高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (5): 20240569.doi: 10.7503/cjcu20240569

• 物理化学 • 上一篇    下一篇

等离激元金属及其温升作用下MoS2-H2O的界面性质

胡煜腾, 桑丽霞(), 杜春旭   

  1. 北京工业大学传热与能源利用北京市重点实验室,北京 100124
  • 收稿日期:2024-12-30 出版日期:2025-05-10 发布日期:2025-02-26
  • 通讯作者: 桑丽霞 E-mail:sanglixia@bjut.edu.cn
  • 基金资助:
    国家自然科学基金(52176174)

Interfacial Performances of MoS2-H2O Depended on Plasmonic Metal and Its Localized Thermal Effect

HU Yuteng, SANG Lixia(), DU Chunxu   

  1. Beijing Key Laboratory of Heat Transfer and Energy Conversion,Beijing University of Technology,Beijing 100124,China
  • Received:2024-12-30 Online:2025-05-10 Published:2025-02-26
  • Contact: SANG Lixia E-mail:sanglixia@bjut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52176174)

摘要:

MoS2具有较好的光催化分解水应用前景, 而利用等离激元Ag纳米粒子修饰MoS2可有效提高其分解水制氢的效率. 本文探索了Ag纳米粒子及其热等离激元效应温升对MoS2-H2O界面反应的作用机制. 通过构建Ag纳米团簇和MoS2的复合表面模型, 利用分子动力学计算了298~368 K温度范围内界面水密度、 亥姆霍兹层宽度、 表面电势和水扩散系数等界面性质, 并结合密度泛函理论计算分析了界面电子转移性质、 表面对水分子的吸附能和解吸附时间. 结果表明, 在MoS2表面负载Ag纳米粒子后, 亥姆霍兹层宽度增加, 表面电势下降. Ag纳米粒子与水分子的相互作用提高了MoS2表面对水分子的吸附能, 并使得水分子分层作用范围相对增加. 随着温度的升高, Ag/MoS2表面对水分子的吸附有所减弱, 表面双电层分层作用范围增加, 水分子的扩散系数也增加. 随温度增加水分子的解吸附时间快速减少, 而Ag纳米粒子的负载使MoS2表面对水分子的解吸附时间增加, 结合温升对表面电势的影响, 界面反应温度宜控制在328 K左右.

关键词: 等离激元金属, 二硫化钼, 分子动力学, 密度泛函理论, 界面性质

Abstract:

MoS2 has been expected as a potential material in photocatalytic water splitting, and the efficiency of hydrogen production can be improved by loading the plasmonic Ag nanoparticles. In this work, the influence of Ag nanoparticles and its temperature rise from the thermoplasmonics effect on the interfacial properties of MoS2-H2O was investigated. Based on the fabrication of the model of MoS2 loaded with Ag clusters, the interfacial properties such as the interfacial water density, the Helmholtz layer width, the surface electrostatic potential and the water diffusion coefficient were calculated by molecular dynamics at 298—368 K, and the interfacial electron transfer, the adsorption energy, and the desorption time of water molecule were also analyzed by combined with the calculation of density functional theory. The results show that the Helmholtz layer width increases and the surface electrostatic potential decreases when loading Ag nanoparticles on the MoS2 surface. The adsorption energy of water molecules enhances due to the interaction between Ag nanoparticles and water molecules on MoS2 surface, leading to a relative increase in the delamination range of water molecules. With the increase of temperature, the adsorbed water molecules on the surface of Ag/MoS2 decreases, and the delamination range of water molecules as well as their diffusion coefficient increases. Considering the change in the surface electrostatic potential, the desorption time of water molecules with loading Ag nanoparticles and the temperature rise, the desirable temperature for the interface reaction could be about 328 K.

Key words: Plasmonic metal, MoS2, Molecular dynamics, Density functional theory, Interfacial property

中图分类号: 

TrendMD: