高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (5): 20220715.doi: 10.7503/cjcu20220715
收稿日期:
2022-11-11
出版日期:
2023-05-10
发布日期:
2022-12-15
通讯作者:
向中华
E-mail:xiangzh@mail.buct.edu.cn
基金资助:
Received:
2022-11-11
Online:
2023-05-10
Published:
2022-12-15
Contact:
XIANG Zhonghua
E-mail:xiangzh@mail.buct.edu.cn
Supported by:
摘要:
在全球引入氢能技术助力实现碳中和目标的过程中, 高效、 低成本且长寿命的氧还原反应(ORR)阴极电催化剂具有重要作用. 近年来, 非贵金属催化剂的ORR催化活性和稳定性显著提高. 共价有机聚合物(COPs)因其可调节的孔隙率、 可修饰的骨架和周期性排列的有序结构而成为理想的分子结构定制的材料平台. 然而, 常用的高温热解合成策略中, 材料的结构变化不可预测, 真正的活性位点不明确, 阻碍了研究者对催化机理的深入探索. 非热解策略应运而生, 其可以充分发挥COP基材料可定制性的优势. 非热解COP基催化剂精确可控的结构能够为ORR催化机理的研究提供一个理想的模型, 从而指导设计催化性能更优秀的ORR电催化材料, 进一步促进材料的宏观制备. 本文从源头出发, 深入分析了ORR反应机理, 逐步归纳非热解COP基催化剂的设计原则和合成策略. 然后, 结合该领域内具有代表性的文献, 分析了非热解COP基材料电催化性能的影响因素, 系统阐述了非热解策略在ORR领域中的研究进展. 最后, 总结了本课题组对非热解COP基氧还原电催化材料的研究工作, 并进一步展望了非热解技术的发展前景及面临的挑战.
中图分类号:
TrendMD:
鲍春竹, 向中华. 非热解共价有机聚合物基氧还原电催化材料. 高等学校化学学报, 2023, 44(5): 20220715.
BAO Chunzhu, XIANG Zhonghua. Pyrolysis-free Strategy of Covalent Organic Polymers-based Oxygen Reduction Electrocatalytic Materials. Chem. J. Chinese Universities, 2023, 44(5): 20220715.
Fig.2 Summary of active center design options, including single/bimetal atom(A)[41], MN4(B), MN5(C), MO4(D), MO6(E)[42], thiophene sulfide group(F) and other groups(G) engineered as active centers(A) Copyright 2020, American Chemical Society; (E) Copyright 2017, American Chemical Society.
Fig.3 Volcano profiles of limiting potential(U) vs. ΔGOOH* for the 2e and 4e ORR processes of TM3(HITP)2 monolayers, the optimal limiting potentials indicated by the dash⁃dot lines(A)[41], schematic diagram of the synthesis(B)[49], optimized structure of (FePcZnPor)2 and (ZnPcFePor)2 moieties as the minimum repeating units for FePcZnPor⁃CMP and ZnPcFePor⁃CMP, respectively(C), schematic valence shell electronic structure of the Fe ions in (FePcZnPor)2 and (ZnPcFePor)2(D)[50](A) Copyright 2020, American Chemical Society; (B) Copyright 2018, the Royal Society of Chemistry; (C, D) Copyright 2018, the Royal Society of Chemistry.
Fig.4 Diagram showing the electronic “push effect” of the trans axial histidine imidazole group(A)[55], proposed reaction mechanism(B)[56], optimized structures(C) and free energy diagrams(D)[59](A) Copyright 2021, Wiley-VCH; (B) Copyright 2019, Wiley-VCH; (C, D) Copyright 2020, American Chemical Society.
Fig.5 Summary of doping strategies, including donor/acceptor doping(A), ligand⁃n doping(B)[64], I2 doping(C—E)[36,65,66], guest doping(F)[67] and conductive polymer doping(G)[68](B) Copyright 2020, the Royal Society of Chemistry; (C) Copyright 2020, American Chemical Society; (D) Copyright 2010, American Chemical Society; (E) Copyright 2017, Wiley-VCH; (F) Copyright 2018, Springer Nature; (G) Copyright 2018, Wiley-VCH.
