高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (8): 20230134.doi: 10.7503/cjcu20230134
收稿日期:
2023-03-27
出版日期:
2023-08-10
发布日期:
2023-05-23
通讯作者:
徐中胜,刘云
E-mail:zhongshengxu@cqmu.edu.cn;yunliu@cqmu.edu.cn
作者简介:
第一联系人:共同第一作者.
基金资助:
ZHANG Lu1, ZOU Yunhe2, XU Zhongsheng3(), LIU Yun3(
)
Received:
2023-03-27
Online:
2023-08-10
Published:
2023-05-23
Contact:
XU Zhongsheng, LIU Yun
E-mail:zhongshengxu@cqmu.edu.cn;yunliu@cqmu.edu.cn
Supported by:
摘要:
近年来, 中空结构纳米材料因其独特的空腔结构、 广泛性的来源以及优异的磁性、 电子、 光学和催化性能, 在生物医学领域的各种应用中显示出巨大的优势. 该类材料经过特别设计用于装载药物或显像剂进行疾病治疗、 诊断和监测治疗, 其目的是为了保护和改善健康状况. 本文首先综合评述了不同类型中空结构纳米材料的研究进展; 并分别对具有刺激响应药物释放、 多模态治疗、 诊疗一体化以及监控治疗的先进性多功能化中空结构纳米材料进行了介绍; 最后, 探讨了中空结构纳米材料在生物医学应用中的挑战和潜在的未来发展方向.
中图分类号:
TrendMD:
张璐, 邹云鹤, 徐中胜, 刘云. 中空结构纳米材料在生物医学领域的应用: 现状与展望. 高等学校化学学报, 2023, 44(8): 20230134.
ZHANG Lu, ZOU Yunhe, XU Zhongsheng, LIU Yun. Hollow-structured Nanomaterials for Biomedical Applications: Current Development and Future Prospective. Chem. J. Chinese Universities, 2023, 44(8): 20230134.
Type of hollow⁃structured nanomaterials | Structural characteristic | Advantage |
---|---|---|
Hollow mesoporous silica nanoparticles | Hollow spheres with silicic shell | Adjustable sizes of cavity and pore, environmental friendliness and low cost |
Hollow polymer particles | Hollow capsules with polymer shell | Effectively avoid the drug release and failure in the blood circulation |
Hollow metal oxide nanospheres | Hollow spheres with metal oxide shell | Metal oxide intrinsic properties: superior magnetic properties or multiple enzymatic activities |
Hollow metal-sulfide nanospheres | Hollow spheres of metal-sulfide shell | Metal-sulfide unique electronic, optical and catalytic properties |
Hollow multiple shells nanospheres | Hollow spheres of multiple shells | Improve the amount of drug loading and provide a prolonged drug release |
Exosome | Hollow vesicle with proteins and lipids shell | Well biodistribution, biocompatibility and low immunogenicity |
Table 1 Summary of hollow-structured nanomaterials with different characteristics
Type of hollow⁃structured nanomaterials | Structural characteristic | Advantage |
---|---|---|
Hollow mesoporous silica nanoparticles | Hollow spheres with silicic shell | Adjustable sizes of cavity and pore, environmental friendliness and low cost |
Hollow polymer particles | Hollow capsules with polymer shell | Effectively avoid the drug release and failure in the blood circulation |
Hollow metal oxide nanospheres | Hollow spheres with metal oxide shell | Metal oxide intrinsic properties: superior magnetic properties or multiple enzymatic activities |
Hollow metal-sulfide nanospheres | Hollow spheres of metal-sulfide shell | Metal-sulfide unique electronic, optical and catalytic properties |
Hollow multiple shells nanospheres | Hollow spheres of multiple shells | Improve the amount of drug loading and provide a prolonged drug release |
Exosome | Hollow vesicle with proteins and lipids shell | Well biodistribution, biocompatibility and low immunogenicity |
Fig.1 Schematic illustration of the preparation of HMSNs for drug loading and release(A)[26] and preparation of surface⁃modified multifunctional platforms(B)[27](A) Copyright 2017, American Chemical Society; (B) Copyright 2017, Wiley-VCH.
Fig.2 Schematic illustrating the synthesis of PMPC for encapsulating n(EGFP) and n(OVA)(A)[32], the design of the pH⁃sensitive hollow microspheres P(MBAAm⁃co⁃MAA)(B)[33](A) Copyright 2015, Tsinghua University Press; (B) Copyright 2009, Elsevier.
Fig.5 Schematic showing the formation of HMONs⁃PTX@PDA⁃PEG for GSH and pH stimuli⁃responsive drug release(A)[64] and the design of f silica nanocapsules with a well⁃defined hole for laser irradiation stimuli⁃responsive the anticancer drug release(B)[65](A) Copyright 2020, Wiley; (B) Copyright 2019, Wiley-VCH.
Fig.6 Schematic representation of the design of DOX@HMDN⁃PEI⁃PLL for combined chemo⁃chemo⁃ dynamic dulamodal therapy(A)[73] and the preparation of CSC2@PEG⁃Dox for combination chemotherapy(PDT and PDT)(B)[74](A) Copyright 2021, Elsevier; (B) Copyright 2020, Elsevier.
Fig.7 Schematic illustration of the synthesis of hollow MoSe2/Fe3O4 nanospheres for combined DOX drug delivery and CT/MR imaging [78](A) Schematic representation of MoSe2 and MoSe2/Fe3O4 nanomaterials; (B—E) TEM images of M-1 to M-4, respectively; (F) UV-Vis spectra of the four samples; (G) XRD pattern of M-2; (H) highlighted HRTEM image of M-2; (I) TEM image of MF-2; (J—M) HAADF-STEM image of MF-2 and the corresponding STEM-EDX elemental mapping images for Mo, Se and Fe; (N) XRD patterns of sample MF-1, MF-2 and MF-3; (O) highlighted HRTEM of MF-2; (P) SAED image of MF-2.
