高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (12): 2577-2586.doi: 10.7503/cjcu20200414
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2020-07-01
出版日期:
2020-12-10
发布日期:
2020-12-09
通讯作者:
孔祥建
E-mail:xjkong@xmu.edu.cn
基金资助:
LI Guanjun, LONG Lasheng, KONG Xiangjian(), ZHENG Lansun
Received:
2020-07-01
Online:
2020-12-10
Published:
2020-12-09
Contact:
KONG Xiangjian
E-mail:xjkong@xmu.edu.cn
Supported by:
摘要:
稀土-钛氧簇合物作为团簇化学的一个新分支, 不但结合了稀土和钛离子的特性, 而且由于二者的协同效应而表现出优异的光、 电、 磁和催化性能.本文综合评述了不同配体稀土-钛氧簇合物的合成与结构, 介绍了稀土-钛氧簇合物的代表性成果, 并对其合成策略和发展前景进行了总结和展望.
中图分类号:
李观俊, 龙腊生, 孔祥建, 郑兰荪. 稀土-钛氧簇合物的研究进展[J]. 高等学校化学学报, 2020, 41(12): 2577-2586.
LI Guanjun, LONG Lasheng, KONG Xiangjian, ZHENG Lansun. Recent Advances in Lanthanide-titanium-oxo Clusters[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2577-2586.
Fig.3 Structural views of Sm4Ti(μ5?O)(μ3?OiPr)2(μ?OiPr)6(OiPr)6(A), Ce2Ti2(μ3?O)2(μ,η2?pin)4(OiPr)4(iPrOH)2(B), Er2Ti4(μ4?O)2(μ3?OEt)2(μ?OEt)8(OEt)8(HOEt)2(C), Eu3K3TiO2(OtBu)11(OMe/OH)(HOtBu)(D), LnTi28O38(OEt)40H2Cl(E) and LnTi11O16(NO3)2(OiPr)17(F)Color code: Ln, violet; TiOx, green; K, orange; C, gray; O, red; N, blue; Cl, teal. H atoms are omitted for clarity.
Fig.4 Structural views of Y2Ti4O4(OMc)14(MeOCH2CH2OH)2(A),Y2Ti4O4(OMc)12(OCH2CH2OMe)2(McOH)2(B), Ln2Ti6O6(OMc)18(HOiPr)2(C), LnTi4O3(OiPr)2(OMc)11(D), Ln2Ti10O14(ClO4)2(OiPr)14(9?AC)2·(CH3CN)2(E), {H2@[Ln2Ti8(μ2?O)4(μ3?O)8(Ac)16]}3(F), Eu2Ti4(μ3?O)4(tbba)12(acac)2(G), Eu5Ti4(μ3?O)6·(tbba)20(Htbba)(THF)2(H), Eu3Ti3(μ3?O)2(μ3?OH)(CH3O)2(tbba)12(Ac)2(CH3OH)(I), Eu6Ti8(μ3?O)13· (μ2?OH)?(CH3O)4(tbba)19(H2O)(CH3OH)(J) and Eu8Ti10(μ3?O)14(tbba)34(Ac)2(H2O)4(THF)2(K)Color code: Ln, violet; TiOx, green; C, gray; O, red; N, blue; Cl, teal. H atoms are omitted for clarity.
Fig.5 Structural views of LnTi6O3(OiPr)9(salicylate)6(A) and Eu24Ti8(sal)31(Hsal)42(CH3CN)11(H2O)8(B) and time?dependent HRESI?MS in range of m/z 1750—2800 on the reaction of Ti(OiPr)4, Eu(acac)3, and salicylic acid in acetonitrilesolution at 2, 30, 60, 120, and 240 min at room temperature(C)[73]Color code: Ln, violet; TiOx, green; C, gray; O, red; N, blue. H atoms are omitted for clarity.Copyright 2018, Wiley-VCH.