Fig.6 Design principle for substitution effects(A), construction schemes including substitution of electron⁃withdrawing groups such as pyrrole⁃N(B), F(C), thiophene⁃S(D), and NO2(E, F), electron⁃donating groups such as diphenylthiophene sulfur(G), auxiliary groups(H) and linker groups(I, J)
Fig.7 Schematic illustration of d⁃π conjugation in TM⁃BTA and the substituent modification strategy to regulate ORR activity of Co sites viad⁃π conjugation(A), differential charge density of *O on Co⁃BTA after the introduction of Cl and O substituents, respectively(B), the color⁃filled map of ORR activity volcano(C)[70], turnover⁃overpotential relationships for CoTPPNMe3+ at different pH values(D), and calculated relative free energy changes for ORR(E)[73](A—C) Copyright 2021, Wiley-VCH; (D, E) Copyright 2020, American Chemical Society.
Fig.8 The published supported type with pyrolysis⁃free mainly classified into graphene⁃based(A—C)[37,84,85], CNTs⁃based(D—F)[86—88] and other C⁃based(G—J)[89—91] materials(A) Copyright 2018, Wiley-VCH; (B) Copyright 2019, the Royal Society of Chemistry; (C) Copyright 2019, American Association for the Advancement of Science; (D) Copyright 2020, Elsevier; (E) Copyright 2015, Elsevier; (F) Copyright 2014, American Chemical Society; (G, H) Copyright 2014, Elsevier; (I) Copyright 2017, Springer Nature; (J) Copyright 2015, the Royal Society of Chemistry.
Fig.9 Synthesis route of the pfSAC⁃Fe catalyst(A), the electron localization function of pfSAC⁃Fe(B), differential charge density distribution on pfSAC⁃Fe before and after the absorption of oxygen(C), electronic conductivity studies(D)[37] and schematic structure of UiO⁃66⁃NO2@CoCNT(E)[93](A—D) Copyright 2019, American Association for the Advancement of Science; (E) Copyright 2019, American Chemical Society.
Fig.10 Schematic illustration of the preparation process for the cross⁃linked nanofiber electrode(A) and photos of cross⁃linked nanofiber membrane obtained by electrospinning(B)[94]Copyright 2022, Wiley-VCH.
Fig.11 Summary of representative references about pyrolysis⁃free strategies in our group, including the modulation of intrinsic properties(A[92], B[96], C[98]), application of devices(D)[94] and large⁃scale preparation(E)[99](A) Copyright 2019, American Chemical Society; (B) Copyright 2022, Springer Nature; (C) Copyright 2022, Wiley-VCH; (D) Copyright 2022, Wiley-VCH; (E) Copyright 2022, Wiley-VCH.
1 | Zhang T., Zhang B. K., Peng Q., Zhou J., Sun Z. M., J. Mater. Chem. A, 2021, 9(1), 433—441 |
2 | Xia Z. H., Xiang Z. H., Front. Mater., 2020, 7, 43 |
3 | Gan J., Hao C. Y., Guo J. N., Chen W. Y., Cao Y. Q., Luo W., Huang Z. K., Xiang Z. H., Duan X. Z., Zhou X. G., ACS Sustainable Chem. Eng., 2020, 8(25), 9385—9392 |
4 | Hardt S., Stapf S., Filmon D. T., Birrell J. A., Rüdiger O., Fourmond V., Léger C., Plumeré N., Nat. Catal., 2021, 4(3), 251—258 |
5 | Lim A., Jeong H. Y., Lim Y., Kim J. Y., Park H. Y., Jang J. H., Sung Y. E., Kim J. M., Park H. S., Sci. Adv., 2021, 7(13), 7866—7875 |
6 | Niu Y. H., Zhou Y. C., Lv W. Q., Chen Y., Zhang Y. X., Zhang W. L., Luo Z. Y., Kane N. O. L., Ding Y., Soule L. K., Liu Y. C., He W. D., Liu M. L., Adv. Funct. Mater., 2021, 31(19), 2100034 |
7 | Shan J. Q., Ye C., Chen S. M., Sun T. L., Jiao Y., Liu L. M., Zhu C. Z., Song L., Han Y., Jaroniec M., Zhu Y. H., Zheng Y., Qiao S. Z., J. Am. Chem. Soc., 2021, 143(13), 5201—5211 |
8 | Zhu J. W., Xu L., Lyu Z. H., Xie M. H., Chen R. H., Jin W. Q., Mavrikakis M., Xia Y. N., Angew. Chem. Int. Ed., 2021, 60(18), 10384—10392 |
9 | Zhang F. F., Zhu Y. L., Lin Q., Zhang L., Zhang X. W., Wang H. T., Energy Environ. Sci., 2021, 14(5), 2954—3009 |
10 | Jung E., Shin H., Lee B. H., Efremov V., Lee S., Lee H. S., Kim J., Hooch Antink,W., Park S., Lee K. S., Cho S. P., Yoo J. S., Sung Y. E., Hyeon T., Nat. Mater., 2020, 19(4), 436—442 |
11 | Guo J. N., Cheng Y. H., Xiang Z. H., ACS Sustainable Chem. Eng., 2017, 5(9), 7871—7877 |
12 | Xiang Z. H., Xue Y. H., Cao D. P., Huang L., Chen J. F., Dai L. M., Angew. Chem. Int. Ed., 2014, 53(9), 2433—2437 |
13 | Dong R. H., Feng X. L., Nat. Mater., 2021, 20(2), 122—123 |
14 | Yu J. H., Yao Z. R., Hydrometall. China, 2019, 38(5), 337—346 |
余杰皓, 刘峙嵘. 湿法冶金, 2019, 38(5), 337—346 | |
15 | Li L. L., Liu S., Zhang Q., Hu N. T., Wei L. M., Yang Z., Wei H., Acta Phys.⁃Chim. Sin., 2017, 33(10), 1960—1977 |
李路路, 刘帅, 章琴, 胡南滔, 魏良明, 杨志, 魏浩. 物理化学学报, 2017, 33(10), 1960—1977 | |
16 | Xiang Z. H., Mercado R., Huck J. M., Wang H., Guo Z. H., Wang W. C., Cao D. P., Haranczyk M., Smit B., J. Am. Chem. Soc., 2015, 137(41), 13301—13307 |
17 | Liu J., Cao D., Xu H. X., Cheng D. J., Nano Select, 2021, 2(2), 251—270 |
18 | Fu Y. A., Huang Y., Xiang Z. H., Liu G. Q., Cao D. P., Eur. J. Inorg. Chem., 2016, 2016(13-14), 2100—2105 |
19 | Cheng Y. H., Guo J. N., Huang Y., Liao Z. J., Xiang Z. H., Nano Energy, 2017, 35, 115—120 |
20 | Guo J. N., Li Y., Cheng Y. H., Dai L. M., Xiang Z. H., ACS Nano, 2017, 11(8), 8379—8386 |
21 | Liao Z. J., Wang Y. L., Wang Q. L., Cheng Y. H., Xiang Z. H., Appl. Catal. B, 2019, 243, 204—211 |
22 | Lin X. X., Peng P., Guo J. N., Xiang Z. H., Chem. Eng. J., 2019, 358, 427—434 |
23 | Li Y., Peng P., Liao Z. J., Huo F., Liu Y. J., Shao X. H., Xiang Z. H., ACS Sustainable Chem. Eng., 2020, 8(9), 3728—3733 |
24 | Li L. L., Yao L., Duan L., Acta Phys.⁃Chim. Sin., 2019, 35(7), 734—739 |
李路路, 姚路, 段力. 物理化学学报, 2019, 35(7), 734—739 | |
25 | Xiang Z. H., Cao D. P., Huang L., Shui J. L., Wang M., Dai L. M., Adv. Mater., 2014, 26(20), 3315—3320 |
26 | Li J., Jing X. C., Li Q. Q., Li S. W., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020, 49(11), 3565—3604 |
27 | Xiao F., Xu G. L., Sun C. J., Xu M. J., Wen W., Wang Q., Gu M., Zhu S. Q., Li Y. Y., Wei Z. D., Pan X. Q., Wang J. A., Amine K., Shao M. H., Nano Energy, 2019, 61, 60—68 |
28 | Lefèvre M., Proietti E., Jaouen F., Dodelet J. P., Science, 2009, 324(5923), 71—74 |
29 | Proietti E., Jaouen F., Lefevre M., Larouche N., Tian J., Herranz J., Dodelet J. P., Nat. Commun., 2011, 2, 416 |
30 | Su P. P., Xiao H., Zhao J., Yao Y., Shao Z. G., Li C., Yang Q. H., Chem. Sci., 2013, 4(7), 2941—2946 |
31 | Zhang L. J., Su Z. X., Jiang F. L., Yang L. L., Qian J. J., Zhou Y. F., Li W. M., Hong M. C., Nanoscale, 2014, 6(12), 6590—6602 |
32 | Wang H. F., Chen L. Y., Pang H., Kaskel S., Xu Q., Chem. Soc. Rev., 2020, 49(5), 1414—1448 |
33 | Asset T., Atanassov P., Joule, 2020, 4(1), 33—44 |
34 | Guo J. C., Gao L., Tan X., Yuan Y. L., Kim J., Wang Y., Wang H., Zeng Y. J., Choi S. I., Smith S. C., Huang H. W., Angew. Chem. Int. Ed., 2021, 60(19), 10942—10949 |
35 | Qiao Z., Zhang H. G., Karakalos S., Hwang S., Xue J., Chen M. J., Su D., Wu G., Appl. Catal. B, 2017, 219, 629—639 |
36 | Wang M. C., Wang M., Lin H. H., Ballabio M., Zhong H. X., Bonn M., Zhou S. Q., Heine T., Cánovas E., Dong R. H., Feng X. L., J. Am. Chem. Soc., 2020, 142(52), 21622—21627 |
37 | Peng P., Shi L., Huo F., Mi C. X., Wu X. H., Zhang S. J., Xiang Z. H., Sci. Adv., 2019, 5(8), 2322—2328 |
38 | Kari J., Olsen J. P., Jensen K., Badino S. F., Krogh K. B. R. M., Borch K., Westh P., ACS Catal., 2018, 8(12), 11966—11972 |
39 | Wang X. X., Swihart M. T., Wu G., Nat. Catal., 2019, 2(7), 578—589 |
40 | Lai Q. X., Zheng L. R., Liang Y. Y., He J. P., Zhao J. X., Chen J. H., ACS Catal., 2017, 7(3), 1655—1663 |
41 | Wang J. R., Fan Y. C., Qi S. Y., Li W. F., Zhao M. W., J. Phys. Chem. C, 2020, 124(17), 9350—9359 |
42 | Liu X. H., Hu W. L., Jiang W. J., Yang Y. W., Niu S., Sun B., Wu, J., Hu J. S., ACS Appl. Mater. Interfaces, 2017, 9(34), 28473—28477 |
43 | Liang C. W., Zou P. C., Nairan A., Zhang Y. Q., Liu J. X., Liu K. W., Hu S. Y., Kang F. Y., Fan H. J., Yang C., Energy Environ. Sci., 2020, 13(1), 86—95 |
44 | Lian Y. B., Yang W. J., Zhang C. F., Sun H., Deng Z., Xu W. J., Song L., Ouyang Z. W., Wang Z. X., Guo J., Peng,Y., Angew. Chem. Int. Ed., 2019, 59(1), 286—294 |
45 | Pedersen A., Barrio J., Li A. L., Jervis R., Brett D. J. L., Titirici M. M., Stephens I. E. L., Adv. Energy Mater., 2022, 12(3), 2102715 |
46 | Han X. P., Ling X. F., Yu D. S., Xie D. Y., Li L. L., Peng S. J., Zhong C., Zhao N. Q., Deng Y. D., Hu W. B., Adv. Mater., 2019, 31(49), 1905622 |
