高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (5): 20240569.doi: 10.7503/cjcu20240569
收稿日期:
2024-12-30
出版日期:
2025-05-10
发布日期:
2025-02-26
通讯作者:
桑丽霞
E-mail:sanglixia@bjut.edu.cn
基金资助:
HU Yuteng, SANG Lixia(), DU Chunxu
Received:
2024-12-30
Online:
2025-05-10
Published:
2025-02-26
Contact:
SANG Lixia
E-mail:sanglixia@bjut.edu.cn
Supported by:
摘要:
MoS2具有较好的光催化分解水应用前景, 而利用等离激元Ag纳米粒子修饰MoS2可有效提高其分解水制氢的效率. 本文探索了Ag纳米粒子及其热等离激元效应温升对MoS2-H2O界面反应的作用机制. 通过构建Ag纳米团簇和MoS2的复合表面模型, 利用分子动力学计算了298~368 K温度范围内界面水密度、 亥姆霍兹层宽度、 表面电势和水扩散系数等界面性质, 并结合密度泛函理论计算分析了界面电子转移性质、 表面对水分子的吸附能和解吸附时间. 结果表明, 在MoS2表面负载Ag纳米粒子后, 亥姆霍兹层宽度增加, 表面电势下降. Ag纳米粒子与水分子的相互作用提高了MoS2表面对水分子的吸附能, 并使得水分子分层作用范围相对增加. 随着温度的升高, Ag/MoS2表面对水分子的吸附有所减弱, 表面双电层分层作用范围增加, 水分子的扩散系数也增加. 随温度增加水分子的解吸附时间快速减少, 而Ag纳米粒子的负载使MoS2表面对水分子的解吸附时间增加, 结合温升对表面电势的影响, 界面反应温度宜控制在328 K左右.
中图分类号:
TrendMD:
胡煜腾, 桑丽霞, 杜春旭. 等离激元金属及其温升作用下MoS2-H2O的界面性质. 高等学校化学学报, 2025, 46(5): 20240569.
HU Yuteng, SANG Lixia, DU Chunxu. Interfacial Performances of MoS2-H2O Depended on Plasmonic Metal and Its Localized Thermal Effect. Chem. J. Chinese Universities, 2025, 46(5): 20240569.
System | (x, y, z)/nm | Number of molecules |
---|---|---|
MoS2⁃H2O | (3.15, 3.15, 7.90) | (MoS2)200(H2O)1200 |
Ag/MoS2⁃H2O | (3.15, 3.15, 7.90) | (Ag)40(MoS2)200(H2O)1200 |
Table 1 Structural parameters and number of molecules in each system
System | (x, y, z)/nm | Number of molecules |
---|---|---|
MoS2⁃H2O | (3.15, 3.15, 7.90) | (MoS2)200(H2O)1200 |
Ag/MoS2⁃H2O | (3.15, 3.15, 7.90) | (Ag)40(MoS2)200(H2O)1200 |
Fig.4 Charge density distribution, electric field intensity distribution and interfacial electrostatic potential distribution of MoS2 surface without(A, C, E) and with(B, D, F) Ag nanoparticles at 298 K
Fig.6 Energy band structure and surface atom PDOS of MoS2(A, C) and Ag/MoS2(B, D), PDOS of Ag atoms on Ag/MoS2 surface(E) and TDOS of MoS2 with Ag/MoS2(F)
Fig.7 Adsorption structures(A, B) and differential charge density distributions(C, D) of water molecules on MoS2(A, C) and Ag/MoS2(B, D)(A, B) Blue dashed lines are hydrogen bonds, red dashed lines are close interactions; (C, D) red and blue are charge density increasing and decreasing, respectively.
System | Eads/eV | Qt /e | dHW—O/nm |
---|---|---|---|
Ag/MoS2⁃H2O | 0.578 | 0.084 | 0.269 |
MoS2⁃H2O | 0.208 | 0.003 | 0.269 |
Table 2 Adsorption energy(Eads), surface charge transfer(Qt ) and hydrogen bond length(dHW—O) of water molecules on MoS2 and Ag/MoS2 surfaces
System | Eads/eV | Qt /e | dHW—O/nm |
---|---|---|---|
Ag/MoS2⁃H2O | 0.578 | 0.084 | 0.269 |
MoS2⁃H2O | 0.208 | 0.003 | 0.269 |
Fig.8 Trends with temperature on surface water density peak(A), width of Helmholtz layer(B), D(C) of Ag/MoS2-H2O system and the desorption time of water molecule on MoS2 and Ag/MoS2 surfaces at different temperatures(D)
1 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
2 | Yang Z., Chen H., Wu F., Hou Y., Qiao J., Ma X., Bai H., Ma B., Li J., Int. J. Hydrogen Energy, 2022, 47(73), 31295—31308 |
3 | You P., Lian C., Chen D., Xu J., Zhang C., Meng S., Wang E., Nano Lett., 2021, 21(15), 6449—6455 |
4 | Chen H., Tan C., Zhang K., Zhao W., Tian X., Huang Y., Appl. Surf. Sci., 2019, 481, 1064—1071 |
5 | Fan Y., Yu S., Wang Y., Xie Y., Qiu X., Sep. Purif. Technol., 2024, 335, 126243 |
6 | Zakariyya Y., Hafeez H., Mohammed J., Ndikilar C., Suleiman A., Umaru D., Int. J. Hydrogen Energy, 2024, 95, 185—211 |
7 | Chen L., Hsieh S., Kuo C., Hsieh S., Chen W., Chen C., Dong C., RSC Adv., 2020, 10(53), 31794—31799 |
8 | Parlak O., Incel A., Uzun L., Turner A., Tiwari A., Biosens. Bioelectron., 2017, 89(1), 545—550 |
9 | Saha A., Sinhamahapatra A., Kang T., Ghosh S., Yu J., Panda A., Nanoscale, 2017, 9(43), 17029—17036 |
10 | Wang Q., Kalantar⁃Zadeh K., Kis A., Coleman J., Strano M., Nat. Nanotechnol., 2012, 7, 699—712 |
11 | Ullah H., Haneef Z., Ahmad A., Butler I., Nasir⁃Dara R., Rehman Z., Inorg. Chem. Commun., 2023, 153, 110775 |
12 | Wu Z., Ouyang M., Wang D., Liu X., J. Alloys Compd., 2020, 832, 154970 |
13 | Yadav A., Hunge Y., Dhodamani A., Kang S., Catalysts, 2023, 13(4), 716 |
14 | Chen Y., Cheng W., Ruan J., J. Alloys Compd., 2024, 1009, 176604 |
15 | Nilsson J., Leetmaa M., Wang B., Žguns P., Pašti, I., Sandell A., Skorodumova N., Phys. Status Solodi, 2017, 255(3), 1700344 |
16 | Brown M., Abbas Z., Kleibert A., Green R., Goel A., May S., Squires T., Phys. Rev. X, 2016, 6(1), 011007 |
17 | Kim S., Ji S., Jeong S., Yang H., Lee S., Choi H., Li O., Small, 2024, 20(16), 2307483 |
18 | Rehl B., Ma E., Parshotam S., Dewalt⁃Kerian E., Liu T., Geiger F., Gibbs J., J. Am. Chem. Soc., 2022, 144(36), 16338—16349 |
19 | Předota M., Cummings P., Wesolowski D., J. Phys. Chem. C, 2007, 111(7), 3071—3079 |
20 | Chen S., Singer S., J. Phys. Chem. B, 2019, 123(29), 6364—6384 |
21 | Wang Z., Chen J., Li Y., Dong K., Yu Y., Phys. Chem. Chem. Phys., 2022, 24(10), 5903—5913 |
22 | An Y., Ouyang M., Kong S., Wang G., Chen X., Phys. Chem. Chem. Phys., 2023, 25(19), 13289—13296 |
23 | Liu Y., Zhou Q., Li B., Zeng W., IEEE Sens. J., 2021, 21(23), 26586—26593 |
24 | Tölgyessy P., Vrana B., Krascsenits Z., Talanta, 2011, 87, 152—160 |
25 | He H., Lu P., Wu L., Zhang C., Song Y., Guan P., Wang S., Nanoscale Res. Lett., 2016, 11, 330 |
26 | Deng X., Liang X., Ng S., Wu C., Appl. Surf. Sci., 2019, 484, 1244—1252 |
27 | Cheng W., Wang L., Lao H., Wei Y., Xu J., Weng B., ACS Sustain. Chem. Eng., 2024, 12(46), 17026—17034 |
28 | Gholamali H., Shafiekhani A., Darabi E., Elahi S., Appl. Organomet. Chem., 2018, 32(5), e4316 |
29 | Yao G., Zhao Z., Inorg. Chem. Front., 2022, 9(4), 729—742 |
30 | Li C., Wang P., Li H., Wang M., Zang J., Qi G., Jin Y., Nanoscale, 2018, 10(29), 14290—14297 |
31 | Jian C., Zhang J., Ma X., RSC Adv., 2020, 10(22), 13277—13285 |
32 | Zeng B., Deng R., Zou., Huo C., Wang J., Yang W., Liang Q., Qiu S., Feng A., Shi J., Hong W., Yang Z., Tian Z., Yang Y., CCS Chem., 2023, 5, 830—840 |
33 | Song R., Liu M., Luo B., Geng J., Jing D., AlChE J., 2020, 66(11), 1—10 |
34 | Cao A., Sang L., Yu Z., Zhao Y., Wang X., Wang C., Ma M., Catal. Sci. Technol., 2022, 12(6), 1859—1868 |
35 | Sang L. X., Ma M. N., Chem. J. Chinese Universities, 2023, 44(6), 20220768 |
桑丽霞, 马梦楠. 高等学校化学学报, 2023, 44(6), 20220768 | |
36 | Mammoottil⁃Abraham A., Kammampata S., Ponnurangam S, Thangadurai V., ACS Appl. Mater. Interfaces, 2019, 11(39), 35729—35737 |
37 | Wiedemair M., Hofer T., Phys. Chem. Chem. Phys., 2017, 19(47), 31910—31920 |
38 | Johnson R., Ranganathan S., Phys. Rev. E, 2007, 75, 056706 |
39 | Ma X., Wu J., Liu Q., Constr. Build. Mater., 2021, 285, 122886 |
40 | Liu J., Zeng J., Zhu C., Miao J., Huang Y., Heinz H., Chem. Sci., 2020, 11(33), 8708—8722 |
41 | Hagler A., Huler E., Lifson S., J. Am. Chem. Soc., 1974, 96, 5319—5327 |
42 | Jameel M., Roslan M., Mayzan M., Shaaban I., Rizvi S., Agam M., Sallem S., Assiri M., J. Inorg. Organomet. Polym. Mater., 2022, 34, 322—335 |
43 | Zhang Y., Zeng W., Li Y., Appl. Surf. Sci., 2019, 495, 143619 |
44 | Wang J., Zhou Q., Lu Z., Wei Z., Zeng W., Appl. Surf. Sci., 2019, 490, 124—136 |
45 | Kusama H., Orita H., Sugihara H., Sol. Energy Mater. Sol. Cells, 2008, 92(1), 84—87 |
46 | Ding Z., Chen M., Yuan J., Yu A., Dai H., Bai S., Appl. Surf. Sci., 2024, 652, 159305 |
47 | Shukri M., Sainmin M., Yaakob M., Yahya M., Taib M., Appl. Surf. Sci., 2019, 494, 817—828 |
48 | Luan B., Zhou R., Appl. Phys. Lett., 2016, 108(13), 10451 |
49 | Li Z., Ruiz V., Kanduč M., Dzubiella J., Langmuir, 2020, 36(45), 13457—13468 |
50 | Chen S., Singer S., J. Phys. Chem. B, 2019, 123(29), 6364—6384 |
51 | Yang F., Kong W., Liu S., Li Y., Phys. Plasmas, 2020, 27(11), 113702 |
52 | Moradipour P., Ali⁃Khodadadi A., Mortazavi Y., Javadi A., Chem. Eng. Sci., 2024, 294, 120107 |
53 | Ghaffari A., Rahbar⁃Kelishami A., J. Mol. Liq., 2013, 187, 238—245 |
54 | Li Y., Ni H., Comput. Phys. Commun., 2023, 284, 108599 |
55 | Miao R., Liang Y., Wen R., Jiang Z., Wang Y., Shao Q., Nanoscale, 2024, 16(1), 249—261 |