Complex | Space group | Ligand | Ref. |
---|---|---|---|
Sm4Ti(μ5?O)(μ3?OiPr)2(μ?OiPr)6(OiPr)6 | I41cd | iso?Propanol | [ |
Er2Ti4(μ4?O)2(μ3?OEt)2(μ?OEt)8(OEt)8(HOEt)2 | P21/n | Ethanol | [ |
Ce2Ti2(μ3?O)2(μ,η2?OCMe2CMe2O)4(OiPr)4(iPrOH)2 | P | iso?Propanol, HOCMe2CMe2OH | [ |
Eu3K3TiO2(OtBu)11(OMe/OH)(HOtBu) | P21/n | tert?Butanol | [ |
LnTi28O38(OEt)38Cl(Ln=La, Ce) | P | Ethanol | [ |
Ti4Y2O4(OMc)14(MeOCH2CH2OH)2 | P | Methacrylic acid | [ |
Ti4Y2O4(OMc)14(McOH)2 | P | Methacrylic acid | [ |
Ti4Y2O4(OMc)12(OCH2CH2OMe)2(McOH)2 | P | Methacrylic acid | [ |
LnTi4O3(OiPr)2(OMc)11(Ln=La, Ce) | P | Methacrylic acid | [ |
Ln2Ti6O6(OMc)18(HOiPr)2(Ln = La, Ce, Nd, Sm) | P21/n | Methacrylic acid | [ |
Ln2Ti4O4(OMc)14(HOMc)2(Ln=Sm, Eu, Gd, Ho) | P | Methacrylic acid | [ |
Ln2Ti10O14(ClO4)2(OiPr)14(9?AC)2(CH3CN)2 (Ln=Nd, Eu) | P | Anthracene?9?carboxylic acid | [ |
Ln2Ti10O14(ClO4)2(OiPr)14(bza)2(HOiPr)2 (Ln=Nd, Eu) | P21/n | Benzoic acid | [ |
[EuTi2O(OEt)8(EtOH)Cl]2 | P21/n | Ethanol | [ |
LnTi11O16(NO3)2(OiPr)17(Ln=Sm, Eu, Gd) | P21 | iso?Propanol | [ |
LnTi6O3(OiPr)9(sal)6(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) | P | Salicylic acid | [ |
Ln8Ti10(μ3?O)14(tbba)34(Ac)2(H2O)4(THF)2 (Ln=Sm, Eu, Gd) | P | 4?tert?Butylbenzoic acid, tetrahydrofuran | [ |
Eu2Ti4(μ3?O)4(tbba)12(acac)2 | P | 4?tert?Butylbenzoic acid | [ |
Eu5Ti4(μ3?O)6(tbba)20(Htbba)(THF)2 | C2/c | 4?tert?Butylbenzoic acid, tetrahydrofuran | [ |
Ln2Ti6O2(C2O4)4(NO3)2(OiPr)20(Ln=La, Ce, Eu) | P | iso?Propanol, H2C2O4 | [ |
Eu24Ti8(sal)31(Hsal)42(CH3CN)11(H2O)8 | P | Salicylic acid, CH3CN | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(Ac)16(Ln=Eu, Tb) | Im | Acetic acid | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(p?toluic)16 (Ln=Eu,Tb) | I4/m | p?Toluic acid | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(Anthra)16 (Ln = Eu, Tb) | R | Anthracene?9?carboxylic acid | [ |
{H2@[Ln2Ti8(μ2?O)4(μ3?O)8(Ac)16]}3(Ln=Eu, Tb, Yb) | Im | Acetic acid | [ |
Eu3Ti3(μ3?O)2(μ3?OH)(CH3O)2(tbba)12(Ac)2(CH3OH) | Pnn2 | 4?tert?Butylbenzoic acid, CH3OH | [ |
Eu6Ti8(μ3?O)13(μ2?OH)(CH3O)4(tbba)19(H2O)(CH3OH) | P | 4?tert?Butylbenzoic acid, CH3OH | [ |
EuTi6(μ3?O)3(OEt)8(dtbsa)6(Hdtbsa) | P | Ethanol, 3,5?di?tert?butylsalicylic acid | [ |
EuTi7(μ3?O)3(μ2?OH)2(OiPr)9(dtbsa)6(Hdtbsa)Cl | P21/n | iso?Propanol, 3,5?di?tert?butylsalicylic acid | [ |
EuTi7(μ3?O)3(μ2?OH)2(OiPr)8(dtbsa)7(Hdtbsa) | P21/n | iso?Propanol, 3,5?di?tert?butylsalicylic acid | [ |
[LaTi7(μ3?O)3(μ2?OH)2(OEt)8(dtbsa)7(Hdtbsa)]2 | P | Ethanol, 3,5?di?tert?butylsalicylic acid | [ |
表1 列出了目前为止报道的稀土-钛氧簇合物的结构和配体信息.
Table 1 Structural information of lanthanide-titanium-oxo clusters
Complex | Space group | Ligand | Ref. |
---|---|---|---|
Sm4Ti(μ5?O)(μ3?OiPr)2(μ?OiPr)6(OiPr)6 | I41cd | iso?Propanol | [ |
Er2Ti4(μ4?O)2(μ3?OEt)2(μ?OEt)8(OEt)8(HOEt)2 | P21/n | Ethanol | [ |
Ce2Ti2(μ3?O)2(μ,η2?OCMe2CMe2O)4(OiPr)4(iPrOH)2 | P | iso?Propanol, HOCMe2CMe2OH | [ |
Eu3K3TiO2(OtBu)11(OMe/OH)(HOtBu) | P21/n | tert?Butanol | [ |
LnTi28O38(OEt)38Cl(Ln=La, Ce) | P | Ethanol | [ |
Ti4Y2O4(OMc)14(MeOCH2CH2OH)2 | P | Methacrylic acid | [ |
Ti4Y2O4(OMc)14(McOH)2 | P | Methacrylic acid | [ |
Ti4Y2O4(OMc)12(OCH2CH2OMe)2(McOH)2 | P | Methacrylic acid | [ |
LnTi4O3(OiPr)2(OMc)11(Ln=La, Ce) | P | Methacrylic acid | [ |
Ln2Ti6O6(OMc)18(HOiPr)2(Ln = La, Ce, Nd, Sm) | P21/n | Methacrylic acid | [ |
Ln2Ti4O4(OMc)14(HOMc)2(Ln=Sm, Eu, Gd, Ho) | P | Methacrylic acid | [ |
Ln2Ti10O14(ClO4)2(OiPr)14(9?AC)2(CH3CN)2 (Ln=Nd, Eu) | P | Anthracene?9?carboxylic acid | [ |
Ln2Ti10O14(ClO4)2(OiPr)14(bza)2(HOiPr)2 (Ln=Nd, Eu) | P21/n | Benzoic acid | [ |
[EuTi2O(OEt)8(EtOH)Cl]2 | P21/n | Ethanol | [ |
LnTi11O16(NO3)2(OiPr)17(Ln=Sm, Eu, Gd) | P21 | iso?Propanol | [ |
LnTi6O3(OiPr)9(sal)6(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) | P | Salicylic acid | [ |
Ln8Ti10(μ3?O)14(tbba)34(Ac)2(H2O)4(THF)2 (Ln=Sm, Eu, Gd) | P | 4?tert?Butylbenzoic acid, tetrahydrofuran | [ |
Eu2Ti4(μ3?O)4(tbba)12(acac)2 | P | 4?tert?Butylbenzoic acid | [ |
Eu5Ti4(μ3?O)6(tbba)20(Htbba)(THF)2 | C2/c | 4?tert?Butylbenzoic acid, tetrahydrofuran | [ |
Ln2Ti6O2(C2O4)4(NO3)2(OiPr)20(Ln=La, Ce, Eu) | P | iso?Propanol, H2C2O4 | [ |
Eu24Ti8(sal)31(Hsal)42(CH3CN)11(H2O)8 | P | Salicylic acid, CH3CN | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(Ac)16(Ln=Eu, Tb) | Im | Acetic acid | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(p?toluic)16 (Ln=Eu,Tb) | I4/m | p?Toluic acid | [ |
Ln2Ti8(μ2?O)2(μ3?O)8(μ2?OH)2(Anthra)16 (Ln = Eu, Tb) | R | Anthracene?9?carboxylic acid | [ |
{H2@[Ln2Ti8(μ2?O)4(μ3?O)8(Ac)16]}3(Ln=Eu, Tb, Yb) | Im | Acetic acid | [ |
Eu3Ti3(μ3?O)2(μ3?OH)(CH3O)2(tbba)12(Ac)2(CH3OH) | Pnn2 | 4?tert?Butylbenzoic acid, CH3OH | [ |
Eu6Ti8(μ3?O)13(μ2?OH)(CH3O)4(tbba)19(H2O)(CH3OH) | P | 4?tert?Butylbenzoic acid, CH3OH | [ |
EuTi6(μ3?O)3(OEt)8(dtbsa)6(Hdtbsa) | P | Ethanol, 3,5?di?tert?butylsalicylic acid | [ |
EuTi7(μ3?O)3(μ2?OH)2(OiPr)9(dtbsa)6(Hdtbsa)Cl | P21/n | iso?Propanol, 3,5?di?tert?butylsalicylic acid | [ |
EuTi7(μ3?O)3(μ2?OH)2(OiPr)8(dtbsa)7(Hdtbsa) | P21/n | iso?Propanol, 3,5?di?tert?butylsalicylic acid | [ |
[LaTi7(μ3?O)3(μ2?OH)2(OEt)8(dtbsa)7(Hdtbsa)]2 | P | Ethanol, 3,5?di?tert?butylsalicylic acid | [ |
Fig.6 Photos of the fluorescence emission of Eu2Ti10?bza(a) and Eu2Ti10?9?AC(b)(A) and proposed energy transfer processes in cluster Eu2Ti10?9?AC[48](B)Copyright 2015, Royal Society of Chemistry.
Fig.9 Photoelectrocatalytic amount of O2 of Ln8Ti10(A)[47], structural view of Ln2Ti6O2(C2O4)4(NO3)2·(OiPr)20(B), remaining concentrations using the degradation crystals of Ln2Ti6 ?after 40 min illumination(C)[46] and a proposed cooperative effect of Ln and oxalate promoting the photocatalytic degradation of the dye(D)[46]Color code: Ln, violet; TiOx, green; C, gray; O, red; N, blue. H atoms are omitted for clarity.(A) Copyright 2017, American Chemical Society;(C, D) Copyright 2018, Royal Society of Chemistry.
1 | Fujishima A., Honda K., Nature, 1972, 238, 37—38 |
2 | Linsebigler A. L., Lu G. Q., Yates J. T., Chem. Rev., 1995, 95, 735—758 |
3 | Carp O., Huisman C. L., Reller A., Prog. Solid State Chem., 2004, 32, 33—177 |
4 | Thompson T. L., Yates J. T. Jr., Chem. Rev., 2006, 106, 4428—4453 |
5 | Henderson M. A., Lyubinetsky I., Chem. Rev., 2013, 113, 4428—4455 |
6 | Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki M., Ahmet P., Chikyow T., Koshihara S., Koinuma H., Science, 2001, 291, 854—856 |
7 | Iwasaki M., Hara M., Kawada H., Tada H., Ito S., J. Colloid Interface Sci., 2000, 224, 202—204 |
8 | Griffin K. A., Pakhomov A. B., Wang C. M., Heald S. M., Krishnan K. M., Phys. Rev. Lett., 2005, 94, 157204 |
9 | Coppens P., Chen Y., Trzop E., Chem. Rev., 2014, 114, 9645—9661 |
10 | In S., Orlov A., Garcia F., Tikhov M., Wright D. S., Lambert R. M., Chem. Commun., 2006, 4236—4238 |
11 | In S., Orlov A., Berg R., García F., Pedrosa⁃Jimenez S., Tikhov M. S., Wright D. S., Lambert R. M., J. Am. Chem. Soc., 2007, 129, 13790—13791 |
12 | Lin W. Q., Liao X. F., Jia J. H., Leng J. D., Liu J. L., Guo F. S., Tong M. L., Chem. Eur. J., 2013, 19, 12254—12258 |
13 | Romanelli M., Kumar G. A., Emge T. J., Riman R. E., Brennan J. G., Angew. Chem. Int. Ed., 2008, 47, 6049—6051 |
14 | Feng D., Gu Z. Y., Li J. R., Jiang H. L., Wei Z., Zhou H. C., Angew. Chem. Int. Ed., 2012, 51, 10307—10310 |