47 | Wang J., Huang Z. Q., Liu W., Chang C. R., Tang H. L., Li Z. J., Chen W. X., Jia C. J., Yao T., Wei S. Q., Wu Y. E., Lie Y. D., J. Am. Chem. Soc., 2017, 139(48), 17281—17284 |
48 | Tong M. M., Sun F. F., Xie Y., Wang Y., Yang Y. Q., Tian C. G., Wang L., Fu H. G., Angew. Chem. Int. Ed., 2021, 60(25), 14005—14012 |
49 | Liu W. P., Hou Y. X., Pan H. H., Liu W. B., Qi D. D., Wang K., Jiang J. Z., Yao X. D., J. Mater. Chem. A, 2018, 6(18), 8349—8357 |
50 | Liu W. B., Wang K., Wang C. M., Liu W. P., Pan H. H., Xiang Y. J., Qi D. D., Jiang J. Z., J. Mater. Chem. A, 2018, 6(45), 22851—22857 |
51 | Gong K. P., Du F., Xia Z. H., Durstock M., Dai L. M., Science, 2009, 323(5915), 760—764 |
52 | Hu C. G., Dai L. M., Angew. Chem. Int. Ed., 2016, 55(39), 11736—11758 |
53 | Chung H. T., Cullen D. A., Higgins D., Sneed B. T., Holby E. F., More K. L., Zelenay P., Science, 2017, 357(6350), 479—484 |
54 | Zhong Y. T., Lu Y. T., Pan Z. H., Yang J., Du G. H., Chen J. W., Zhang Q. K., Zhou H. B., Wang J., Wang C. S., Li W. S., Adv. Funct. Mater., 2021, 31(20), 2009853 |
55 | Xie L. S., Zhang X. P., Zhao B., Li P., Qi J., Guo X. N., Wang B., Lei H. T., Zhang W., Apfel U. P., Cao R., Angew. Chem. Int. Ed., 2021, 60(14), 7576—7581 |
56 | Zhong H. X., Ly K. H., Wang M. C., Krupskaya Y., Han X. C., Zhang J. C., Zhang J., Kataev V., Büchner B., Weidinger I. M., Kaskel S., Liu P., Chen M. W., Dong R. H., Feng X. L., Angew. Chem. Int. Ed., 2019, 58(31), 10677—10682 |
57 | He Y. H., Hwang S., Cullen D. A., Uddin M. A., Langhorst L., Li B. Y., Karakalos S., Kropf A. J., Wegener E. C., Sokolowski J., Chen M. J., Myers D., Su D., More K. L., Wang G. F., Litster S., Wu G., Energy Environ. Sci., 2019, 12(1), 250—260 |
58 | Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., J. Am. Chem. Soc., 2014, 136(11), 4394—4403 |
59 | Li D. H., Li C. Y., Zhang L. J., Li H., Zhu L. K., Yang D. J., Fang Q. R., Qiu S. L., Yao X. D., J. Am. Chem. Soc., 2020, 142(18), 8104—8108 |
60 | Long X. J., Li D. H., Wang B. B., Jiang Z. J., Xu W. J., Wang B. B., Yang D. J., Xia Y. Z., Angew. Chem. Int. Ed., 2019, 58(33), 11369—11373 |
61 | Boehm H. P., Diehl E., Heck W., Sappok R., Angew. Chem. Int. Ed., 1964, 3(10), 669—677 |
62 | Huang B. Y., Li L. B., Tang X. N., Zhai W. J., Hong Y. S., Hu T., Yuan K., Chen Y. W., Energy Environ. Sci., 2021, 14(5), 2789—2808 |
63 | Roy S., Bandyopadhyay A., Das M., Ray P. P., Pati S. K., Maji T. K., J. Mater. Chem. A, 2018, 6(14), 5587—5591 |
64 | Wentz H. C., Skorupskii G., Bonfim A. B., Mancuso J. L., Hendon C. H., Oriel E. H., Sazama G. T., Campbell M. G., Chem. Sci., 2020, 11(5), 1342—1346 |
65 | Kobayashi Y., Jacobs B., Allendorf M. D., Long J. R., Chem. Mater., 2010, 22(14), 4120—4122 |
66 | Wang H. Y., Ge J. Y., Hua C., Jiao C. Q., Wu Y., Leong C. F., D'Alessandro D. M., Liu T., Zuo J. L., Angew. Chem. Int. Ed., 2017, 56(20), 5465—5470 |
67 | Aubrey M. L., Wiers B. M., Andrews S. C., Sakurai T., Reyes⁃Lillo S. E., Hamed S. M., Yu C. J., Darago L. E., Mason J. A., Baeg J. O., Grandjean F., Long G. J., Seki S., Neaton J. B., Yang P. D., Long J. R., Nat. Mater., 2018, 17(7), 625—632 |
68 | Jiang H. Q., Liu X. C., Wu Y. S., Shu Y. F., Gong X., Ke F. S., Deng H. X., Angew. Chem. Int. Ed., 2018, 57(15), 3916—3921 |
69 | Li W. M., Yu A. P., Higgins D. C., Llanos B. G., Chen Z. W., J. Am. Chem. Soc., 2010, 132(48), 17056—17058 |
70 | Ni Y. X., Lin L., Shang Y. X., Luo L., Wang L. B., Lu Y., Li Y. X., Yan Z. H., Zhang K., Cheng F. Y., Chen J., Angew. Chem. Int. Ed., 2021, 60(31), 16937—16941 |
71 | Wang L. Z., She Y. B., Zhong R. G., Zhang Y. H., Ji H. B., Chin. J. Chem. Eng., 2006, 57(6), 1339—1345 |
王兰芝, 佘远斌, 钟儒刚, 张燕慧, 纪红兵. 化工学报, 2006, 57(6), 1339—1345 | |
72 | Abarca G., Viera M., Aliaga C., Marco J. F., Orellana W., Zagal J. H., Tasca F., J. Mater. Chem. A, 2019, 7(43), 24776—24783 |
73 | Zhang R., Warren J. J., J. Am. Chem. Soc., 2020, 142(31), 13426—13434 |
74 | Lei H. T., Liu C. Y., Wang Z. J., Zhang Z. Y., Zhang M. N., Chang X. M., Zhang W., Cao R., ACS Catal., 2016, 6(10), 6429—6437 |
75 | Zhang J. T., Qu L. T., Shi G. Q., Liu J. Y., Chen J. F., Dai L. M., Angew. Chem. Int. Ed., 2016, 55(6), 2230—2234 |
76 | Wu Z. S., Zhng Y. J., Zheng S. H., Wang S., Sun C. L., Parvez K., Ikeda T., Bao X. H., Mullen K., Feng X. L., Adv. Mater., 2017, 29(3), 1602960 |
77 | Yang W. X., Chen L. L., Liu X. J., Jia J. B., Guo S. J., Nanoscale, 2017, 9(4), 1738—1744 |
78 | Tang H. J., Yin H. J., Wang J. Y., Yang N. L., Wang D., Tang Z. Y., Angew. Chem. Int. Ed., 2013, 52(21), 5585—5589 |
79 | Xi Y. T., Wei P. J., Wang R. C., Liu J. G., Chem. Commun., 2015, 51(35), 7455—7458 |
80 | Zhuo H. Y., Zhang X., Liang J. X., Yu Q., Xiao H., Li J., Chem. Rev., 2020, 120(21), 12315—12341 |
81 | Patnaik S. G., Vedarajan R., Matsumi N., ACS Appl. Energy Mater., 2018, 1(3), 1183—1190 |
82 | Wei P. J., Yu G. Q., Naruta Y., Liu J. G., Angew. Chem. Int. Ed., 2014, 53(26), 6659—6663 |
83 | Wang X. X., Wang B., Zhong J., Zhao F. P., Han N., Huang W. J., Zeng M., Fan J., Li Y. G., Nano Res., 2016, 9(5), 1497—1506 |
84 | Guo J. N., Lin C. Y., Xia Z. H., Xiang Z. H., Angew. Chem. Int. Ed., 2018, 57(38), 12567—12572 |
85 | Liu W. P., Wang C. M., Zhang L. J., Pan H. H., Liu W. B., Chen J., Yang D. J., Xiang Y. J., Wang K., Jiang J. Z., Yao X. D., J. Mater. Chem. A, 2019, 7(7), 3112—3119 |
86 | Liu J. X., Cheng T. T., Jiang L. Q., Zhang H. Q., Shan Y. K., Kong A. G., Electrochim. Acta, 2020, 363, 137280 |
87 | Wang Z. J., Lei H. T., Cao R., Zhang M. N., Electrochim. Acta, 2015, 171, 81—88 |
