高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (5): 20220162.doi: 10.7503/cjcu20220162
• 综合评述 • 上一篇
收稿日期:
2022-03-15
出版日期:
2022-05-10
发布日期:
2022-04-14
通讯作者:
万家炜,于然波
E-mail:jwwan@ipe.ac.cn;ranboyu@ustb.edu.cn
基金资助:
XIA Tian1,2, WAN Jiawei2,3(), YU Ranbo1(
)
Received:
2022-03-15
Online:
2022-05-10
Published:
2022-04-14
Contact:
WAN Jiawei,YU Ranbo
E-mail:jwwan@ipe.ac.cn;ranboyu@ustb.edu.cn
Supported by:
摘要:
单原子催化剂是一类以相互孤立的单个金属原子作为催化活性中心的、 具有高原子经济性及高活性的负载型催化剂, 被广泛应用于能源电催化领域. 近年来, 通过使用两种或两种以上原子与活性中心金属原子配位, 构建具有异原子配位结构的单原子材料, 展现了优异的电催化性能. 研究发现, 这种不对称的配位结构有效调控了中心金属原子的电子结构, 优化了催化反应的吸附和脱附能量, 提高了电催化的性能. 本文综合评述了具有异原子配位结构碳基单原子电催化剂的合成策略、 表征技术与方法, 以及在前沿能源电催化应用中的催化剂性能与结构之间的构效关系, 并展望了异原子配位结构碳基单原子电催化剂的研究前景.
中图分类号:
TrendMD:
夏天, 万家炜, 于然波. 异原子配位结构碳基单原子电催化剂结构与性能相关性的研究进展. 高等学校化学学报, 2022, 43(5): 20220162.
XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts. Chem. J. Chinese Universities, 2022, 43(5): 20220162.
Fig.1 Schematic illustration for the preparation of S?CuISA/SNC(A)[47], scheme of the formation of Co?SA/P?in situ(B)[24] and preparation of FeN4Cl1/NC(C)[53](A) Copyright 2020, Springer Nature; (B) Copyright 2020, the American Chemical Society; (C) Copyright 2021, Wiley-VCH.
Fig.2 Preparation route to PSTA?Co?1000 hollow carbon nanospheres(A)[58], scheme of the formation of Pt?SAs/BNC?3(B)[59], synthesis of M?DABDT by solvent thermal method(C)[60], schematic diagram of the preparation of the FeNPC composite(D)[61](A) Copyright 2020, Wiley-VCH; (B) Copyright 2021, the American Chemical Society; (C) Copyright 2021, the American Chemical Society; (D) Copyright 2019, the Royal Society of Chemistry.
Fig.3 Illustration of the preparation process for single Co atoms with various coordination environments in graphene(A)[76], typical CVD procedures synthesizing the Fe(Fc)?N/S?C catalyst(B)[77], illustration of the preparation of CoN x /G catalyst with CoN3CCl sites(C)[78], illustration of structural distortion of CuN2C2 active site with adsorbed O2 on different sp2?hybridized carbon frameworks(D)[82](A) Copyright 2021, the American Chemical Society; (B) Copyright 2021, the American Chemical Society; (C) Copyright 2021, the American Chemical Society; (D) Copyright 2021, Springer Nature.
Fig.4 Atomic structure model of the CuN2C2(A), spherical aberration corrected HAADF?STEM images of Cu/G(B) and Cu/CNT?8(C)[82], schematic atomic interface model of S?Cu?ISA/SNC(D), HAADF?STEM image(E) and the magnified image(F) of S?Cu?ISA/SNC[47](A—C) Copyright 2021, Springer Nature; (D—F) Copyright 2020, Springer Nature.
Fig.5 Atomic structure model of the FeN3S(A), XPS spectra of N1s (B) and S2p (C) of Fe(Fc)?N/S?C, Fe(Fc)?N?C and N/S?C, XPS spectra of Fe2p of the Fe(Fc)?N/S?C, the Fe(Fc)?N?C, and the Fe(Fn)?N/S?C catalysts(D)[77], atomic structure model of the W?NO/NC(E), high?resolution XPS spectra of W4f (F), O1s (G), and N1s (H) of W?NO/NC and NC[92](A—D) Copyright 2021, the American Chemical Society; (E—H) Copyright 2021, Wiley-VCH.
Fig.6 XANES data(A), Fourier?transformed(FT) curves of the Zn Kedge for ZnN4, ZnO3C, and reference samples(B)[98], atomic structure model of the W?NO/NC(C), XANES(D) and k3?weighted FT?EXAFS curves of the W?NO/NC at W L3?edge(E), k3?weighted FT?EXAFS fitting curves of the W?NO/NC at W L3?edge(F), atomic structure model of the W?NO/NC(G)[92](A, B) Copyright 2022, Wiley-VCH; (C—G) Copyright 2021, Wiley-VCH.
Application | Catalyst | Central atomic species | First shell coordination structures of central atom | Synthesis method |
---|---|---|---|---|
ORR | FeN3OS[ | Fe | Fe1?N3O1 | Coordination design strategy |
Co1?N3PS/HC[ | Co | Co1?N3PS | Spatial confinement strategy | |
S?Cu?ISA/SNC[ | Cu | Cu1?S1N3 | Spatial confinement strategy | |
Fe?N/S?C[ | Fe | Fe1?N3S1 | Defect engineering strategy | |
MnNPC?900[ | Mn | Mn1?N x P y | Coordination design strategy | |
Cu/CNT?8[ | Cu | Cu1?N2C2 | Defect engineering strategy | |
HER | S?Co/N/C[ | Co | Co1?S2N2 | Defect engineering strategy |
Mo@NMCNFs[ | Mo | Mo1O1N1C2 | Defect engineering strategy | |
Co?SA/P[ | Co | Co1?P1N3 | Spatial confinement strategy | |
OER | S|NiN x ?PC/EG[ | Ni | Ni1?N3S | Defect engineering strategy |
CoN x /G[ | Co | Co1CN3Cl | Defect engineering strategy | |
CO2RR | Fe?N/O?C[ | Fe | Fe1?N4O | Coordination design strategy |
Ni?N4?O/C[ | Ni | Ni1?N4?O | Coordination design strategy | |
(Cl, N)?Mn/G[ | Mn | Mn1?N4Cl | Defect engineering strategy | |
FeN4Cl/NC[ | Fe | Fe1?N4Cl | Spatial confinement strategy | |
CdN4S1/NC[ | Cd | Cd1?N4S1 | Defect engineering strategy | |
NRR | Mn?O3N1/PC[ | Mn | Mn1?O3N1 | Defect engineering strategy |
FeSA?NO?C[ | Fe | Fe1?N2Cl4 | Spatial confinement strategy |
Table 1 Single-atom electrocatalysts with heteroatomic coordination structures for different applications
Application | Catalyst | Central atomic species | First shell coordination structures of central atom | Synthesis method |
---|---|---|---|---|
ORR | FeN3OS[ | Fe | Fe1?N3O1 | Coordination design strategy |
Co1?N3PS/HC[ | Co | Co1?N3PS | Spatial confinement strategy | |
S?Cu?ISA/SNC[ | Cu | Cu1?S1N3 | Spatial confinement strategy | |
Fe?N/S?C[ | Fe | Fe1?N3S1 | Defect engineering strategy | |
MnNPC?900[ | Mn | Mn1?N x P y | Coordination design strategy | |
Cu/CNT?8[ | Cu | Cu1?N2C2 | Defect engineering strategy | |
HER | S?Co/N/C[ | Co | Co1?S2N2 | Defect engineering strategy |
Mo@NMCNFs[ | Mo | Mo1O1N1C2 | Defect engineering strategy | |
Co?SA/P[ | Co | Co1?P1N3 | Spatial confinement strategy | |
OER | S|NiN x ?PC/EG[ | Ni | Ni1?N3S | Defect engineering strategy |
CoN x /G[ | Co | Co1CN3Cl | Defect engineering strategy | |
CO2RR | Fe?N/O?C[ | Fe | Fe1?N4O | Coordination design strategy |
Ni?N4?O/C[ | Ni | Ni1?N4?O | Coordination design strategy | |
(Cl, N)?Mn/G[ | Mn | Mn1?N4Cl | Defect engineering strategy | |
FeN4Cl/NC[ | Fe | Fe1?N4Cl | Spatial confinement strategy | |
CdN4S1/NC[ | Cd | Cd1?N4S1 | Defect engineering strategy | |
NRR | Mn?O3N1/PC[ | Mn | Mn1?O3N1 | Defect engineering strategy |
FeSA?NO?C[ | Fe | Fe1?N2Cl4 | Spatial confinement strategy |
Fig.7 Schematic atomic interface model of FeN3OS(A), linear sweep ORR voltammograms recorded at 1600 r/min and a scan rate of 10 mV/s in oxygen?saturated alkaline electrolytes(B), calculated free energy evolution of each elementary step in ORR catalysis at 0 V(C) and 1.23 V(D)[110], schematic atomic interface model of Co1?N3PS/HC(E), ORR polarization curves of Co1?N3PS/HC and reference catalysts in 0.1 mol/L KOH(F), the K?L plots of Co1?N3PS/HC(H), electron transfer numbers(top) and H2O2 yield of Co1?N3PS/HC(G)[111], schematic atomic interface model of S?Cu?ISA/SNC(I), FT k3?weighted Cu K?edge EXAFS spectra of S?Cu?ISA/SNC and the references(J), polarization curves for S?Cu?ISA/SNC and the references(K), free?energy diagram for different Cu?centered moieties(L)[47](A—D) The corresponding RDS is highlighted. Copyright 2021, Wiley-VCH; (E—H) Copyright 2021, Wiley-VCH; (I—L) Copyright 2020, Springer Nature.
Fig.8 Schematic illustration for the synthesis process of S|NiN x ?PC/EG(A), polarization curves of EG, NiN x ?PC/EG, Ni?S?PC/EG, N?S?PC/EG, S|NiN x ?PC/EG and Ir/C for OER(B), the corresponding Tafel plots(C), multi?current electrochemical process of S|NiN x ?PC/EG(D), schematic free?energy profile for the OER pathway on the Ni?N3S model in alkaline media(E)[114]Copyright 2019, Springer Nature.
Fig.9 Proposed atomic structure model of the Mo?N1C2 configuration(A), LSV curves of the Mo@NMCNFs, Mo2C@N?CNFs, NMCNFs, and commercial Pt/C(B), free?energy profile of the HER on Mo?SACs and Pt(111)(C)[113], schematic atomic interface model of Co?SA/P(D), HER polarization curves for Co?SA/P?in situ and other compared catalysts(E), reaction energy(ΔGH*) of H adsorption on the surface of Co?SA/P?in situ(F)[24](C) The hydrogenated MoC2N?OH is shown in the inset; (F) Structure of H atom adsorbed on Co for Co1P1N3 is shown in the inset. (A—C) Copyright 2021, the American Chemical Society; (D—F) Copyright 2020, the American Chemical Society.
Fig.10 Schematic atomic interface model of FeN4Cl/NC(A), CO Faradaic efficiencies of NC, FeN4/NC?7.5, and FeN4Cl/NC?7.5 at different potentials(B), CO current densities of NC, FeN4/NC?7.5, and FeN4Cl/NC?7.5 at different potentials(C)[118], schematic atomic interface model of CdN4S1/NC(D), the total current density for NCN, NSCN, CdN5/CN, and CdN4S1/CN at different applied potentials(E), Gibbs free energy diagrams for CO2RR to CO over different models(F)[119](A—C) Copyright 2022, Elsevier; (D—F) Copyright 2021, Wiley-VCH.
Fig.11 Schematic atomic interface model of Mn?O3N1/PC(A), NH3 yield rates and FEs of Mn?O3N1/PC and Mn?N4/PC at each given potential(B, C), free energy diagram of the electrochemical NRR via an associative distal pathway on the Mn?O3N1/graphene and the Mn?N4/graphene, together with the corresponding geometries of the reaction intermediates, respectively(D)[29], schematic illustration of FeSA?NO?C?900 and corresponding atomic structure model(E), FEs and NH3 yield rates of FeSA?NO?C?800, FeSA?NO?C?900, FeSA?NO?C?1000, and FeSA?NO?C?900 without SiO2(F, G)[120](A—D) Copyright 2020, the American Chemical Society; (E—G) Copyright 2021, Wiley-VCH. (D) The white, gray, blue, red, and purple spheres represent H, C, N, O, and Mn atoms, respectively. Each asterisk(*) represents an adsorbed reactive intermediate on an active site or a vacant active site. (F, G) The data points and error bars represent the average and standard deviation based on multiple measurements on the same catalyst at different times over different batches of samples.
185 | Zhang G., Xu H., Li Y., Xiang C., Ji Q., Liu H., Qu J., Li J., Adv. Sci. (Weinh), 2019, 6(20), 1901627 |
186 | Hao Y. C., Guo Y., Chen L. W., Shu M., Wang X. Y., Bu T. A., Gao W. Y., Zhang N., Su X., Feng X., Zhou J. W., Wang B., Hu C. W., Yin A. X., Si R., Zhang Y. W., Yan C. H., Nat. Catal., 2019, 2(5), 448—456 |
187 | Shi M. M., Bao D., Wulan B. R., Li Y. H., Zhang Y. F., Yan J. M., Jiang Q., Adv. Mater., 2017, 29(17), 1606550—1606555 |
188 | Wang H., Li Y., Li C., Deng K., Wang Z., Xu Y., Li X., Xue H., Wang L., J. Mater. Chem. A, 2019, 7(2), 801—805 |
189 | Yang C., Huang B., Bai S., Feng Y., Shao Q., Huang X., Adv. Mater., 2020, 32(24), e2001267 |
190 | Yao Y., Wang H., Yuan X. Z., Li H., Shao M., ACS Energy Lett., 2019, 4(6), 1336—1341 |
191 | Tao H., Choi C., Ding L. X., Jiang Z., Han Z., Jia M., Fan Q., Gao Y., Wang H., Robertson A. W., Hong S., Jung Y., Liu S., Sun Z., Chem., 2019, 5(1), 204—214 |
192 | Geng Z., Liu Y., Kong X., Li P., Li K., Liu Z., Du J., Shu M., Si R., Zeng J., Adv. Mater., 2018, e1803498 |
193 | Han L., Liu X., Chen J., Lin R., Liu H., Lu F., Bak S., Liang Z., Zhao S., Stavitski E., Luo J., Adzic R. R., Xin H. L., Angew. Chem. Int. Ed. Engl., 2019, 58(8), 2321—2325 |
194 | Lü F., Zhao S., Guo R., He J., Peng X., Bao H., Fu J., Han L., Qi G., Luo J., Tang X., Liu X., Nano Energy, 2019, 61, 420—427 |
195 | Wang M., Liu S., Qian T., Liu J., Zhou J., Ji H., Xiong J., Zhong J., Yan C., Nat. Commun., 2019, 10(1), 341 |
196 | Li J., Chen S., Quan F., Zhan G., Jia F., Ai Z., Zhang L., Chem., 2020, 6(4), 885—901 |
197 | Zhang S., Jin M., Shi T., Han M., Sun Q., Lin Y., Ding Z., Zheng L. R., Wang G., Zhang Y., Zhang H., Zhao H., Angew. Chem. Int. Ed. Engl., 2020, 59(32), 13423—13429 |
198 | Qin Q., Heil T., Antonietti M., Oschatz M., Small Methods, 2018, 2(12), 1800202 |
199 | Zang W., Yang T., Zou H., Xi S., Zhang H., Liu X., Kou Z., Du Y., Feng Y. P., Shen L., Duan L., Wang J., Pennycook S. J., ACS Catal., 2019, 9(11), 10166—10173 |
200 | Liu J., Kong X., Zheng L., Guo X., Liu X., Shui J., ACS Nano, 2020, 14(1), 1093—1101 |
201 | Pan Y., Chen Y., Wu K., Chen Z., Liu S., Cao X., Cheong W. C., Meng T., Luo J., Zheng L., Liu C., Wang D., Peng Q., Li J., Chen C., Nat. Commun., 2019, 10(1), 4290 |
202 | Fei H., Dong J., Chen D., Hu T., Duan X., Shakir I., Huang Y., Duan X., Chem. Soc. Rev., 2019, 48(20), 5207—5241 |
203 | Liu W., Zhang L., Liu X., Liu X., Yang X., Miao S., Wang W., Wang A., Zhang T., J. Am. Chem. Soc., 2017, 139(31), 10790—10798 |
204 | Wang X., Chen Z., Zhao X., Yao T., Chen W., You R., Zhao C., Wu G., Wang J., Huang W., Yang J., Hong X., Wei S., Wu Y., Li Y., Angew. Chem. Int. Ed. Engl., 2018, 57(7), 1944—1948 |
205 | Li X., Rong H., Zhang J., Wang D., Li Y., Nano Research, 2020, 13(7), 1842—1855 |
1 | Xue K., Mo Y., Long B., Wei W., Shan C., Guo S., Niu L., InfoMat, 2022, e12296 |
2 | Wang Y., Su H., He Y., Li L., Zhu S., Shen H., Xie P., Fu X., Zhou G., Feng C., Zhao D., Xiao F., Zhu X., Zeng Y., Shao M., Chen S., Wu G., Zeng J., Wang C., Chem. Rev., 2020, 120(21), 12217—12314 |
3 | Sun T., Xu L., Wang D., Li Y., Nano Research, 2019, 12(9), 2067—2080 |
4 | Mao J., Li J., Pei J., Liu Y., Wang D., Li Y., Nano Today, 2019, 26, 164—175 |
5 | Li X., Yang X., Huang Y., Zhang T., Liu B., Adv. Mater., 2019, 31(50), e1902031 |
6 | Li Y., Hao J., Song H., Zhang F., Bai X., Meng X., Zhang H., Wang S., Hu Y., Ye J., Nat. Commun., 2019, 10(1), 2359 |
7 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
8 | Khan K., Liu T., Arif M., Yan X., Hossain M. D., Rehman F., Zhou S., Yang J., Sun C., Bae S. H., Kim J., Amine K., Pan X., Luo Z., Adv. Energy Mater., 2021, 11(40), 2101619 |
9 | Chang J., Wang G., Wang M., Wang Q., Li B., Zhou H., Zhu Y., Zhang W., Omer M., Orlovskaya N., Ma Q., Gu M., Feng Z., Wang G., Yang Y., Nat. Energy, 2021, 6(12), 1144—1153 |
10 | Wang Y., Liu K., Li J., Yang X., Hu J., Chan T. S., Qiu X., Li W., Liu M., Chem. Eng. J., 2022, 429, 132119 |
11 | Cheng H., Wu X., Feng M., Li X., Lei G., Fan Z., Pan D., Cui F., He G., ACS Catal., 2021, 11(20), 12673—12681 |
12 | Ding T., Liu X., Tao Z., Liu T., Chen T., Zhang W., Shen X., Liu D., Wang S., Pang B., Wu D., Cao L., Wang L., Liu T., Li Y., Sheng H., Zhu M., Yao T., J. Am. Chem. Soc., 2021, 143(30), 11317—11324 |
13 | Wang Y., Cheng W., Yuan P., Yang G., Mu S., Liang J., Xia H., Guo K., Liu M., Zhao S., Qu G., Lu B. A., Hu Y., Hu J., Zhang J. N., Adv. Sci. (Weinh), 2021, 8(20), e2102915 |
14 | Liu J., Guo Y., Fu X. Z., Luo J. L., Zhi C., Green Energy Environ., 2021 |