15 | Nwe K., Andolina C. M., Morrow J. R., J. Am. Chem. Soc., 2008, 130, 14861—14871 |
16 | Wu P., He C., Wang J., Peng X., Li X., An Y., Duan C., J. Am. Chem. Soc., 2012, 134, 14991—14999 |
17 | Woodruff D. N., Winpenny R. E. P., Layfield R. A., Chem. Rev., 2013, 113, 5110—5148 |
18 | Zheng Y. Z., Xue W., Zheng S. L., Tong M. L., Chen X. M., Adv. Mater., 2008, 20, 1534—1538 |
19 | Song L., Chen C., Zhang S., Wei Q., Ultrason. Sonochem., 2011, 18, 1057—1061 |
20 | Sidheswaran M., Tavlarides L. L., Ind. Eng. Chem. Res., 2009, 48, 10292—10306 |
21 | Kumaresan L., Prabhu A., Palanichamy M., Arumugam E., Murugesan V., J. Hazard. Mater., 2011, 186, 1183—1192 |
22 | Iwaszuk A., Nolan M., J. Phys. Chem. C, 2011, 115, 12995—13007 |
23 | Vahrenkamp H., Angew. Chem. Int. Ed., 1978, 17, 379—392 |
24 | Andruh M., Chem. Commun., 2007, 2565—2577 |
25 | Cooke M. W., Hanan G. S., Chem. Soc. Rev., 2007, 36, 1466—1476 |
26 | Kong X. J., Ren Y. P., Long L. S., Zheng Z., Huang R. B., Zheng L. S., J. Am. Chem. Soc., 2007, 129, 7016—7017 |
27 | Kong X. J., Ren Y. P., Chen W. X., Long L. S., Zheng Z., Huang R. B., Zheng L. S., Angew. Chem. Int. Ed., 2008, 47, 2398—2401 |
28 | Kong X. J., Long L. S., Huang R. B., Zheng L. S., Harris T. D., Zheng Z., Chem. Commun., 2009, 4354—4356 |
29 | Zhang Z. M., Yao S., Li Y. G., Clerac R., Lu Y., Su Z. M., Wang E. B., J. Am. Chem. Soc., 2009, 131, 14600—14601 |
30 | Zeng Y. F., Xu G. C., Hu X., Chen Z., Bu X. H., Gao S., Sanudo E. C., Inorg. Chem., 2010, 49, 9734—9736 |
31 | Evangelisti F., More R., Hodel F., Luber S., Patzke G. R., J. Am. Chem. Soc., 2015, 137, 11076—11084 |
32 | Papatriantafyllopoulou C., Moushi E. E., Christou G., Tasiopoulos A. J., Chem. Soc. Rev., 2016, 45, 1597—1628 |
33 | Yang X., Wang S., King T. L., Kerr C. J., Blanchet C., Svergun D., Pal R., Beeby A., Vadivelu J., Brown K. A., Jones R. A., Zhang L., Huang S., Faraday Discuss., 2016, 191, 465—479 |
34 | Yang X., Wang S., Schipper D., Zhang L., Li Z., Huang S., Yuan D., Chen Z., Gnanam A. J., Hall J. W., King T. L., Que E., Dieye Y., Vadivelu J., Brown K. A., Jones R. A., Nanoscale, 2016, 8, 11123—11129 |
35 | Rozes L., Sanchez C., Chem. Soc. Rev., 2011, 40, 1006—1030 |
36 | Sokolow J. D., Trzop E., Chen Y., Tang J., Allen L. J., Crabtree R. H., Benedict J. B., Coppens P., J. Am. Chem. Soc., 2012, 134, 11695—11700 |
37 | Fang W. H., Zhang L., Zhang J., J. Am. Chem. Soc., 2016, 138, 7480—7483 |
