Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (9): 2878.doi: 10.7503/cjcu20210282
• Physical Chemistry • Previous Articles Next Articles
ZHONG Shengguang, XIA Wensheng(), ZHANG Qinghong, WAN Huilin
Received:
2021-04-25
Online:
2021-09-10
Published:
2021-09-08
Contact:
XIA Wensheng
E-mail:wsxia@xmu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters[J]. Chem. J. Chinese Universities, 2021, 42(9): 2878.
Cluster | Relative energy of cluster/ (kJ·mol-1) | Active site | Step 1 | Step 2 | Step 3 | Step 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
ΔGa1/ (kJ·mol-1) | ΔG1/ (kJ·mol-1) | ΔGa2/ (kJ·mol-1) | ΔG2/ (kJ·mol-1) | ΔGa3/ (kJ·mol-1) | ΔG3/ (kJ·mol-1) | ΔGa4/ (kJ·mol-1) | ΔG4/ (kJ·mol-1) | |||
Cu3O3(D) | 15.2 | Cu-O(b1) | 85.8 | -49.7 | 151.2 | 30.2 | 13.3 | 13.3 | 53.5 | 53.5 |
Cu3O3(Q) | 0 | Cu-O(b1) | 95.9 | -31.6 | 121.9 | 18.0 | 0 | -45.1 | 89.9 | 89.9 |
CeCu2O4?Ⅰ(S) | 2.8 | Ce-O(t) | 150.6 | 42.4 | 104.6 | -128.4 | — | — | 99.7 | 99.7 |
CeCu2O4?Ⅰ(T) | 0 | Ce-O(t) | 155.9 | 57.6 | 70.5 | -129.9 | — | — | 96.8 | 96.8 |
CeCu2O4?Ⅱ(S) | 90.3 | Cu-O(b2′) | 57.2 | -102.5 | 141.2 | 71.7 | 0 | -94.0 | 115.7 | 115.7 |
CeCu2O4?Ⅱ(T) | 84.2 | Cu-O(b2′) | 61.5 | -90.8 | 131.1 | 14.3 | 0 | -40.9 | 123.8 | 123.8 |
CeCu2O4?Ⅲ(T) | 269.6 | Cu-O(b2) | 95.2 | -88.4 | 109.0 | 0.3 | 0 | -31.3 | 116.9 | 116.9 |
ZrCu2O4?Ⅰ(S) | 0.2 | Zr-O(b1′) | 114.2 | 28.4 | 62.7 | -110.9 | — | — | 95.8 | 95.8 |
ZrCu2O4?Ⅰ(T) | 0 | Zr-O(b1′) | 119.9 | 19.1 | 56.5 | -95.9 | — | — | 110.6 | 110.6 |
ZrCu2O4?Ⅱ(S) | 33.3 | Cu-O(b2′) | 60.4 | -68.0 | 137.1 | 27.1 | 0 | -52.3 | 93.4 | 93.4 |
ZrCu2O4?Ⅱ(T) | 31.9 | Cu-O(b2′) | 67.1 | -68.1 | 132.0 | 13.8 | 0 | -49.5 | 103.4 | 103.4 |
ZrCu2O4?Ⅲ(T) | 380.8 | Cu-O(b2) | 86.1 | -73.6 | 98.7 | -11.2 | 0 | -8.9 | 100.6 | 100.6 |
Cluster | Relative energy of cluster/ (kJ·mol-1) | Active site | Step 1 | Step 2 | Step 3 | Step 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
ΔGa1/ (kJ·mol-1) | ΔG1/ (kJ·mol-1) | ΔGa2/ (kJ·mol-1) | ΔG2/ (kJ·mol-1) | ΔGa3/ (kJ·mol-1) | ΔG3/ (kJ·mol-1) | ΔGa4/ (kJ·mol-1) | ΔG4/ (kJ·mol-1) | |||
Cu3O3(D) | 15.2 | Cu-O(b1) | 85.8 | -49.7 | 151.2 | 30.2 | 13.3 | 13.3 | 53.5 | 53.5 |
Cu3O3(Q) | 0 | Cu-O(b1) | 95.9 | -31.6 | 121.9 | 18.0 | 0 | -45.1 | 89.9 | 89.9 |
CeCu2O4?Ⅰ(S) | 2.8 | Ce-O(t) | 150.6 | 42.4 | 104.6 | -128.4 | — | — | 99.7 | 99.7 |
CeCu2O4?Ⅰ(T) | 0 | Ce-O(t) | 155.9 | 57.6 | 70.5 | -129.9 | — | — | 96.8 | 96.8 |
CeCu2O4?Ⅱ(S) | 90.3 | Cu-O(b2′) | 57.2 | -102.5 | 141.2 | 71.7 | 0 | -94.0 | 115.7 | 115.7 |
CeCu2O4?Ⅱ(T) | 84.2 | Cu-O(b2′) | 61.5 | -90.8 | 131.1 | 14.3 | 0 | -40.9 | 123.8 | 123.8 |