15 | Ramaswamy N., Tylus U., Jia Q., Mukerjee S., J. Am. Chem. Soc., 2013, 135(41), 15443—15449 |
16 | Osmieri L., Monteverde Videla A. H. A., Ocón P., Specchia S., J. Phys. Chem. C, 2017, 121(33), 17796—17817 |
17 | Lu F., Xie W., Yi D., Wang Y., Zhang F., Xu Y., Zhou B., Liu S., Wang X., Yao J., CCS Chem., 2021, 3(11), 180—188 |
18 | Chen P., Zhou T., Xing L., Xu K., Tong Y., Xie H., Zhang L., Yan W., Chu W., Wu C., Xie Y., Angew. Chem. Int. Ed. Engl., 2017, 56(2), 610—614 |
19 | Shen H., Gracia-Espino E., Ma J., Zang K., Luo J., Wang L., Gao S., Mamat X., Hu G., Wagberg T., Guo S., Angew. Chem. Int. Ed. Engl., 2017, 56(44), 13800—13804 |
20 | Zhang J., Zhao Y., Chen C., Huang Y. C., Dong C. L., Chen C. J., Liu R. S., Wang C., Yan K., Li Y., Wang G., J. Am. Chem. Soc., 2019, 141(51), 20118—20126 |
21 | Zhang J., Zhang M., Zeng Y., Chen J., Qiu L., Zhou H., Sun C., Yu Y., Zhu C., Zhu Z., Small, 2019, 15(24), e1900307 |
22 | Yuan K., Lutzenkirchen⁃Hecht D., Li L., Shuai L., Li Y., Cao R., Qiu M., Zhuang X., Leung M. K. H., Chen Y., Scherf U., J. Am. Chem. Soc., 2020, 142(5), 2404—2412 |
23 | Guo Y., Yuan P., Zhang J., Hu Y., Amiinu I. S., Wang X., Zhou J., Xia H., Song Z., Xu Q., Mu S., ACS Nano, 2018, 12(2), 1894—1901 |
24 | Wan J., Zhao Z., Shang H., Peng B., Chen W., Pei J., Zheng L., Dong J., Cao R., Sarangi R., Jiang Z., Zhou D., Zhuang Z., Zhang J., Wang D., Li Y., J. Am. Chem. Soc., 2020, 142(18), 8431—8439 |
25 | Sun T., Wang J., Chi X., Lin Y., Chen Z., Ling X., Qiu C., Xu Y., Song L., Chen W., Su C., ACS Catal., 2018, 8(8), 7585—7592 |
26 | Sun T., Wang J., Qiu C., Ling X., Tian B., Chen W., Su C., Adv. Sci. (Weinh), 2018, 5(7), 1800036 |
27 | Sun T., Jiang Y., Wu Q., Du L., Zhang Z., Yang L., Wang X., Hu Z., Catal. Sci. Technol., 2017, 7(1), 51—55 |
28 | Sun T., Wu Q., Che R., Bu Y., Jiang Y., Li Y., Yang L., Wang X., Hu Z., ACS Catal., 2015, 5(3), 1857—1862 |
29 | Han L., Hou M., Ou P., Cheng H., Ren Z., Liang Z., Boscoboinik J. A., Hunt A., Waluyo I., Zhang S., Zhuo L., Song J., Liu X., Luo J., Xin H. L., ACS Catal., 2020, 11(2), 509—516 |
30 | Mohd Adli N., Shan W., Hwang S., Samarakoon W., Karakalos S., Li Y., Cullen D. A., Su D., Feng Z., Wang G., Wu G., Angew. Chem. Int. Ed. Engl., 2021, 60(2), 1022—1032 |
31 | Li J., Zhang H., Samarakoon W., Shan W., Cullen D. A., Karakalos S., Chen M., Gu D., More K. L., Wang G., Feng Z., Wang Z., Wu G., Angew. Chem. Int. Ed. Engl., 2019, 58(52), 18971—18980 |
32 | Zhu Y., Sokolowski J., Song X., He Y., Mei Y., Wu G., Adv. Energy Mater., 2019, 10(11), 1902844 |
33 | Chen Y., Ji S., Wang Y., Dong J., Chen W., Li Z., Shen R., Zheng L., Zhuang Z., Wang D., Li Y., Angew. Chem. Int. Ed. Engl., 2017, 56(24), 6937—6941 |
34 | Huang Y. B., Liang J., Wang X. S., Cao R., Chem. Soc. Rev., 2017, 46(1), 126—157 |
35 | Schoedel A., Li M., Li D., O'Keeffe M., Yaghi O. M., Chem. Rev., 2016, 116(19), 12466—12535 |
36 | Li J., Chen M., Cullen D. A., Hwang S., Wang M., Li B., Liu K., Karakalos S., Lucero M., Zhang H., Lei C., Xu H., Sterbinsky G. E., Feng Z., Su D., More K. L., Wang G., Wang Z., Wu G., Nat. Catal., 2018, 1(12), 935—945 |
37 | Zhang X. Y., Xue D. P., Du Y, Jiang S., Wei Y. Y., Yan W. F., Xia H. C., Zhang J. N., Chem. J. Chinese Universities, 2022, 433), 20210689(张小玉, 薛冬萍, 杜宇, 蒋粟, 魏一帆, 闫文付, 夏会聪, 张佳楠. 高等学校化学学报, 2022, 43(3), 20210689 |
38 | Li F., Han G. F., Noh H. J., Kim S. J., Lu Y., Jeong H. Y., Fu Z., Baek J. B., Energy Environ. Sci., 2018, 11(8), 2263—2269 |
39 | Lu Z., Wang B., Hu Y., Liu W., Zhao Y., Yang R., Li Z., Luo J., Chi B., Jiang Z., Li M., Mu S., Liao S., Zhang J., Sun X., Angew. Chem. Int. Ed. Engl., 2019, 58(9), 2622—2626 |
40 | Zhao L., Zhang Y., Huang L. B., Liu X. Z., Zhang Q. H., He C., Wu Z. Y., Zhang L. J., Wu J., Yang W., Gu L., Hu J. S., Wan L. J., Nat. Commun., 2019, 10(1), 1278 |
41 | Xu X., Zhang X., Xia Z., Sun R., Li H., Wang J., Yu S., Wang S., Sun G., J. Energ. Chem., 2021, 54, 579—586 |
42 | Liu N., Cheng J., Hou W., Yang X., Zhou J., J. Appl. Polym. Sci., 2021, 138(23), e50553 |
43 | Huang M., Wang L., You W., Che R., Small, 2021, 17(30), e2101416 |
44 | Ji Q., Xu J., Wang C., Wang L., J. Colloid Interface Sci., 2021, 596, 139—147 |
45 | Saliba D., Ammar M., Rammal M., Al⁃Ghoul M., Hmadeh M., J. Am. Chem. Soc., 2018, 140(5), 1812—1823 |
46 | Guo J., Zhang W., Zhang L. H., Chen D., Zhan J., Wang X., Shiju N. R., Yu F., Adv. Sci., 2021, 8(23), 2102884 |
47 | Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049 |
48 | Jiang H. L., Liu B., Lan Y. Q., Kuratani K., Akita T., Shioyama H., Zong F., Xu Q., J. Am. Chem. Soc., 2011, 133(31), 11854—11857 |
49 | Zhang H., Hwang S., Wang M., Feng Z., Karakalos S., Luo L., Qiao Z., Xie X., Wang C., Su D., Shao Y., Wu G., J. Am. Chem. Soc., 2017, 139(40), 14143—14149 |
50 | Zhou D., Xia Z., Shang H., Xiao H., Jiang Z., Li H., Zheng L., Dong J., Chen W., Mater. Chem. Front., 2021, 5(7), 3085—3092 |
51 | Gandara F., Uribe⁃Romo F. J., Britt D. K., Furukawa H., Lei L., Cheng R., Duan X., O'Keeffe M., Yaghi O. M., Chemistry, 2012, 18(34), 10595—10601 |
52 | Fujiwara Y. I., Lee J. S. M., Tsujimoto M., Kongpatpanich K., Pila T., Iimura K. I., Tobori N., Kitagawa S., Horike S., Chem. Mater., 2018, 30(6), 1830—1834 |
53 | Hu L., Dai C., Chen L., Zhu Y., Hao Y., Zhang Q., Gu L., Feng X., Yuan S., Wang L., Wang B., Angew. Chem. Int. Ed. Engl., 2021, 60(52), 27324—27329 |
54 | Leong W. L., Vittal J. J., Chem. Rev., 2011, 111(2), 688—764 |
55 | Poleschner H., John W., Hoppe F., Fanghänel E., Roth S., Journal für Praktische Chemie, 1983, 325(6), 957—975 |
56 | Kim O. K., Yoon T. H., McDermott D., J. Chem. Soc., Chem. Commun., 1989, 11, 740—741 |
57 | Liu H., Wang Y., Qin Z., Liu D., Xu H., Dong H., Hu W., J. Phys. Chem. Lett., 2021, 12(6), 1612—1630 |
58 | Wei X., Zheng D., Zhao M., Chen H., Fan X., Gao B., Gu L., Guo Y., Qin J., Wei J., Zhao Y., Zhang G., Angew. Chem. Int. Ed. Engl., 2020, 59(34), 14639—14646 |
59 | Gu Y., Wang S., Shi H., Yang J., Li S., Zheng H., Jiang W., Liu J., Zhong X., Wang J., ACS Catal., 2021, 11(9), 5438—5451 |
60 | Zhao Q., Zhu D., Zhou X., Li S. H., Sun X., Cui J., Fan Z., Guo M., Zhao J., Teng B., Cheng B., ACS Appl. Mater. Interfaces, 2021, 13(44), 52960—52966 |
61 | Zhu X., Tan X., Wu K. H., Chiang C. L., Lin Y. C., Lin Y. G., Wang D. W., Smith S., Lu X., Amal R., J. Mater. Chem. A, 2019, 7(24), 14732—14742 |
62 | Liu J., Duan S., Xu J., Qiao B., Lou Y., Microsc. Microanal., 2016, 22(S3), 860—861 |
63 | Flytzani⁃Stephanopoulos M., Gates B. C., Annu. Rev. Chem. Biomol. Eng., 2012, 3, 545—574 |
64 | Beniya A., Higashi S., Nat. Catal., 2019, 2(7), 590-602 |
65 | Wan J., Chen W., Jia C., Zheng L., Dong J., Zheng X., Wang Y., Yan W., Chen C., Peng Q., Wang D., Li Y., Adv. Mater., 2018, 30(11), 1705369 |
66 | Dong F., Wu M., Zhang G., Liu X., Rawach D., Tavares A. C., Sun S., Chem. Asian J., 2020, 15(22), 3737—3751 |
67 | Xue D., Xia H., Yan W., Zhang J., Mu S., Nanomicro Lett., 2020, 13(1), 5 |
68 | Higgins D., Zamani P., Yu A., Chen Z., Energy Environ. Sci., 2016, 9(2), 357—390 |
69 | Yoo E., Okata T., Akita T., Kohyama M., Nakamura J., Honma I., Nano Lett., 2009, 9(6), 2255—2259 |
70 | Zhang L., Jia Y., Gao G., Yan X., Chen N., Chen J., Soo M. T., Wood B., Yang D., Du A., Yao X., Chem., 2018, 4(2), 285—297 |
71 | Zhang X., Guo J., Guan P., Liu C., Huang H., Xue F., Dong X., Pennycook S. J., Chisholm M. F., Nat. Commun., 2013, 4, 1924 |
72 | Huang F., Deng Y., Chen Y., Cai X., Peng M., Jia Z., Ren P., Xiao D., Wen X., Wang N., Liu H., Ma D., J. Am. Chem. Soc., 2018, 140(41), 13142—13146 |
73 | Huang F., Deng Y., Chen Y., Cai X., Peng M., Jia Z., Xie J., Xiao D., Wen X., Wang N., Jiang Z., Liu H., Ma D., Nat. Commun.,2019, 10(1), 4431 |
74 | Jeon I. Y., Zhang S., Zhang L., Choi H. J., Seo J. M., Xia Z., Dai L., Baek J. B., Adv. Mater., 2013, 25(42), 6138—6145 |
75 | Yan H., Zhao X., Guo N., Lyu Z., Du Y., Xi S., Guo R., Chen C., Chen Z., Liu W., Yao C., Li J., Pennycook S. J., Chen W., Su C., Zhang C., Lu J., Nat. Commun., 2018, 9(1), 3197 |
76 | Sun T., Zang W., Yan H., Li J., Zhang Z., Bu Y., Chen W., Wang J., Lu J., Su C., ACS Catal., 2021, 11(8), 4498—4509 |
77 | Li X., Yang X., Liu L., Zhao H., Li Y., Zhu H., Chen Y., Guo S., Liu Y., Tan Q., Wu G., ACS Catal., 2021, 11(12), 7450—7459 |
78 | Huang Q. E., Wang B., Ye S., Liu H., Chi H., Liu X., Fan H., Li M., Ding C., Li Z., Li C., ACS Catal., 2021, 12(1), 491—496 |
79 | Moreno J., Aspera S., David M., Kasai H., Carbon, 2015, 94, 936—941 |
80 | Eckert V., Haubold E., Oswald S., Michel S., Bellmann C., Potapov P., Wolf D., Hampel S., Büchner B., Mertig M., Leonhardt A., Carbon, 2019, 141, 99—106 |
81 | Chai G. L., Guo Z. X., Chem. Sci., 2016, 7(2), 1268—1275 |
82 | Han G., Zhang X., Liu W., Zhang Q., Wang Z., Cheng J., Yao T., Gu L., Du C., Gao Y., Yin G., Nat. Commun., 2021, 12(1), 6335 |
83 | Ida S., Kim N., Ertekin E., Takenaka S., Ishihara T., J. Am. Chem. Soc., 2015, 137(1), 239—244 |
84 | Zhao L., Guo S., Liu H., Zhu H., Yuan S., Guo W., ACS Appl. Nano Mater., 2018, 1(11), 6258—6268 |
85 | Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2(7), 1242—1264 |
86 | Fei H., Dong J., Feng Y., Allen C. S., Wan C., Volosskiy B., Li M., Zhao Z., Wang Y., Sun H., An P., Chen W., Guo Z., Lee C., Chen D., Shakir I., Liu M., Hu T., Li Y., Kirkland A. I., Duan X., Huang Y., Nat. Catal., 2018, 1(1), 63—72 |
87 | Chung H. T., Cullen D. A., Higgins D., Sneed B. T., Holby E. F., More K. L., Zelenay P., Science, 2017, 357(6350), 479—484 |
88 | Fadley C. S., J. Electron. Spectrosc. Relat. Phenom., 2010, 178/179, 2—32 |
89 | Johansson G., Hedman J., Berndtsson A., Klasson M., Nilsson R., J. Electron. Spectrosc. Relat. Phenom., 1973, 2(3), 295—317 |
90 | Qiao Y., Yuan P., Hu Y., Zhang J., Mu S., Zhou J., Li H., Xia H., He J., Xu Q., Adv. Mater., 2018, 30(46), 1804504 |
91 | Gupta S., Zhao S., Wang X. X., Hwang S., Karakalos S., Devaguptapu S. V., Mukherjee S., Su D., Xu H., Wu G., ACS Catal., 2017, 7(12), 8386—8393 |
92 | Gu Y., Xi B., Tian W., Zhang H., Fu Q., Xiong S., Adv. Mater., 2021, 33(25), e2100429 |
93 | Chen Z., Gong W., Liu Z., Cong S., Zheng Z., Wang Z., Zhang W., Ma J., Yu H., Li G., Lu W., Ren W., Zhao Z., Nano Energy, 2019, 60, 394—403 |
94 | Azaroff L. V., Science, 1966, 151(3712), 785—789 |
95 | De Groot F., Chem. Rev., 2001, 101(6), 1779—1808 |
96 | Ogino I., Chinese J. Catal., 2017, 38(9), 1481—1488 |
97 | Koningsberger D. C., Gates B. C., Catal. Lett., 1992, 14(3/4), 271—277 |
98 | Jia Y., Xue Z., Yang J., Liu Q., Xian J., Zhong Y., Sun Y., Zhang X., Liu Q., Yao D., Li G., Angew. Chem. Int. Ed. Engl., 2022, 61(2), e202110838 |
99 | Yang F., Song P., Liu X., Mei B., Xing W., Jiang Z., Gu L., Xu W., Angew. Chem. Int. Ed. Engl., 2018, 57(38), 12303—12307 |
100 | Okumura K., Tomiyama T., Shirakawa S., Ishida S., Sanada T., Arao M., Niwa M., J. Mater. Chem., 2011, 21(1), 229—235 |
101 | Gracia L., Longo V. M., Cavalcante L. S., Beltrán A., Avansi W., Li M. S., Mastelaro V. R., Varela J. A., Longo E., Andrés J., J. Appl. Phys., 2011, 110(4), 43501 |
102 | Zhang B. W., He C. L., Jiang Y. X., Chen M. H., Li Y. Y., Rao L., Sun S. G., Electrochem. Commun., 2012, 25, 105—108 |
103 | Zhang B. W., Jiang Y. X., Ren J., Qu X. M., Xu G. L., Sun S. G., Electrochim. Acta, 2015, 162, 254—262 |
104 | Pan H., Chen J., Cao R., Murugesan V., Rajput N. N., Han K. S., Persson K., Estevez L., Engelhard M. H., Zhang J. G., Mueller K. T., Cui Y., Shao Y., Liu J., Nat. Energy, 2017, 2(10), 813—820 |
105 | Zhang B. W., Wang Y. X., Chou S. L., Liu H. K., Dou S. X., Small Methods, 2019, 3(9), 1800497 |
106 | Liu X., He L., Liu Y. M., Cao Y., Acc. Chem. Res., 2014, 47(3), 793—804 |
107 | Wang G., Huang B., Xiao L., Ren Z., Chen H., Wang D., Abruna H. D., Lu J., Zhuang L., J. Am. Chem. Soc., 2014, 136(27), 9643—9649 |
108 | Liao H. G., Cui L., Whitelam S., Zheng H., Science, 2012, 336(6084), 1011—1014 |
109 | Zhang Z. C., Tian X. C., Zhang B. W., Huang L., Zhu F. C., Qu X. M., Liu L., Liu S., Jiang Y. X., Sun S. G., Nano Energy, 2017, 34, 224—232 |
110 | Yu L., Li Y., Ruan Y., Angew. Chem. Int. Ed. Engl., 2021, 60(48), 25296—25301 |
111 | Chen Y., Gao R., Ji S., Li H., Tang K., Jiang P., Hu H., Zhang Z., Hao H., Qu Q., Liang X., Chen W., Dong J., Wang D., Li Y., Angew. Chem. Int. Ed. Engl., 2021, 60(6), 3212—3221 |
112 | Zhu X., Amal R., Lu X., Small, 2019, 15(29), e1804524 |
113 | Li T., Lu T., Li X., Xu L., Zhang Y., Tian Z., Yang J., Pang H., Tang Y., Xue J., ACS Nano, 2021, 15(12), 20032—20041 |
114 | Hou Y., Qiu M., Kim M. G., Liu P., Nam G., Zhang T., Zhuang X., Yang B., Cho J., Chen M., Yuan C., Lei L., Feng X., Nat. Commun., 2019, 10(1), 1392 |
115 | Wang X., Pan Y., Ning H., Wang H., Guo D., Wang W., Yang Z., Zhao Q., Zhang B., Zheng L., Zhang J.,Wu M., Appl. Catal. B, 2020, 266, 118630 |
116 | Wang X., Wang Y., Sang X., Zheng W., Zhang S., Shuai L., Yang B., Li Z., Chen J., Lei L., Adli N. M., Leung M. K. H., Qiu M., Wu G., Hou Y., Angew. Chem. Int. Ed. Engl., 2021, 60(8), 4192—4198 |
117 | Zhang B., Zhang J., Shi J., Tan D., Liu L., Zhang F., Lu C., Su Z., Tan X., Cheng X., Han B., Zheng L., Zhang J., Nat. Commun., 2019, 10(1), 2980 |
118 | Li Z., Wu R., Xiao S., Yang Y., Lai L., Chen J. S., Chen Y., Chem. Eng. J., 2022, 430, 132882 |
119 | Wu Y., Chen C., Yan X., Sun X., Zhu Q., Li P., Li Y., Liu S., Ma J., Huang Y., Han B., Angew. Chem. Int. Ed. Engl., 2021, 60(38), 20803—20810 |
120 | Li Y., Li J., Huang J., Chen J., Kong Y., Yang B., Li Z., Lei L., Chai G., Wen Z., Dai L., Hou Y., Angew. Chem. Int. Ed. Engl., 2021, 60(16), 9078—9085 |
121 | Yang G., Zhu J., Yuan P., Hu Y., Qu G., Lu B. A., Xue X., Yin H., Cheng W., Cheng J., Xu W., Li J., Hu J., Mu S., Zhang J. N., Nat. Commun., 2021, 12(1), 1734 |
122 | Bu L., Zhang N., Guo S., Zhang X., Li J., Yao J., Wu T., Lu G., Ma J. Y., Su D., Huang X., Science, 2016, 354(6318), 1410—1414 |
123 | Cui T. T., Wang Y. P., Ye T., Wu J., Chen Z. Q., Li J., Lei Y. P., Wang D. S., Li Y. D., Angew. Chem. Int. Ed. Engl., 2022, 61, 202115219 |
124 | Wang Y., Zhang Z., Zhang X., Yuan Y., Jiang Z., Zheng H., Wang Y. G., Zhou H., Liang Y., CCS Chem., 2022, 4(1), 228—236 |
125 | Liu D., Chen D., Yang J., Green Energy Environ., 2019, 4(3), 208—209 |
126 | Cao R., Thapa R., Kim H., Xu X., Gyu Kim M., Li Q., Park N., Liu M., Cho J., Nat. Commun., 2013, 4, 2076 |
127 | Chen K., Liu K., An P., Li H., Lin Y., Hu J., Jia C., Fu J., Li H., Liu H., Lin Z., Li W., Li J., Lu Y. R., Chan T. S., Zhang N., Liu M., Nat. Commun., 2020, 11(1), 4173 |
128 | Mun Y., Lee S., Kim K., Kim S., Lee S., Han J. W., Lee J., J. Am. Chem. Soc., 2019, 141(15), 6254—6262 |
129 | Luan X., Xue Y., Chem. Res. Chinese Universities, 2021, 37(6), 1268—1274 |
130 | Wu H., He F., Chem. Res. Chinese Universities, 2021, 37(6), 1334—1340 |
131 | Chen L., Wang Y. P., Zhao X., Wang Y. C., Li Q., Wang Q. C., Tang Y. G., Lei Y. P., J. Mater. Sci. Technol., 2022, 110, 128—135 |
132 | Wang H., Qi J., Yang N., Cui W., Wang J., Li Q., Zhang Q., Yu X., Gu L., Li J., Yu R., Huang K., Song S., Feng S., Wang D., Angew. Chem. Int. Ed., 2020, 59(44), 19691—19695 |
133 | Niu S., Jiang W. J., Wei Z., Tang T., Ma J., Hu J. S., Wan L. J., J. Am. Chem. Soc., 2019, 141(17), 7005—7013 |
134 | Bergmann A., Jones T. E., Martinez Moreno E., Teschner D., Chernev P., Gliech M., Reier T., Dau H., Strasser P., Nat. Catal., 2018, 1(9), 711—719 |
135 | Wu T., Sun S., Song J., Xi S., Du Y., Chen B., Sasangka W. A., Liao H., Gan C. L., Scherer G. G., Zeng L., Wang H., Li H., Grimaud A., Xu Z. J., Nat. Catal., 2019, 2(9), 763—772 |
136 | Hu C., Zhang L., Zhao Z. J., Li A., Chang X., Gong J., Adv. Mater., 2018, 30(12), e1705538 |
137 | Zhang J. Y., Lv L., Tian Y., Li Z., Ao X., Lan Y., Jiang J., Wang C., ACS Appl. Mater. Interfaces, 2017, 9(39), 33833—33840 |
138 | Li P., Wang M., Duan X., Zheng L., Cheng X., Zhang Y., Kuang Y., Li Y., Ma Q., Feng Z., Liu W., Sun X., Nat. Commun., 2019, 10(1), 1711 |
139 | Zhang Y., Wu C., Jiang H., Lin Y., Liu H., He Q., Chen S., Duan T., Song L., Adv. Mater., 2018, 30(18), e1707522 |
140 | Wang S., Liu G., Wang L., Chem. Rev., 2019, 119(8), 5192—5247 |
141 | Zhang Z., Chen Y., Zhou L., Chen C., Han Z., Zhang B., Wu Q., Yang L., Du L., Bu Y., Wang P., Wang X., Yang H., Hu Z., Nat. Commun., 2019, 10(1), 1657 |
142 | Liu Y., Feng Q. G., Liu W., Li Q., Wang Y. C., Liu B., Zheng L. R., Wang W., Huang L., Chen L. M., Xiong X., Lei Y. P., Nano Energy, 2021, 81, 105641 |
143 | Luo Y., Zhang S., Pan H., Xiao S., Guo Z., Tang L., Khan U., Ding B. F., Li M., Cai Z., Zhao Y., Lv W., Feng Q., Zou X., Lin J., Cheng H. M., Liu B., ACS Nano, 2020, 14(1), 767—776 |
144 | Sun Y., Xue Z., Liu Q., Jia Y., Li Y., Liu K., Lin Y., Liu M., Li G., Su C. Y., Nat. Commun., 2021, 12(1), 1369 |
145 | Takahashi Y., Kobayashi Y., Wang Z., Ito Y., Ota M., Ida H., Kumatani A., Miyazawa K., Fujita T., Shiku H., Korchev Y. E., Miyata Y., Fukuma T., Chen M., Matsue T., Angew. Chem. Int. Ed. Engl., 2020, 59(9), 3601—3608 |
146 | Xie J., Zhang H., Li S., Wang R., Sun X., Zhou M., Zhou J., Lou X. W., Xie Y., Adv. Mater., 2013, 25(40), 5807—5813 |
147 | Fang Z., Peng L., Lv H., Zhu Y., Yan C., Wang S., Kalyani P., Wu X., Yu G., ACS Nano, 2017, 11(9), 9550—9557 |
148 | Liu B., Li H., Cao B., Jiang J., Gao R., Zhang J., Adv. Funct. Mater., 2018, 28(30), 1801527 |
149 | Chen X., Wan J., Wang J., Zhang Q., Gu L., Zheng L., Wang N., Yu R., Adv. Mater., 2021, 33(44), e2104764 |
150 | Cheng Y., Gong J., Cao B., Xu X., Jing P., Feng S. P., Cheng R., Liu B., Gao R., Zhang J., J. Energ. Chem., 2022, 68, 646—657 |
151 | Zhao Z., Li M., Zhang L., Dai L., Xia Z., Adv. Mater., 2015, 27(43), 6834—6840 |
152 | Zhao Z., Zhang L., Xia Z., J. Phys. Chem. C, 2016, 120(4), 2166—2175 |
153 | Zhang L., Xia Z., J. Phys. Chem. C, 2011, 115(22), 11170—11176 |
154 | De Luna P., Hahn C., Higgins D., Jaffer S. A., Jaramillo T. F., Sargent E. H., Science, 2019, 364(6438), 350 |
155 | Li J., Zhang Z., Hu W., Green Energy Environ., 2021, doi:10.1016/j.gee.2021.11.004 |
156 | Zhang X., Xue D., Jiang S., Xia H., Yang Y., Yan W., Hu J., Zhang J., InfoMat, 2022, 4(3), e12257 |
157 | Wang Y., Cao L., Libretto N. J., Li X., Li C., Wan Y., He C., Lee J., Gregg J., Zong H., Su D., Miller J. T., Mueller T., Wang C., J. Am. Chem. Soc., 2019, 141(42), 16635—16642 |
158 | Kim D., Xie C., Becknell N., Yu Y., Karamad M., Chan K., Crumlin E. J., Norskov J. K., Yang P., J. Am. Chem. Soc., 2017, 139(24), 8329—8336 |
159 | Zhu W., Michalsky R., Metin O., Lv H., Guo S., Wright C. J., Sun X., Peterson A. A., Sun S., J. Am. Chem. Soc., 2013, 135(45), 16833—16836 |
160 | Lu Q., Rosen J., Zhou Y., Hutchings G. S., Kimmel Y. C., Chen J. G., Jiao F., Nat. Commun., 2014, 5, 3242 |
161 | Liu M., Pang Y., Zhang B., De Luna P., Voznyy O., Xu J., Zheng X., Dinh C. T., Fan F., Cao C., de Arquer F. P., Safaei T. S., Mepham A., Klinkova A., Kumacheva E., Filleter T., Sinton D., Kelley S. O., Sargent E. H., Nature, 2016, 537(7620), 382—386 |
162 | Hall A. S., Yoon Y., Wuttig A., Surendranath Y., J. Am. Chem. Soc., 2015, 137(47), 14834—14837 |
163 | Kwok K. S., Wang Y., Cao M. C., Shen H., He Z., Poirier G., McCandless B. E., Livi K. J., Muller D. A., Wang C., Gracias D. H., Nano Lett., 2019, 19(12), 9154—9159 |
164 | Shi R., Guo J., Zhang X., Waterhouse G. I. N., Han Z., Zhao Y., Shang L., Zhou C., Jiang L., Zhang T., Nat. Commun., 2020, 11(1), 3028 |
165 | Choi J., Kim M. J., Ahn S. H., Choi I., Jang J. H., Ham Y. S., Kim J. J., Kim S. K., Chem. Eng. J., 2016, 299, 37—44 |
166 | Alvarez⁃Guerra M., Quintanilla S., Irabien A., Chem. Eng. J., 2012, 207/208, 278—284 |
167 | Li N., Yan P., Tang Y., Wang J., Yu X. Y., Wu H. B., Appl. Catal. B, 2021, 297, 120481 |
168 | Peng C., Luo G., Zhang J., Chen M., Wang Z., Sham T. K., Zhang L., Li Y., Zheng G., Nat. Commun., 2021, 12(1), 1580 |
169 | Ye W., Guo X., Ma T., Chem. Eng. J., 2021, 414, 128825 |
170 | Wang J., Yang H., Liu Q., Liu Q., Li X., Lv X., Cheng T., Wu H. B., ACS Energy Lett., 2021, 6(2), 437—444 |
171 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46(8), 1740—1748 |
172 | Li X., Xi S., Sun L., Dou S., Huang Z., Su T., Wang X., Adv. Sci. (Weinh), 2020, 7(17), 2001545 |
173 | Zhang C., Yang S., Wu J., Liu M., Yazdi S., Ren M., Sha J., Zhong J., Nie K., Jalilov A. S., Li Z., Li H., Yakobson B. I., Wu Q., Ringe E., Xu H., Ajayan P. M., Tour J. M., Adv. Energy Mater., 2018, 8(19), 1800171 |
174 | Guo C., Zhang T., Liang X., Deng X., Guo W., Wang Z., Lu X., Wu C. M. L., Appl. Surf. Sci., 2020, 533, 147466 |
175 | Ju W., Bagger A., Wang X., Tsai Y., Luo F., Möller T., Wang H., Rossmeisl J., Varela A. S., Strasser P., ACS Energy Lett., 2019, 4(7), 1663—1671 |
176 | Smil V., Nature, 1999, 400(6743), 415 |
177 | Schlogl R., Angew. Chem. Int. Ed. Engl., 2003, 42(18), 2004—2008 |
178 | Schlögl R., Angew. Chem., 2003, 115(18), 2050—2055 |
179 | Service R. F., Science, 2018, 361(6398), 120—123 |
180 | Cao N., Chen Z., Zang K., Xu J., Zhong J., Luo J., Xu X., Zheng G., Nat. Commun., 2019, 10(1), 2877 |
181 | Andersen S. Z., Colic V., Yang S., Schwalbe J. A., Nielander A. C., McEnaney J. M., Enemark⁃Rasmussen K., Baker J. G., Singh A. R., Rohr B. A., Statt M. J., Blair S. J., Mezzavilla S., Kibsgaard J., Vesborg P. C. K., Cargnello M., Bent S. F., Jaramillo T. F., Stephens I. E. L., Norskov J. K., Chorkendorff I., Nature, 2019, 570(7762), 504—508 |
182 | Tang C., Qiao S. Z., Chem. Soc. Rev., 2019, 48(12), 3166—3180 |
183 | Guo W., Zhang K., Liang Z., Zou R., Xu Q., Chem. Soc. Rev., 2019, 48(24), 5658—5716 |
184 | Chen J. G., Crooks R. M., Seefeldt L. C., Bren K. L., Bullock R. M., Darensbourg M. Y., Holland P. L., Hoffman B., Janik M. J., Jones A. K., Kanatzidis M. G., King P., Lancaster K. M., Lymar S. V., Pfromm P., Schneider W. F., Schrock R. R., Science, 2018, 360(6391), eaar6611 |
[1] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[2] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[3] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[4] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[5] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[6] | 杨静怡, 李庆贺, 乔波涛. 铱单原子和纳米粒子在N2O分解反应中的协同催化[J]. 高等学校化学学报, 2022, 43(9): 20220388. |
[7] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[8] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[9] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[10] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[11] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[12] | 韩付超, 李福进, 陈良, 贺磊义, 姜玉南, 徐守冬, 张鼎, 其鲁. CoSe2/C复合电催化材料修饰隔膜对高载量锂硫电池性能的影响[J]. 高等学校化学学报, 2022, 43(8): 20220163. |
[13] | 王茹涵, 贾顺涵, 吴丽敏, 孙晓甫, 韩布兴. CO2参与电化学构筑C—N键制备重要化学品[J]. 高等学校化学学报, 2022, 43(7): 20220395. |
[14] | 彭奎霖, 李桂林, 江重阳, 曾少娟, 张香平. 电解液调控CO2电催化还原性能微观机制的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220238. |
[15] | 王丽君, 李欣, 洪崧, 詹新雨, 王迪, 郝磊端, 孙振宇. 调节氧化镉-炭黑界面高效电催化CO2还原生成CO[J]. 高等学校化学学报, 2022, 43(7): 20220317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||