38 | Gao M. Y., Wang F., Gu Z. G., Zhang D. X., Zhang L., Zhang J., J. Am. Chem. Soc., 2016, 138, 2556—2559 |
39 | Li N., Matthews P. D., Luo H. K., Wright D. S., Chem. Commun., 2016, 52, 11180—11190 |
40 | Zhang G., Liu C., Long D. L., Cronin L., Tung C. H., Wang Y., J. Am. Chem. Soc., 2016, 138, 11097—11100 |
41 | Jiang Z., Liu J., Gao M., Fan X., Zhang L., Zhang J., Adv. Mater., 2017, 29, 1—5 |
42 | Fang W. H., Zhang L., Zhang J., Chem. Soc. Rev., 2018, 47, 404—421 |
43 | Hong Z. F., Xu S. H., Yan Z. H., Lu D. F., Kong X. J., Long L. S., Zheng L. S., Cryst. Growth Des., 2018, 18, 4864—4868 |
44 | Zhang G., Li W., Liu C., Jia J., Tung C. H., Wang Y., J. Am. Chem. Soc., 2018, 140, 66—69 |
45 | Lv Y., Yao M., Holgado J. P., Roth T., Steiner A., Gan L., Lambert R. M., Wright D. S., RSC Adv., 2013, 3, 1—5 |
46 | Luo W., Hou J.L., Zou D.H., Cui L.N., Zhu Q.Y., Dai J., New J. Chem., 2018, 42, 11629—11634 |
47 | Lu D. F., Kong X. J., Lu T. B., Long L. S., Zheng L. S., Inorg. Chem., 2017, 56, 1057—1060 |
48 | Wang S., Su H. C., Yu L., Zhao X. W., Qian L. W., Zhu Q. Y., Dai J., Dalton Trans., 2015, 44, 1882—1888 |
49 | Lv Y., Cai Z., Yan D., Su C., Li W., Chen W., Ren Z., Wei Y., Mi O., Zhang C., Wright D. S., RSC Adv., 2016, 6, 57—60 |
50 | Zhang G. L., Wang S., Hou J. L., Mo C. J., Que C. J., Zhu Q. Y., Dai J., Dalton Trans., 2016, 45, 17681—17686 |
51 | Lu D. F., Hong Z. F., Xie J., Kong X. J., Long L. S., Zheng L. S., Inorg. Chem., 2017, 56, 12186—12192 |
52 | Li N., Subramanian G. S., Matthews P. D., Xiao J., Chellappan V., Rosser T. E., Reisner E., Luo H. K., Wright D. S., Dalton Trans., 2018, 47, 5679—5686 |
53 | Chen R., Hong Z. F., Zhao Y. R., Zheng H., Li G. J., Zhang Q. C., Kong X. J., Long L. S., Zheng L. S., Inorg. Chem., 2019, 58, 15008—15012 |
54 | Luo W., Zou D. H., Yang S., Cui L. N., Liu P. Y., Zhu Q. Y., Dai J., Inorg. Chem., 2019, 58, 14617—14625 |
55 | Zhao Y. R., Zheng H., Chen L. Q., Chen H. J., Kong X. J., Long L. S., Zheng L. S., Inorg. Chem., 2019, 58, 10078—10083 |
56 | Adams R. D., Captain B., Acc. Chem. Res., 2009, 42, 409—418 |
57 | Zhou J., Coord. Chem. Rev., 2016, 315, 112—134 |
58 | Nesterov D. S., Nesterova O. V., Pombeiro A. J. L., Coord. Chem. Rev., 2018, 355, 199—222 |
59 | Wolpher H., Sinha S., Pan J., Johansson A., Lundqvist M. J., Persson P., Lomoth R., Bergquist J., Sun L., Sundstrom V., Akermark B., Polivka T., Inorg. Chem., 2007, 46, 638—651 |
60 | Zheng X. Y., Zhang H., Wang Z., Liu P., Du M. H., Han Y. Z., Wei R. J., Ouyang Z. W., Kong X. J., Zhuang G. L., Long L. S., Zheng L. S., Angew. Chem. Int. Ed., 2017, 56, 11475—11479 |
61 | Yan Z. H., Du M. H., Liu J., Jin S., Wang C., Zhuang G. L., Kong X. J., Long L. S., Zheng L. S., Nat. Commun.,2018, 9, 3353 |
62 | Daniele S., Hubert⁃Pfalzgraf L. G., Daran J. C., Halut S., Polyhedron, 1994, 13, 927—932 |
63 | Hubert⁃Pfalzgraf L. G., Abada V., Vaissermann J., Polyhedron, 1999, 18, 3497—3504 |
64 | Westin G., Norreatam R., Nygren M., Wijk M., J. Solid State Chem., 1998, 135, 149—158 |
65 | Berger E., Westin G., J. Sol-Gel Sci. Technol., 2010, 53, 681—688 |
66 | Lv Y., Willkomm J., Leskes M., Steiner A., King T. C., Gan L., Reisner E., Wood P. T., Wright D. S., Chem. Eur. J., 2012, 18, 11867—11870 |
67 | Jupa M., Kickelbick G., Schubert U., Eur. J. Inorg. Chem., 2004, 2004, 1835—1839 |
68 | Artner C., Kronister S., Czakler M., Schubert U., Eur. J. Inorg. Chem., 2014, 32, 5596—5602 |
69 | Day V. W., Eberspacher T. A., Klemperer W. G., Park C. W., J. Am. Chem. Soc., 1993, 115, 8469—8470 |
70 | Steunou N., Robert F., Boubekeur K., Ribot F., Sanchez C., Inorg. Chim. Acta, 1998, 279, 144—151 |
71 | Steunou N., Ribot F., Boubekeur K., Maquet J., Sanchez C., New J. Chem., 1999, 23, 1079—1086 |
72 | Li N., Garcia⁃Rodriguez R., Matthews P. D., Luo H. K., Wright D. S., Dalton Trans., 2017, 46, 4287—4295 |
73 | Zheng H., Du M. H., Lin S. C., Tang Z. C., Kong X. J., Long L. S., Zheng L. S., Angew. Chem. Int. Ed., 2018, 57, 10976—10979 |
74 | Yang Y. M., Lun H. J., Long L. S., Kong X. J., Zheng L. S., Acta Phys. Chim. Sin., 2020, 36, 1—8(杨亚梅, 伦会洁, 龙腊生, 孔祥建, 郑兰荪. 物理化学学报, 2020, 36, 1—8) |
75 | Crosby G. A., Whan R. E., Alire R. M., J. Chem. Phys., 1961, 34, 743—748 |
76 | Binnemans K., Chem. Rev., 2009, 109, 4283—4374 |
77 | Moore E. G., Samuel A. P. S., Raymond K. N., Acc. Chem. Res., 2009, 42, 542—552 |
78 | Bunzli J. C., Chem. Rev., 2010, 110, 2729—2755 |
79 | Accorsi G., Listorti A., Yoosaf K., Armaroli N., Chem. Soc. Rev., 2009, 38, 1690—1700 |
80 | Kong X. J., Ren Y. P., Long L. S., Zheng Z., Nichol G., Huang R. B., Zheng L. S., Inorg. Chem., 2008, 47, 2728—2739 |
81 | Peng J. B., Zhang Q. C., Kong X. J., Ren Y. P., Long L. S., Huang R. B., Zheng L. S., Zheng Z., Angew. Chem. Int. Ed., 2011, 50, 10649—10652 |
82 | Leng J. D., Liu J. L., Tong M. L., Chem. Commun., 2012, 48, 5286—5288 |
83 | Zhang Z. M., Pan L. Y., Lin W. Q., Leng J. D., Guo F. S., Chen Y. C., Liu J. L., Tong M. L., Chem. Commun., 2013, 49, 8081—8083 |
84 | Peng J. B., Kong X. J., Zhang Q. C., Orendac M., Prokleska J., Ren Y. P., Long L. S., Zheng Z., Zheng L. S., J. Am. Chem. Soc., 2014, 136, 17938—17941 |
85 | Liu D. P., Lin X. P., Zhang H., Zheng X. Y., Zhuang G. L., Kong X. J., Long L. S., Zheng L. S., Angew. Chem. Int. Ed., 2016, 55, 4532—4536 |
86 | Qin L., Yu Y. Z., Liao P. Q., Xue W., Zheng Z., Chen X. M., Zheng Y. Z., Adv. Mater., 2016, 28, 10772—10779 |
87 | Lin Q., Zhang Y., Cheng W., Liu Y., Xu Y., Dalton Trans., 2017, 46, 643—646 |
88 | Zheng X. Y., Jiang Y. H., Zhuang G. L., Liu D. P., Liao H. G., Kong X. J., Long L. S., Zheng L. S., J. Am. Chem. Soc., 2017, 139, 18178—18181 |
89 | Zheng X. Y., Xie J., Kong X. J., Long L. S., Zheng L. S., Coord. Chem. Rev., 2019, 378, 222—236 |
[1] | 周帅, 王娟. 碳掺氧缺型TiO2纤维的无外碳源制备及光催化性能[J]. 高等学校化学学报, 2021, 42(Album-4): 1-8. |
[2] | 窦树珍, 王中舜, 吕男. 硅纳米结构对表面辅助激光解吸/电离质谱检测性能的提高[J]. 高等学校化学学报, 2021, 42(Album-4): 1-11. |
[3] | 孟妍, 王秀凤, 张莉, 刘鸣华. 不同取代位置的萘衍生两亲分子在气/液界面组装膜中的螺旋结构与圆偏振发光[J]. 高等学校化学学报, 2021, 42(Album-4): 1-7. |
[4] | 皮业灿, 张应, 成子方, 黄小青. 二维金属纳米材料的合成及电催化应用的研究进展[J]. 高等学校化学学报, 2021, 42(Album-3): 1-19. |
[5] | 姜沁源, 周晨晖, 蒙海兵, 韩莹, 张如范. 二维金属有机框架材料的合成及电催化应用[J]. 高等学校化学学报, 2021, 42(Album-3): 1-19. |
[6] | 詹舒辉, 赵亚松, 杨乃亮, 王丹. 石墨炔孔结构: 设计、 合成和应用[J]. 高等学校化学学报, 2021, 42(Album-3): 1-16. |
[7] | 贾并泉, 叶斌, 赵伟, 许钫钫, 黄富强. 金属相1T´ MoS2增强类石墨相C3N4的可见光催化性能[J]. 高等学校化学学报, 2021, 42(Album-3): 1-9. |
[8] | 余强敏, 张致远, 罗雨婷, 李洋, 成会明, 刘碧录. 金属性二维过渡金属硫化物的溶剂热合成及电催化析氢性能[J]. 高等学校化学学报, 2021, 42(Album-3): 1-8. |
[9] | 高娟, 孙全虎, 黄长水. 石墨炔纳米材料的制备及在电化学能源中的应用[J]. 高等学校化学学报, 2021, 42(Album-2): 1-12. |
[10] | 王健羽, 张强, 闫文付, 于吉红. 羟基自由基在沸石分子筛合成中的作用[J]. 高等学校化学学报, 2021, 42(1): 11-20. |
[11] | 马超, 刘晓娜, 乜晨阳, 陈陆, 田鹏, 徐弘毅, 郭鹏, 刘中民. X射线晶体学和电子晶体学在分子筛结构表征中的应用[J]. 高等学校化学学报, 2021, 42(1): 188-200. |
[12] | 凌旸, 章冠群, 马延航. 基于透射电子显微镜的沸石分子筛结构研究进展[J]. 高等学校化学学报, 2021, 42(1): 201-216. |
[13] | 吴勤明, 王叶青, 孟祥举, 肖丰收. 硅铝沸石分子筛晶化过程再思考[J]. 高等学校化学学报, 2021, 42(1): 21-28. |
[14] | 宋红玲, 彭媛, 杨维慎. 二维纳米片用于快速高效膜法气体分离[J]. 高等学校化学学报, 2021, 42(1): 248-267. |
[15] | 焦美晨, 蒋金刚, 徐浩, 吴鹏. 硅锗分子筛的结构稳固、 结构可控调变及催化应用[J]. 高等学校化学学报, 2021, 42(1): 29-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||