88 | Hijazi I., Bourgeteau T., Cornut R., Morozan A., Filoramo A., Leroy J., Derycke V., Jousselme B., Campidelli S., J. Am. Chem. Soc., 2014, 136(17), 6348—6354 |
89 | Li M., Bo X. J., Zhang Y. F., Han C., Guo L. P., J. Power Sources, 2014, 264, 114—122 |
90 | He H. Y., Wang M., Zhang Y., Zhao J. S., J. Solid State Electrochem., 2017, 21(6), 1639—1651 |
91 | Zhang S. M., Zhang H. Y., Hua X., Chen S. L., J. Mater. Chem. A, 2015, 3(18), 10013—10019 |
92 | Peng P., Shi L., Huo F., Zhang S. J., Mi C. X., Cheng Y. H., Xiang Z. H., ACS Nano, 2019, 13(1), 878—884 |
93 | Zeng S. S., Lyu F. C., Sun L. G., Zhan Y. W., Ma F. X., Lu J., Li Y. Y., Chem. Mater., 2019, 31(5), 1646—1654 |
94 | Yang B. L., Han Q., Han L. K., Leng Y. M., O'Carroll T., Yang X. X., Wu G., Xiang Z. H., Adv. Mater., 2022, 35(1), 2208661—2208672 |
95 | Lin X. X., Peng P., Guo J. N., Xie L. H., Liu Y. J., Xiang Z. H., Nano Energy, 2021, 80, 105533 |
96 | Li X. L., Xiang Z. H., Nat. Commun., 2022, 13(1), 57—67 |
97 | Zang Y., Mi C. X., Wang R., Chen H., Peng P., Xiang Z. H., Zang S. Q., Mak T. C. W., Angew. Chem. Int. Ed., 2021, 60(38), 20865—20871 |
98 | Li X. L., Liu Q. B., Yang B. L., Liao Z. J., Yan W. S., Xiang Z. H., Adv. Mater., 2022, 34(36), 2204570 |
99 | Li X. L., Liu D., Liu Q. B., Xiang Z. H., Small, 2022, 18(21), 2201197 |
[1] | 王军, 杜石谦, 陶李. 高温聚合物电解质膜燃料电池催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220722. |
[2] | 李瑞松, 苗政培, 李静, 田新龙. 中空贵金属纳米材料氧还原催化的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220730. |
[3] | 李轩, 亓帅, 周伟良, 李小杰, 景玲胭, 冯超, 蒋兴星, 杨恒攀, 胡琪, 何传新. 纤维基氧化还原电催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220770. |
[4] | 李姿若, 张红娟, 朱国勋, 夏伟, 汤静. 负载酞菁铁的氮掺杂中空碳球的电催化氧还原性能[J]. 高等学校化学学报, 2023, 44(1): 20220677. |
[5] | 程前, 杨博龙, 吴文依, 向中华. S掺杂Fe-N-C高活性氧还原反应催化剂[J]. 高等学校化学学报, 2022, 43(9): 20220341. |
[6] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[7] | 周雷雷, 程海洋, 赵凤玉. Pd基多相催化剂上CO2加氢反应的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220279. |
[8] | 谷雨, 奚宝娟, 李江潇, 熊胜林. 单原子催化剂在氧还原反应中的分子级调控[J]. 高等学校化学学报, 2022, 43(5): 20220036. |
[9] | 张小玉, 薛冬萍, 杜宇, 蒋粟, 魏一帆, 闫文付, 夏会聪, 张佳楠. MOF衍生碳基电催化剂限域催化O2还原和CO2还原反应[J]. 高等学校化学学报, 2022, 43(3): 20210689. |
[10] | 何宇婧, 李佳乐, 王东洋, 王福玲, 肖作旭, 陈艳丽. 锌活化Fe/Co/N掺杂的生物质碳基高效氧还原催化剂[J]. 高等学校化学学报, 2022, 43(11): 20220475. |
[11] | 耿传楠, 化五星, 凌国维, 陶莹, 张辰, 杨全红. 锂硫电池中的催化作用: 材料与表征[J]. 高等学校化学学报, 2021, 42(5): 1331. |
[12] | 杨涛, 姚会影, 李青, 郝伟, 迟力峰, 朱嘉. 高催化活性M-BHT(M=Co, Cu)电催化还原CO2为CH4的密度泛函理论研究[J]. 高等学校化学学报, 2021, 42(4): 1268. |
[13] | 马骏, 钟洋, 张珊珊, 黄仪珺, 张利鹏, 李亚平, 孙晓明, 夏振海. 高效催化氧还原及氧析出反应的掺杂石墨炔的设计与理论计算[J]. 高等学校化学学报, 2021, 42(2): 624. |
[14] | 殷雯婧, 刘啸, 钱汇东, 邹志青. 高活性位点密度Fe-N共掺杂碳纳米片的制备及氧还原性能[J]. 高等学校化学学报, 2019, 40(7): 1480. |
[15] | 徐朝权, 马俊红, 石旻慧, 冯超, 谢亚红, 米红宇. 基于天然产物的新型铁氮共掺杂碳电催化剂的制备及氧还原性能[J]. 高等学校化学学报, 2018, 39(7): 1532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||