CeCu2O4?Ⅲ(T) | 269.6 | Cu-O(b2) | 95.2 | -88.4 | 109.0 | 0.3 | 0 | -31.3 | 116.9 | 116.9 |
ZrCu2O4?Ⅰ(S) | 0.2 | Zr-O(b1′) | 114.2 | 28.4 | 62.7 | -110.9 | — | — | 95.8 | 95.8 |
ZrCu2O4?Ⅰ(T) | 0 | Zr-O(b1′) | 119.9 | 19.1 | 56.5 | -95.9 | — | — | 110.6 | 110.6 |
ZrCu2O4?Ⅱ(S) | 33.3 | Cu-O(b2′) | 60.4 | -68.0 | 137.1 | 27.1 | 0 | -52.3 | 93.4 | 93.4 |
ZrCu2O4?Ⅱ(T) | 31.9 | Cu-O(b2′) | 67.1 | -68.1 | 132.0 | 13.8 | 0 | -49.5 | 103.4 | 103.4 |
ZrCu2O4?Ⅲ(T) | 380.8 | Cu-O(b2) | 86.1 | -73.6 | 98.7 | -11.2 | 0 | -8.9 | 100.6 | 100.6 |
Reaction | ?Ga/(kJ·mol-1) | ΔG/(kJ·mol-1) |
---|---|---|
(ti) CH3*+CO2*→CH3COO* | 98.7 | -11.2 |
(a) CH3*+CO2*→OCH3*+CO* | — | 46.6 |
(b) CH3*+CO2*→CH2*+COOH* | — | 3.4 |
(c) CH3*+CO2*→CH2COOH* | 290.7 | 15.9 |
(d) CH3*→CH2*+H* | 126.1 | 23.1 |
(e) CO2*+H*→COOH* | — | 29.6 |
(f) CH3*+CH3*→C2H6 | — | 56.0 |
Reaction | ?Ga/(kJ·mol-1) | ΔG/(kJ·mol-1) |
---|---|---|
(ti) CH3*+CO2*→CH3COO* | 98.7 | -11.2 |
(a) CH3*+CO2*→OCH3*+CO* | — | 46.6 |
(b) CH3*+CO2*→CH2*+COOH* | — | 3.4 |
(c) CH3*+CO2*→CH2COOH* | 290.7 | 15.9 |
(d) CH3*→CH2*+H* | 126.1 | 23.1 |
(e) CO2*+H*→COOH* | — | 29.6 |
(f) CH3*+CH3*→C2H6 | — | 56.0 |
Cluster | Active site | q/e | CH4*→CH3*+H* | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS1 | CH4 in TS1 | Cu(Ce/Zr) in free cluster, qa | O in free cluster, qb | qa–qb | vimg(TS1)/cm-1 | ?Ga1/(kJ·mol-1) | ||
CeCu2O4?Ⅱ(S) | Cu?O(b2′) | -0.152 | 0.152 | 1.004 | -0.946 | 1.950 | 1384i | 57.2 |
ZrCu2O4?Ⅱ(S) | Cu?O(b2′) | -0.145 | 0.145 | 1.023 | -0.984 | 2.007 | 1590i | 60.4 |
CeCu2O4?Ⅱ(T) | Cu?O(b2′) | -0.145 | 0.145 | 1.051 | -0.966 | 2.017 | 1526i | 61.5 |
ZrCu2O4?Ⅱ(T) | Cu?O(b2′) | -0.128 | 0.128 | 1.068 | -1.016 | 2.084 | 1489i | 67.1 |
Cu3O3(D) | Cu?O(b1) | -0.088 | 0.088 | 1.021 | -1.039 | 2.060 | 1469i | 85.8 |
ZrCu2O4?Ⅲ(T) | Cu?O(b2) | -0.084 | 0.084 | 1.001 | -0.833 | 1.834 | 1669i | 86.1 |
CeCu2O4?Ⅲ(T) | Cu?O(b2) | -0.065 | 0.065 | 0.935 | -0.866 | 1.801 | 1613i | 95.2 |
Cu3O3(Q) | Cu?O(b1) | -0.062 | 0.062 | 0.889 | -0.957 | 1.846 | 1562i | 95.9 |
ZrCu2O4?Ⅰ(S) | Zr?O(b1′) | -0.052 | 0.052 | 2.022 | -1.064 | 3.086 | 1453i | 114.2 |
ZrCu2O4?Ⅰ(T) | Zr?O(b1′) | -0.044 | 0.044 | 2.005 | -1.059 | 3.064 | 1398i | 119.9 |
CeCu2O4?Ⅰ(S) | Ce?O(t) | -0.025 | 0.025 | 1.876 | -0.769 | 2.645 | 1446i | 150.6 |
CeCu2O4?Ⅰ(T) | Ce?O(t) | -0.019 | 0.019 | 1.882 | -0.792 | 2.674 | 1480i | 155.9 |
Cluster | Active site | q/e | CH4*→CH3*+H* | |||||
---|---|---|---|---|---|---|---|---|
Cluster in TS1 | CH4 in TS1 | Cu(Ce/Zr) in free cluster, qa | O in free cluster, qb | qa–qb | vimg(TS1)/cm-1 | ?Ga1/(kJ·mol-1) | ||
CeCu2O4?Ⅱ(S) | Cu?O(b2′) | -0.152 | 0.152 | 1.004 | -0.946 | 1.950 | 1384i | 57.2 |
ZrCu2O4?Ⅱ(S) | Cu?O(b2′) | -0.145 | 0.145 | 1.023 | -0.984 | 2.007 | 1590i | 60.4 |
CeCu2O4?Ⅱ(T) | Cu?O(b2′) | -0.145 | 0.145 | 1.051 | -0.966 | 2.017 | 1526i | 61.5 |
ZrCu2O4?Ⅱ(T) | Cu?O(b2′) | -0.128 | 0.128 | 1.068 | -1.016 | 2.084 | 1489i | 67.1 |
Cu3O3(D) | Cu?O(b1) | -0.088 | 0.088 | 1.021 | -1.039 | 2.060 | 1469i | 85.8 |
ZrCu2O4?Ⅲ(T) | Cu?O(b2) | -0.084 | 0.084 | 1.001 | -0.833 | 1.834 | 1669i | 86.1 |
CeCu2O4?Ⅲ(T) | Cu?O(b2) | -0.065 | 0.065 | 0.935 | -0.866 | 1.801 | 1613i | 95.2 |
Cu3O3(Q) | Cu?O(b1) | -0.062 | 0.062 | 0.889 | -0.957 | 1.846 | 1562i | 95.9 |
ZrCu2O4?Ⅰ(S) | Zr?O(b1′) | -0.052 | 0.052 | 2.022 | -1.064 | 3.086 | 1453i | 114.2 |
ZrCu2O4?Ⅰ(T) | Zr?O(b1′) | -0.044 | 0.044 | 2.005 | -1.059 | 3.064 | 1398i | 119.9 |
CeCu2O4?Ⅰ(S) | Ce?O(t) | -0.025 | 0.025 | 1.876 | -0.769 | 2.645 | 1446i | 150.6 |
CeCu2O4?Ⅰ(T) | Ce?O(t) | -0.019 | 0.019 | 1.882 | -0.792 | 2.674 | 1480i | 155.9 |
Cluster | Active site | q/e | CH3*+CO2*→CH3COO* | |||||
---|---|---|---|---|---|---|---|---|
CH3*+H* in TS2 | CO2 in TS2 | Cu(Ce/Zr) in CH3*+H*, qa | C in CH3*+H*, qb | qa–qb | vimg(TS2)/cm-1 | ?Ga2/ (kJ·mol-1) | ||
ZrCu2O4?Ⅰ(T) | Zr?O(b1′) | 0.082 | -0.082 | 1.827 | -1.135 | 2.962 | 234i | 56.5 |
ZrCu2O4?Ⅰ(S) | Zr?O(b1′) | 0.088 | -0.088 | 1.824 | -1.091 | 2.915 | 251i | 62.7 |
CeCu2O4?Ⅰ(T) | Ce?O(t) | 0.078 | -0.078 | 1.837 | -0.933 | 2.770 | 376i | 70.5 |
ZrCu2O4?Ⅲ(T) | Cu?O(b2) | 0.143 | -0.143 | 1.016 | -1.072 | 2.088 | 398i | 98.7 |
CeCu2O4?Ⅰ(S) | Ce?O(t) | 0.109 | -0.109 | 1.831 | -0.834 | 2.665 | 352i | 104.6 |
CeCu2O4?Ⅲ(T) | Cu?O(b2) | 0.181 | -0.181 | 0.999 | -1.105 | 2.104 | 386i | 109.0 |
Cu3O3(Q) | Cu?O(b1) | 0.170 | -0.170 | 0.893 | -0.880 | 1.773 | 398i | 121.9 |
CeCu2O4?Ⅱ(T) | Cu?O(b2′) | 0.185 | -0.185 | 0.979 | -1.020 | 1.999 | 406i | 131.1 |
ZrCu2O4?Ⅱ(T) | Cu?O(b2′) | 0.189 | -0.189 | 1.021 | -1.029 | 2.050 | 410i | 132.0 |
ZrCu2O4?Ⅱ(S) | Cu?O(b2′) | 0.141 | -0.141 | 0.971 | -0.878 | 1.849 | 429i | 137.1 |
CeCu2O4?Ⅱ(S) | Cu?O(b2′) | 0.147 | -0.147 | 0.991 | -0.832 | 1.823 | 421i | 141.2 |
Cu3O3(D) | Cu?O(b1) | 0.162 | -0.162 | 0.751 | -0.643 | 1.394 | 398i | 151.2 |
Cluster | Active site | q/e | CH3*+CO2*→CH3COO* | |||||
---|---|---|---|---|---|---|---|---|
CH3*+H* in TS2 | CO2 in TS2 | Cu(Ce/Zr) in CH3*+H*, qa | C in CH3*+H*, qb | qa–qb | vimg(TS2)/cm-1 | ?Ga2/ (kJ·mol-1) | ||
ZrCu2O4?Ⅰ(T) | Zr?O(b1′) | 0.082 | -0.082 | 1.827 | -1.135 | 2.962 | 234i | 56.5 |
