高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (8): 20220157.doi: 10.7503/cjcu20220157

• 物理化学 • 上一篇    下一篇

赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能

贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴()   

  1. 安徽工业大学材料科学与工程学院, 先进金属材料绿色制备与表面技术 教育部重点实验室, 马鞍山 243032
  • 收稿日期:2022-03-15 出版日期:2022-08-10 发布日期:2022-05-06
  • 通讯作者: 冒爱琴 E-mail:maoaiqinmaq@163.com
  • 基金资助:
    安徽省自然科学基金(2008085ME125);安徽省高校自然科学研究重点项目(KJ2020A0268);先进金属材料绿色制备与表面技术教育部重点实验室主任基金(GFST2022ZR08)

Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials

JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin()   

  1. School of Materials Science and Engineering,Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials,Ministry of Education,Anhui University of Technology,Ma’anshan 243032,China
  • Received:2022-03-15 Online:2022-08-10 Published:2022-05-06
  • Contact: MAO Aiqin E-mail:maoaiqinmaq@163.com
  • Supported by:
    the Natural Science Foundation of Anhui Province, China(2008085ME125);the University Natural Science Research Project of Anhui Province, China(KJ2020A0268);the Director's Fund of Key Laboratory of Green Fabrication and Surface Technology of Advance Metal Materials, Ministry of Education, China(GFST2022ZR08)

摘要:

采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.

关键词: 锂离子电池, 高熵氧化物, 钙钛矿结构, 负极材料, 赝电容

Abstract:

La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 high-entropy oxide(HEO) was prepared by co-precipitation using metal nitrate as the metal source, NaOH and Na2CO3 as the precipitant and explored as a novel anode active material for lithium-ion batteries(LIBs). The microstructure and electrochemical properties of as-synthesized La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 HEO were investigated and also compared with conventional LaCoO3. Scanning electron microscopy(SEM), X-ray diffraction(XRD) and N2 adsorption/desorption tests showed that the as-prepared La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 HEO was a single-phase perovskite structure, and spherical shape with chemical and microstructural homogeneity, and high specific surface area(19.83 m2/g). As compared to conventional LaCoO3, the La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode material not only provides the higher specific capacity, but also exhibits excellent rate performance and cycling stability. The initial discharge specific capacity of La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode is 855.8 mA·h/g at the current density of 200 mA/g, and after 150 cycles, the specific capacity increases to 771.8 mA·h/g, which is much higher than the theoretical capacity(331.6 mA·h/g). It is worth noting that La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode delivers the specific capacitity of 320 mA·h/g at 3000 mA/g with a capacity retention rate of 95.1% after 500 cycles, which is close to its theoretical capacity. The improved lithium storage performance of La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 is mainly attributed to the entropy-stabilized crystal structure and the multiprincipal synergistic effect, resulting in the improved lithium ion diffusion coefficient(11.2×10-18 cm2/s) and pseudocapacitance contribution.

Key words: Lithium-ion battery, High entropy oxide, Perovskite structure, Anode material, Pseudocapacitance

中图分类号: 

TrendMD: