高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (12): 2598-2609.doi: 10.7503/cjcu20200505
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2020-07-31
出版日期:
2020-12-10
发布日期:
2020-09-16
通讯作者:
白玉
E-mail:yu.bai@pku.edu.cn
基金资助:
AI Wanpeng, SONG Shiyao, BAI Yu(), LIU Huwei
Received:
2020-07-31
Online:
2020-12-10
Published:
2020-09-16
Contact:
BAI Yu
E-mail:yu.bai@pku.edu.cn
Supported by:
摘要:
质谱因具有分辨率高、 灵敏度好、 响应快速以及结构鉴定能力强等特点, 近年来在反应监测研究领域应用广泛. 本文介绍了基于质谱的经典在线直接采样实时监测方案; 综合评述了常压质谱离子化技术在反应监测领域的发展和应用, 主要包括基于常压质谱的快反应监测、 微滴加速在长时间反应研究中的应用, 以及其它常压质谱在反应监测中的应用; 并对质谱在反应监测研究领域面临的挑战和发展趋势进行了总结和展望.
中图分类号:
艾万鹏, 宋诗瑶, 白玉, 刘虎威. 质谱技术在反应监测中的发展和应用[J]. 高等学校化学学报, 2020, 41(12): 2598-2609.
AI Wanpeng, SONG Shiyao, BAI Yu, LIU Huwei. Development and Applications of Mass Spectrometry in Reaction Monitoring[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2598-2609.
Fig.1 Real?time reaction monitoring using CSI MS online direct sampling(A) Schematic diagram of CSI MS[16]; Copyright 2017, Royal Society of Chemistry.(B) Multi-channel CSI MS device[20]; Copyright 2017, American Chemical Society. (C) Inductive ESI MS[21]; Copyright 2014, John Wiley and Sons. (D) Schematic diagram of CP-MIMS-LEI device[23]; Copyright 2019, American Chemical Society.
Fig.2 Application of DESI?MS in reaction monitoring(A) Detection of reaction intermediates by bombardment of surface-bound Ru(Ⅱ) complex with charged microdroplets containing ligand[29]; Copyright ? 2010, John Wiley and Sons. (B) Capture of reactive monophosphine-ligated palladium(0) intermediates using DESI-MS[33]; Copyright ? 2015, American Chemical Society.
Fig.3 Direct monitoring of electrochemical reaction using DESI?MS(A) DESI integrated water wheel device[35,37]; Copyright 2015, John Wiley and Sons. (B) DESI electrochemical MS platform(bevel and plane)[38]; Copyright 2017, American Chemical Society. (C) Coupling of DESI-MS to electrochemical cell[39]; Copyright 2017, American Chemical Society.
Fig.4 Other examples of electrochemical reaction monitoring(A) Droplet-scale electrochemical reaction screening setup[40]; Copyright 2018, Royal Society of Chemistry. (B) SALVI system[41]; Copyright 2017, American Chemical Society. (C) Hybrid ultramicroelectrodes[42]; Copyringht 2016, Royal Society of Chemistry. (D) Electrochemical real-time mass spectrometry for simultaneous monitoring of gaseous and liquid chemicals[44]; Copyright 2019, John Wiley and Sons.
Fig.5 Application of microdroplet acceleration based on ESI?MS in reaction monitoring(A) The correlation between reaction acceleration and reaction monitoring of the Hantzsch reaction in ESI droplet and the distance between MS inlet and spray source[49]; Copyright 2016, John Wiley and Sons. (B) Monitoring of the formation of click reaction products using LAESI MS[51]; Copyright 2018, American Chemical Society. (C) Synthesis of isoquinoline and substituted quinolines in charged microdroplets[52]; Copyright 2015, John Wiley and Sons.
Fig.6 Application of ESSI?MS?based microdroplet acceleration in reaction monitoring(A) Accelerated synthesis Au-(His)2 complex catalyst using ESSI-MS[58]; Copyright 2020, Royal Society of Chemistry.(B) accelerated proteolysis using ESSI-MS[59]; Copyright 2020, Springer Nature.
Fig.7 Application of microdroplet acceleration based on EESI?MS in reaction monitoring(A) Experimental schematic diagram of EESI-MS for the study of microdroplet reaction kinetics[61]; Copyright 2015, Proceedings of the National Academy of Sciences. (B) Gold nanoparticle synthesis using EESI-MS[63]; Copyright 2018, Springer Nature.
Fig.8 Ambient mass spectrometry used for online direct sampling real?time reaction monitoring(A) DESI online direct sampling[16]; Copyright 2017, Royal Society of Chemistry. (B) EESI sampling[70]; Copyright 2011, John Wiley and Sons. (C) ELDI matrix-assisted sampling[73]; Copyright 2008, American Chemical Society.
Fig.9 Application of substrate spray in reaction monitoring(A) Heterogeneous catalytic reaction study using nano-particles coated PSI(the reaction shows the 4-nitrophenol reduction)[75]; Copyright 2016, John Wiley and Sons. (B) Real-time monitoring of ethylene polymerization reactions by DSI MS[77]; Copyright 2015, American Chemical Society. (C) PESI MS real-time reaction monitoring device[79]; Copyright 2010, John Wiley and Sons.
Fig.10 Application of plasma?based ambient ionization in reaction monitoring(A) The procedure of reaction monitoring using LTP MS [81]; Copyright 2009, Royal Society of Chemistry.(B) Schematic diagram of SDDBDI device[82]; Copyright 2018, John Wiley and Sons.
Fig.11 Application of laser?based ambient ionization in reaction monitoring(A) Detection of fleeting amine radical cations and elucidation of chain processes in visible-light-mediated [3+2] annulation by direct laser irradiation[85]; Copyright 2017, American Chemical Society. (B) The in?situ LS ESI-MS and its application in the mechanism of photo-induced direct C—H arylation of heteroarenes[87]; Copyright 2020, American Chemical Society.
1 | Schroder D., Acc. Chem. Res., 2012, 45(9), 1521—1532 |
2 | Arceo E., Jurberg I. D., Álvarez⁃Fernández A., Melchiorre P., Nat. Chem., 2013, 5(9), 750—756 |
3 | Brimioulle R., Bach T., Science, 2013, 342(6160), 840 |
4 | Zhong J. J., Meng Q. Y., Liu B., Li X. B., Gao X. W., Lei T., Wu C. J., Li Z. J., Tung C. H., Wu L. Z., Org. Lett., 2014, 16(7), 1988—1991 |
5 | Zhong J. J., Wu C. J., Meng Q. Y., Gao X. W., Lei T., Tung C. H., Wu L. Z., Adv. Synth. Catal., 2014, 356(13), 2846—2852 |
6 | Wang T., Schrempp M., Berndhauser A., Schiemann O., Menche D., Org. Lett., 2015, 17(16), 3982—3985 |
7 | de Carvalho G. S. G., Granato Á. S., de Castro P. P., Amarante G. W., Curr. Organocatal., 2019, 7(1), 7—22 |
8 | Ingold K. U., Pratt D. A., Chem. Rev., 2014, 114(18), 9022—9046 |
9 | Farr E. P., Quintana J. C., Reynoso V., Ruberry J. D., Shin W. R., Swartz K. R, J. Chem. Educ., 2018, 95(5), 864—871 |
10 | Tsang A. S. K., Sanhueza I A., Schoenebeck F., Chem. Eur. J., 2014, 20(50), 16432—16441 |
11 | Sperger T., Sanhueza I. A., Kalvet I., Schoenebeck F., Chem. Rev., 2015, 115(17), 9532—9586 |
12 | Cooks R. G., Ouyang Z., Takats Z., Wiseman J. M., Science, 2006, 311(5767), 1566 |
13 | Harris G. A., Galhena A. S., Fernández F. M., Anal. Chem., 2011, 83(12), 4508—4538 |
14 | Vikse K. L., Woods M. P., McIndoe J. S., Organometallics, 2010, 29(23), 6615—6618 |
15 | Yunker L. P., Stoddard R. L., McIndoe J. S., J. Mass Spectrom., 2014, 49(1), 1—8 |
16 | Banerjee S., Sathyamoorthi S., Du Bois J., Zare R. N., Chem. Sci., 2017, 8(10), 7003—7008 |
17 | Ingram A. J., Walker K. L., Zare R. N., Waymouth R. M., J. Am. Chem. Soc., 2015, 137(42), 13632—13646 |
18 | Sathyamoorthi S., Lai Y. H., Bain R. M., Zare R. N., J. Org. Chem., 2018, 83(10), 5681—5687 |
19 | Mack J. B. C., Walker K. L., Robinson S. G., Zare R. N., Sigman M. S., Waymouth R. M., Du Bois J., J. Am. Chem. Soc., 2019, 141(2), 972—980 |
20 | Pulliam C. J., Bain R. M., Osswald H. L., Snyder D. T., Fedick P. W., Ayrton S. T., Flick T. G., Cooks R. G., Anal. Chem., 2017, 89(13), 6969—6975 |
21 | Yan X., Sokol E., Li X., Li G., Xu S., Cooks R. G., Angew. Chem. Int. Ed., 2014, 53(23), 5931—5935 |
22 | Yan X., Bain R. M., Li Y., Qiu R., Flick T. G., Cooks R. G., Org. Process Res. Dev., 2016, 20(5), 940—947 |
23 | Termopoli V., Torrisi E., Famiglini G., Palma P., Zappia G., Cappiello A., Vandergrift G. W., Zvekic M., Krogh E. T., Gill C. G., Anal. Chem., 2019, 91(18), 11916—11922 |
24 | Takáts Z., Wiseman J. M., Gologan B., Cooks R. G., Science, 2004, 306(5695), 471—473 |
25 | Cody R. B., Laramee J. A., Durst H. D., Anal. Chem., 2005, 77(8), 2297—2302 |
26 | Green F., Salter T., Gilmore I., Stokes P., O’Connor G., Analyst, 2010, 135(4), 731—737 |
27 | Badu-Tawiah A., Cooks R. G., J. Am. Soc. Mass. Spectrom., 2010, 21(8), 1423—1431 |
28 | Badu-Tawiah A., Bland C., Campbell D. I., Cooks R. G., J. Am. Soc. Mass. Spectrom., 2010, 21(4), 572—579 |
29 | Perry R. H., Splendore M., Chien A., Davis N. K., Zare R. N., Angew. Chem. Int. Ed., 2011, 50(1), 250—254 |
30 | Perry R. H., Brownell K. R., Chingin K., Cahill T J, 3rd., Waymouth R. M., Zare R. N., Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2246—2250 |
31 | Perry R. H., Cahill T. J., Roizen J. L., Du Bois J., Zare R. N., Proc. Natl. Acad. Sci. USA, 2012, 109(45), 18295—18299 |
32 | Xu G., Chen B., Guo B., He D., Yao S., Analyst, 2011, 136(11), 2385—2390 |
33 | Zheng Q., Liu Y., Chen Q., Hu M., Helmy R., Sherer E. C., Welch C. J., Chen H., J. Am. Chem. Soc., 2015, 137(44), 14035—14038 |
34 | Lu M., Su Y., Zhao P., Ye X., Cai Y., Shi X., Masson E., Li F., Campbell J. L., Chen H., Chem. Eur. J., 2018, 24(9), 2144—2150 |
35 | Brown T. A., Chen H., Zare R. N., J. Am. Chem. Soc., 2015, 137(23), 7274—7277 |
36 | Brown T. A., Hosseini⁃Nassab N., Chen H., Zare R. N., Chem. Sci., 2016, 7(1), 329—332 |
37 | Brown T. A., Chen H., Zare R. N., Angew. Chem. Int. Ed., 2015, 54(38), 11183—11185 |
38 | Cheng H., Yan X., Zare R. N., Anal. Chem., 2017, 89(5), 3191—3198 |
39 | Cheng S., Wu Q., Dewald H. D., Chen H., J. Am. Soc. Mass. Spectrom., 2017, 28(6), 1005—1012 |
40 | Zhang H., Yu K., Li N., He J., Qiao L., Li M., Wang Y., Zhang D., Jiang J., Zare R. N., Analyst, 2018, 143(18), 4247—4250 |
41 | Wang Z., Zhang Y., Liu B., Wu K., Thevuthasan S., Baer D. R., Zhu Z., Yu X. Y., Wang F., Anal. Chem., 2017, 89(1), 960—965 |
42 | Qiu R., Zhang X., Luo H., Shao Y., Chem. Sci., 2016, 7(11), 6684—6688 |
43 | Gu C., Nie X., Jiang J., Chen Z., Dong Y., Zhang X., Liu J., Yu Z., Zhu Z., Liu J., Liu X., Shao Y., J. Am. Chem. Soc., 2019, 141(33), 13212—13221 |
44 | Khanipour P., Loffler M., Reichert A. M., Haase F. T., Mayrhofer K. J. J., Katsounaros I., Angew. Chem. Int. Ed., 2019, 58(22), 7273—7277 |
45 | Chen H., Venter A., Cooks R. G., Chem. Commun., 2006, 19, 2042—2044 |
46 | Huang G., Li G., Ducan J., Ouyang Z., Cooks R. G., Angew. Chem. Int. Ed., 2011, 50(11), 2503—2506 |
47 | Huang G. M., Li G. T., Cooks R. G., Angew. Chem. Int. Ed., 2011, 50(42), 9907—9910 |
48 | Alvim H. G. O., Bataglion G. A., Ramos L. M., de Oliveira A. L., de Oliveira H. C. B., Eberlin M. N., de Macedo J. L., da Silva W. A., Neto B. A. D., Tetrahedron, 2014, 70(20), 3306—3313 |
49 | Bain R. M., Pulliam C. J., Cooks R. G., Chem. Sci., 2015, 6(1), 397—401 |
50 | Yan X., Bain R. M., Cooks R. G., Angew. Chem. Int. Ed., 2016, 55(42), 12960—12972 |
51 | van Geenen F., Franssen M. C. R., Zuilhof H., Nielen M. W. F., Anal. Chem., 2018, 90(17), 10409—10416 |
52 | Banerjee S., Zare R. N., Angew. Chem. Int. Ed., 2015, 127(49), 15008—15012 |
53 | Gao D., Jin F., Yan X., Zare R. N., Chem. Eur. J., 2019, 25(6), 1466—1471 |
54 | Muller T., Badu-Tawiah A., Cooks R. G., Angew. Chem. Int. Ed., 2012, 51(47), 11832—11835 |
55 | Takats Z., Nanita S. C., Cooks R. G., Schlosser G., Vekey K., Anal. Chem., 2003, 75(6), 1514—1523 |
56 | Takats Z., Wiseman J. M., Gologan B., Cooks R. G., Anal. Chem., 2004, 76(14), 4050—4058 |
57 | Bain R. M., Pulliam C. J., Ayrton S. T., Bain K., Cooks R. G., Rapid Commun. Mass Spectrom., 2016, 30(16), 1875—1878 |
58 | Luo K., Li J., Cao Y., Liu C., Ge J., Chen H., Zare R. N., Chem. Sci., 2020, 11(9), 2558—2565 |
59 | Zhong X., Chen H., Zare R. N., Nat. Commun., 2020, 11(1), 1049 |
60 | Girod M., Moyano E., Campbell D. I., Cooks R. G., Chem. Sci., 2011, 2(3), 501—510 |
61 | Lee J. K., Kim S., Nam H. G., Zare R. N., Proc. Natl. Acad. Sci. USA, 2015, 112(13), 3898—3903 |
62 | Lee J. K., Nam H. G., Zare R. N., Q. Rev. Biophys., 2017, 50, e2, 1—7 |
63 | Lee J. K., Samanta D., Nam H. G., Zare R. N., Nat. Commun., 2018, 9(1), 1562 |
64 | Marquez C. A., Wang H., Fabbretti F., Metzger J. O., J. Am. Chem. Soc., 2008, 130(51), 17208—17209 |
65 | Marsh B. M., Iyer K., Cooks R. G., J. Am. Soc. Mass. Spectrom., 2019, 30(10), 2022—2030 |
66 | Mondal S., Acharya S., Biswas R., Bagchi B., Zare R. N., J. Chem. Phys., 2018, 148(24), 1—10 |
67 | Banerjee S., Gnanamani E., Yan X., Zare R. N., Analyst, 2017, 142(9), 1399—1402 |
68 | Boeser C. L., Holder J. C., Taylor B. L., Houk K. N., Stoltz B. M., Zare R. N., Chem. Sci., 2015, 6(3), 1917—1922 |
69 | Banerjee S., Yang Y. F., Jenkins I. D., Liang Y., Toutov A. A., Liu W. B., Schuman D. P., Grubbs R. H., Stoltz B. M., Krenske E. H., Houk K. N., Zare R. N., J. Am. Chem. Soc., 2017, 139(20), 6880—6887 |
70 | McCullough B. J., Bristow T., O’Connor G., Hopley C., Rapid Commun. Mass Spectrom., 2011, 25(10), 1445—1451 |
71 | Wang Y., Sun M., Qiao J., Ouyang J., Na N., Chem. Sci., 2018, 9(3), 594—599 |
72 | Lin S. Y., Huang M. Z., Chang H. C., Shiea J., Anal. Chem., 2007, 79(22), 8789—8795 |
73 | Cheng C. Y., Yuan C. H., Cheng S. C., Huang M. Z., Chang H. C., Cheng T. L., Yeh C. S., Shiea J., Anal. Chem., 2008, 80(20), 7699—7705 |
74 | Wang H., Liu J., Cooks R G., Ouyang Z., Angew. Chem. Int. Ed., 2010, 122(5), 889—892 |
75 | Banerjee S., Basheer C., Zare R. N., Angew. Chem. Int. Ed., 2016, 55(41), 12807—12811 |
76 | Sarkar D., Som A., Pradeep T., Anal. Chem., 2017, 89(21), 11378—11382 |
77 | Jiang J., Zhang H., Li M., Dulay M. T., Ingram A. J., Li N., You H., Zare R. N., Anal. Chem., 2015, 87(16), 8057—8062 |
78 | Hiraoka K., Nishidate K., Mori K., Asakawa D., Suzuki S., Rapid Commun. Mass Spectrom., 2007, 21(18), 3139—3144 |
79 | Yu Z., Chen L. C., Erra⁃Balsells R., Nonami H., Hiraoka K., Rapid Commun. Mass Spectrom., 2010, 24(11), 1507—1513 |
80 | Harper J. D., Charipar N. A., Mulligan C. C., Zhang X., Cooks R. G., Ouyang Z., Anal. Chem., 2008, 80(23), 9097—9104 |
81 | Ma X., Zhang S., Lin Z., Liu Y., Xing Z., Yang C., Zhang X., Analyst, 2009, 134(9), 1863—1867 |
82 | Bi C., Liang Y., Shen L., Tian S., Zhang K., Li Y., He X., Chen L., Zhang Y., ACS Omega, 2018, 3(2), 1572—1580 |
83 | Na N., Zhao M., Zhang S., Yang C., Zhang X., J. Am. Soc. Mass. Spectrom., 2007, 18(10), 1859—1862 |
84 | Chen S., Wan Q., Badu-Tawiah A. K., Angew. Chem. Int. Ed., 2016, 55(32), 9345—9349 |
85 | Cai Y., Wang J., Zhang Y., Li Z., Hu D., Zheng N., Chen H., J. Am. Chem. Soc., 2017, 139(35), 12259—12266 |
86 | Ai W., Gao Y., Xue J., Liu X., Liu H., Wang J., Bai Y., Chem. Commun., 2020, 56(14), 2163—2166 |
87 | Ai W., Yang Q., Gao Y., Liu X., Liu H., Bai Y., Anal. Chem., 2020, 92(17), 11967—11972 |
[1] | 崔迎涛, 王顺, 李伟, 崔淑敏, 黄艳杰, 李赫, 段虎, 宋美荣, 董智超, 王毅琳, 江雷. 水滴在超疏水植物叶片上的沉积方法和机理研究进展[J]. 高等学校化学学报, 2021, 42(Album-4): 1-13. |
[2] | 杨涛, 姚会影, 李青, 郝伟, 迟力峰, 朱嘉. 高催化活性M-BHT(M=Co, Cu)电催化还原CO2为CH4的密度泛函理论研究[J]. 高等学校化学学报, 2021, 42(Album-4): 1-8. |
[3] | 窦树珍, 王中舜, 吕男. 硅纳米结构对表面辅助激光解吸/电离质谱检测性能的提高[J]. 高等学校化学学报, 2021, 42(Album-4): 1-11. |
[4] | 王娟, 王林英, 朱大丽, 崔文浩, 王义峰, 田鹏, 刘中民. 高硅Y沸石的合成研究进展[J]. 高等学校化学学报, 2021, 42(1): 1-10. |
[5] | 齐国栋, 叶晓栋, 徐君, 邓风. 分子筛上糖类催化转化的核磁共振研究[J]. 高等学校化学学报, 2021, 42(1): 148-164. |
[6] | 邓洁薇, 杨运云, 林里, 栾天罡. 表面修饰探针纳升电喷雾质谱脂质组学对大型溞和蚤状溞的快速鉴别[J]. 高等学校化学学报, 2020, 41(9): 2011-2017. |
[7] | 潘梦芸, 冯流星, 李红梅. 高效液相色谱-非特异性同位素稀释质谱联用技术定量分析全血中总血红蛋白含量[J]. 高等学校化学学报, 2020, 41(9): 1983-1988. |
[8] | 曹芷源, 孙慧, 苏彬. 量子点电化学发光研究进展及展望[J]. 高等学校化学学报, 2020, 41(9): 1945-1955. |
[9] | 李肖乾, 张华, 路海健, 刘畅, 刘庆龙, 马夏禹, 方媛萍, 梁大鹏. 内部萃取电喷雾电离质谱对二氧化钛纳米线阵列光催化降解罗丹明B反应机理的研究[J]. 高等学校化学学报, 2020, 41(9): 2003-2010. |
[10] | 王晓宇, 晏国全, 周新文, 杨芃原. 化学裂解结合生物质谱对多肽二硫键的定位[J]. 高等学校化学学报, 2020, 41(7): 1505-1512. |
[11] | 王倩颖, 崔树勋. 通过自由基抑制剂研究聚多巴胺的形成机理[J]. 高等学校化学学报, 2020, 41(6): 1378-1383. |
[12] | 毛庆,赵健,刘松,郭唱,李冰玉,徐可一,曹自强,黄延强. Ni单原子催化剂表面CO2电还原动力学的电化学谱学解析[J]. 高等学校化学学报, 2020, 41(5): 1058-1067. |
[13] | 李象远, 申屠江涛, 李宜蔚, 李娟琴, 王静波. 燃烧反应机理构建的极小反应网络方法 |
[14] | 李象远,姚晓霞,申屠江涛,孙晓慧,李娟琴,刘明夏,许诗敏. 燃烧反应机理构建的双参数速率常数方法[J]. 高等学校化学学报, 2020, 41(3): 512-520. |
[15] | 何聿, 夏倩, 王文莉, 罗芳, 陈金凤, 郭雅婷, 王建, 林振宇, 陈国南. UPLC-QTOF-MS法研究甘油三酯作为水生环境中农药污染的潜在生物标志物[J]. 高等学校化学学报, 2020, 41(3): 431-438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||