56 | Wang Z., Guo H., Ning D., Ma X., Zheng L., Smirnov D., Sun K., Chen D., Sun L., Liu X., J. Am. Chem. Soc., 2021, 104(11), 5934—5945 |
57 | Yang Y., Hua H., Lv Z., Zhang M., Liu C., Wen Z., Xie H., He W., Zhao J., Li C., Adv. Funct. Mater., 2023, 33(10), 2212446 |
58 | Li C., Le Y., Wang Y., Chen S., Yang Z., Li J., Cheng J., Tian Z., Nat. Mater., 2019, 18, 697—701 |
59 | Mishra V., Verma Y., Gupta S., Int. J. Nume. Model., 2020, 33(4), 2726 |
60 | Liu X., Tian R., Ding W., Wu L., Li H., Eur. J. Soil Sci., 2019, 70(5), 1073—1081 |
61 | Semwal B., Sharma P., Mehrotra K., Z. Naturforsch. A, 1971, 26, 735—738 |
62 | Jenisha M., Kavirajan S., Harish S., Kamalakannan S., Archana J., Kumar E., Wakiya N., Navaneethan, J. Colloid Interface Sci., 2024, 653, 1150—1165 |
63 | Huang T., Cong X., Wu S., Wu J., Bao Y., Cao M., Wu L., Lin M., Wang X., Tan P., Ren B., Nat. Catal., 2024, 7, 646—654 |
64 | Meletov K., Efimchenko V., Korotkova M., Masalov V., Sukhinina N., Emel’chenko G., Int. J. Hydrogen Energy, 2023, 48(38), 14337—14347 |
65 | Sobie C., Capolungo L., McDowell D., Martinez E., Acta Mater., 2017, 134, 203—210 |
66 | Peng S., Cho K., Qi P., Dai H., Chem. Phys. Lett., 2004, 387(4—6), 271—276 |
67 | Qiao Z., Wang W., Liu N., Huang H., Karuppasamy L., Yang H., Wu J., Int. J. Hydrogen Energy, 2022, 47(96), 40755—40767 |
68 | Sang L., Zhao Y., Niu Y., Bai G., Appl. Surf. Sci., 2018, 430, 496—504 |
[1] | 顼兴宇, 解晓明, 邱萍. 2-苯基-3-氨基氮杂环丁烷开环形成噻唑或噁唑的机理研究[J]. 高等学校化学学报, 2025, 46(5): 20240547. |
[2] | 杨思伟, 黄旭日. B, N共掺杂富勒烯C70作为氧还原和氧析出非金属电催化剂的理论研究[J]. 高等学校化学学报, 2025, 46(4): 20240490. |
[3] | 谭英佳, 陈亮, 刘聿琳, 那日松, 赵熹. 基于机器学习与分子动力学模拟发现CDK2抑制剂[J]. 高等学校化学学报, 2025, 46(3): 20240442. |
[4] | 黄智瑶, 李丽, 徐华卿, 杨一凡, 韦瑶瑶, 刘国魁, 夏其英. N掺杂石墨烯缺陷材料催化OER/ORR的第一性原理研究[J]. 高等学校化学学报, 2025, 46(2): 20240430. |
[5] | 王璐. 离子液体辅助水热合成1T-MoS2及其锌离子储存性能[J]. 高等学校化学学报, 2024, 45(9): 20240145. |
[6] | 何军, 朱傲阳, 魏雨晨, 朱怡全, 蒋莉, 何孝军. 三维氮掺杂分级多孔碳纳米片的制备及储锌性能[J]. 高等学校化学学报, 2024, 45(7): 20240099. |
[7] | 陈俊杰, 张瑞丹, 陈越. 单层GeTe在锂/钠/钾离子电池中潜在应用的第一性原理研究[J]. 高等学校化学学报, 2024, 45(7): 20240148. |
[8] | 韩玉贵, 刘长龙, 赵鹏, 郑雯雯, 刘岳鹏, 李轶. 热水化学驱体系与稠油组分间相互作用及其理论模拟研究[J]. 高等学校化学学报, 2024, 45(6): 20230456. |
[9] | 张硕, 赵刘洋, 黄昊, 吴爱民, 李爱魁. 基于第一性原理高价元素Mo稳定层状富锂锰基材料的氧框架机制[J]. 高等学校化学学报, 2024, 45(5): 20240035. |
[10] | 房意, 李英杰, 张友浩, 任宇, 韩奎华, 赵建立. 基于分子动力学的热化学储能过程中CaO/Ca(OH)2分子扩散机制研究[J]. 高等学校化学学报, 2024, 45(5): 20240052. |
[11] | 陈荣, 温良英, 岳东, 杨仲卿. Cl2和O2在TiC(100)表面共吸附行为的密度泛函理论分析[J]. 高等学校化学学报, 2024, 45(4): 20230497. |
[12] | 曹华文, 唐秋凡, 屈蓓, 霍欢, 郑启龙, 曹意林, 李吉祯. 硝酸酯键断裂触发的含能增塑剂DNTN多阶热分解机理[J]. 高等学校化学学报, 2024, 45(2): 20230398. |
[13] | 陈晴晴, 李江涛, 黄欣蓉, 顾芳, 王海军. 氢键流体中Janus粒子的过量熵[J]. 高等学校化学学报, 2024, 45(2): 20230443. |
[14] | 赵璨, 孙广凯, 雷博程, 张丽丽, 孙昭艳, 朱有亮. 多分散性对超软球体系结晶行为的影响[J]. 高等学校化学学报, 2024, 45(12): 20240388. |
[15] | 王鑫, 祁金阳, 杨瑞杰, 宋志国, 王敏. 基于苯磺酸配体构筑的Cu(II)配合物的合成、 表征及催化性能[J]. 高等学校化学学报, 2024, 45(10): 20240297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||