ZrCu2O4?Ⅰ(S) | Zr?O(b1′) | 0.088 | -0.088 | 1.824 | -1.091 | 2.915 | 251i | 62.7 |
CeCu2O4?Ⅰ(T) | Ce?O(t) | 0.078 | -0.078 | 1.837 | -0.933 | 2.770 | 376i | 70.5 |
ZrCu2O4?Ⅲ(T) | Cu?O(b2) | 0.143 | -0.143 | 1.016 | -1.072 | 2.088 | 398i | 98.7 |
CeCu2O4?Ⅰ(S) | Ce?O(t) | 0.109 | -0.109 | 1.831 | -0.834 | 2.665 | 352i | 104.6 |
CeCu2O4?Ⅲ(T) | Cu?O(b2) | 0.181 | -0.181 | 0.999 | -1.105 | 2.104 | 386i | 109.0 |
Cu3O3(Q) | Cu?O(b1) | 0.170 | -0.170 | 0.893 | -0.880 | 1.773 | 398i | 121.9 |
CeCu2O4?Ⅱ(T) | Cu?O(b2′) | 0.185 | -0.185 | 0.979 | -1.020 | 1.999 | 406i | 131.1 |
ZrCu2O4?Ⅱ(T) | Cu?O(b2′) | 0.189 | -0.189 | 1.021 | -1.029 | 2.050 | 410i | 132.0 |
ZrCu2O4?Ⅱ(S) | Cu?O(b2′) | 0.141 | -0.141 | 0.971 | -0.878 | 1.849 | 429i | 137.1 |
CeCu2O4?Ⅱ(S) | Cu?O(b2′) | 0.147 | -0.147 | 0.991 | -0.832 | 1.823 | 421i | 141.2 |
Cu3O3(D) | Cu?O(b1) | 0.162 | -0.162 | 0.751 | -0.643 | 1.394 | 398i | 151.2 |
1 | Shan J. J., Li M. W., Allard L. F., Lee S. S., Flytzani⁃Stephanopoulos M., Nature, 2017, 551(7682), 605—608 |
2 | Kulkarni A. R., Zhao Z. J., Siahrostami S., Norskov J. K., Studt F., Catal. Sci. Technol., 2018, 8(1), 114—123 |
3 | Schwach P., Pan X. L., Bao X. H., Chem. Rev., 2017, 117(13), 8497—8520 |
4 | Burkart M. D., Hazari N., Tway C. L., Zeitler E. L., ACS Catal., 2019, 9(9), 7937—7956 |
5 | Havran V., Dudukovic M. P., Lo C. S., Ind. Eng. Chem. Res., 2011, 50(12), 7089—7100 |
6 | Nizova G. V., Suss⁃Fink G., Stanislas S., Shul'pin G. B., Chem. Commun., 1998,(17), 1885—1886 |
7 | Kurioka M., Nakata K., Jintoku T., Taniguchi Y., Takaki K., Fujiwara Y., Chem. Lett., 1995,(3), 244 |
8 | Huang W., Xie K. C., Wang J. P., Gao Z. H., Yin L. H., Zhu Q. M., J. Catal., 2001, 201(1), 100—104 |
9 | Huang W., Zhang C., Yin L., Xie K., J. Energy. Chem., 2004, 13(2), 113—115 |
10 | Ding Y. H., Huang W., Wang Y. G., Fuel. Process. Technol., 2007, 88(4), 319—324 |
11 | Wilcox E. M., Roberts G. W., Spivey J. J., Catal. Today, 2003, 88(1/2), 83—90 |
12 | Wu J. F., Yu S. M., Wang W. D., Fan Y. X., Bai S., Zhang C. W., Gao Q., Huang J., Wang W., J. Am. Chem. Soc., 2013, 135(36), 13567—13573 |
13 | Montejo⁃Valencia B. D., Pagan⁃Torres Y. J., Martinez⁃Inesta M. M., Curet⁃Arana M. C., ACS Catal., 2017, 7(10), 6719—6728 |
14 | Shavi R., Ko J., Cho A., Han J. W., Seo J. G., Appl. Catal. B: Environ., 2018, 229, 237—248 |
15 | Rabie A. M., Betiha M. A., Park S. E., Appl. Catal. B: Environ., 2017, 215, 50—59 |
16 | Wang S., Guo S. J., Luo Y. Y., Qin Z. F., Chen Y. Y., Dong M., Li J. F., Fan W. B., Wang J. G., Catal. Sci. Technol., 2019, 9, 6613—6626 |
17 | Zhao Y. T., Cui C. N., Han J. Y., Wang H., Zhu X. L., Ge Q. F., J. Am. Chem. Soc., 2016, 138(32), 10191—10198 |
18 | Liu B., Li C. M., Zhang G. Q., Yao X. S., Steven S. C., Zhong L., ACS Catal., 2018, 8(11), 10446—10456 |
19 | Wu J., Qiao L. Y., Zhou Z. F., Cui G. J., Zong S. S., Xu D. J., Ye R. P., Chen R. P., Si R.,Yao Y. G., ACS Catal., 2019, 9(2), 932—945 |
20 | Wang G. R., Chen W., Huang L., Liu Z. Q., Sun X. Y., Zheng A. M., Catal. Today, 2019, 338, 108—116 |
21 | Xu X. L., Yang B., Wei Z. Y., Cao G. J., Xu H. G., Zheng W. J., Phys. Chem. Chem. Phys., 2018, 20(31), 20622—20628 |
22 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford CT, 2013 |
23 | Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J., J. Phys. Chem., 1994, 98(45), 11623—11627 |
24 | Dolg M., Stoll H., Preuss H., J. Chem. Phys., 1989, 90(3), 1730—1734 |
25 | Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys., 2005, 7(18), 3297—3305 |
26 | Varghese J. J., Trinh Q. T., Mushrif S. H., Catal. Sci. Technol., 2016, 6(11), 3984—3996 |
27 | Niu T. C., Jiang Z., Zhu Y. G., Zhou G. W., Van S., Samuel T., Jorge A. B., Dario J. S., J. Phys. Chem. B, 2018, 122, 855—863 |
28 | Wang J., Wang G., C., J. Phys. Chem. C, 2018, 122, 17338—17346 |
29 | Tomkins P., Mansouri A., Bozbag S. E., Krumeich F., Park M. B., Alayon E. M. C., Ranocchiari M., van Bokhoven J. A., Angew. Chem. Int. Ed., 2016, 55(18), 5467—5471 |
30 | Wang Y. G., Yang S. F., Hu L. H., Li Y. D., Li J., Chinese J. Catal., 2014, 35(4), 462—467(王阳刚, 杨水峰, 胡林华, 李亚栋, 李隽. 催化学报, 2014, 35(4), 462—467) |
31 | Harris N., Shaik S., Schroder D., Schwarz H., Helv. Chim. Acta, 1999, 82(10), 1784—1797 |
32 | Chen R. F., Xia W. S., Wan H. L., Chem. J. Chinese. Universities, 2015, 36(9), 1743—1751(陈蓉芳, 夏文生, 万惠霖. 高等学校化学学报, 2015, 36(9), 1743—1751) |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[3] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[4] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[5] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[6] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[7] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[8] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[9] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[10] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[11] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[12] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[13] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[14] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[15] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||