phys. Chem. Chem. Phys., 2019, 21(43), 23906—23915 |
35 | Ohtsuka Y., Nishikawa Y., Ogihara H., Yamanaka I., Ratanasak M., Nakayama A., Hasegawa J. Y., J. Phys. Chem. A, 2019, 123(41), 8907—8912 |
36 | Ma D., Cao Z., Chem. Asian J., 2022, e202101383 |
37 | Hoch L. B., He L., Qiao Q., Liao K., Reyes L. M., Zhu Y., Ozin G. A., Chem. Mater., 2016, 28(12), 4160—4168 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[3] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[4] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[5] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[6] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[7] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[8] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[9] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[10] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[11] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[12] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[13] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. |
[14] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[15] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||