1 | Kreyling W. G., Semmler⁃Behnke M., Chaudhry Q., Nano Today, 2010, 5(3), 165—168 |
2 | Zhang H., Adv. Mater., 2020, 32(3), 1806328 |
3 | Song G., Wang Q., Wang Y., Lv G., Li C., Zou R., Chen Z., Qin Z., Huo K., Hu R., Adv. Funct. Mater., 2013, 23(35), 4281—4292 |
4 | Arabi M., Ghaedi M., Ostovan A., ACS Sustainable Chem. Eng., 2017, 5(5), 3775—3785 |
5 | Kapil A., Aggarwal G., Harikumar S., J. Drug Delivery Sci. Technol., 2014, 4(5), 21—28 |
6 | Singh R., Sharma A., Saji J., Umapathi A., Kumar S., Daima H. K., Nano Convergence, 2022, 9(1), 21 |
7 | Lim J., Lee Y. Y., Choy Y. B., Park W., Park C. G., Biomed. Eng. Lett., 2021, 11, 197—210 |
8 | Li Y., Shi J., Adv. Mater., 2014, 26(20), 3176—3205 |
9 | Wei R., Xu Y., Xue M., J. Mater. Chem. B, 2021, 9(8), 1965—1979 |
10 | Li Z., Xu K., Qin L., Zhao D., Yang N., Wang D., Yang Y., Adv. Mater., 2022,2203890 |
11 | Li Z., Xu K., Qin L., Zhao D., Yang N., Wang D., Yang Y., Adv. Mater., 2023, 35(12), 2203890 |
12 | Zhao D., Yang N., Xu L., Du J., Yang Y., Wang D., Nano Res., 2022, 1—19 |
13 | Chen J. F., Ding H. M., Wang J. X., Shao L., Biomaterials, 2004, 25(4), 723—727 |
14 | Shin J., Anisur R. M., Ko M. K., Im G. H., Lee J. H., Lee I. S., Angew. Chem. Int. Ed., 2009, 48(2), 321—324 |
15 | Gupta S., Singh I., Sharma A. K., Kumar P., Front. Bioeng. Biotechnol., 2020, 8, 504 |
16 | Teng Z., Su X., Zheng Y., Zhang J., Liu Y., Wang S., Wu J., Chen G., Wang J., Zhao D., J. Am. Chem. Soc., 2015, 137(24), 7935—7944 |
17 | She X., Chen L., Li C., He C., He L., Kong L., J. Nanomater., 2015, 16(1), 108 |
18 | Shi X., Wang S. H., Swanson S. D., Ge S., Cao Z., Van Antwerp M. E., Landmark K. J., Baker Jr J. R., Adv. Mater., 2008, 20(9), 1671—1678 |
19 | Gao X., Wei M., Ma D., Yang X., Zhang Y., Zhou X., Li L., Deng Y., Yang W., Adv. Funct. Mater., 2021, 31(52), 2106700 |
20 | Cheng M., Yu Y., Huang W., Fang M., Chen Y., Wang C., Cai W., Zhang S., Wang W., Yan W., ACS Biomater. Sci. Eng., 2020, 6(9), 4985—4992 |
21 | Ning S., Dai X., Tang W., Guo Q., Lyu M., Zhu D., Zhang W., Qian H., Yao X., Wang X., Acta Biomater., 2022, 152, 562—574 |
22 | Li W., Liu J., Zhao D., Nat. Rev. Mater., 2016, 1(6), 1—17 |
23 | Chen Y., Chen H., Zeng D., Tian Y., Chen F., Feng J., Shi J., ACS Nano, 2010, 4(10), 6001—6013 |
24 | Huang R., Shen Y. W., Guan Y. Y., Jiang Y. X., Wu Y., Rahman K., Zhang L. J., Liu H. J., Luan X., Acta Biomater., 2020, 116, 1—15 |
25 | Shi S., Chen F., Cai W., Nanomedicine, 2013, 8(12), 2027—2039 |
26 | Li Y., Li N., Pan W., Yu Z., Yang L., Tang B., ACS Appl. Mater. Interfaces, 2017, 9(3), 2123—2129 |
27 | Geng H., Chen W., Xu Z. P., Qian G., An J., Zhang H., Chem⁃Eur J., 2017, 23(45), 10878—10885 |
28 | Itou N., Masukawa T., Ozaki I., Hattori M., Kasai K., Colloid Surface A, 1999, 153, 311—316 |
29 | Zhang C., Yang D., Zhang T., Qiu F., Dai Y., Xu J., Jing Z., J. Cleaner Prod., 2017, 148, 398—406 |
30 | Bentz K. C., Savin D. A., Polym. Chem., 2018, 9(16), 2059—2081 |
31 | Kamaly N., Yameen B., Wu J., Farokhzad O. C., Chem. Rev., 2016, 116(4), 2602—2663 |
32 | Liang S., Liu Y., Jin X., Liu G., Wen J., Zhang L., Li J., Yuan X., Chen I. S., Chen W., Nano Res., 2016, 9, 1022—1031 |
33 | Yang X., Chen L., Huang B., Bai F., Yang X., Polymer, 2009, 50(15), 3556—3563 |
34 | Ke C. J., Lin Y. J., Hu Y. C., Chiang W. L., Chen K. J., Yang W. C., Liu H. L., Fu C. C., Sung H. W., Biomaterials, 2012, 33(20), 5156—5165 |
35 | Zhang Q., Zhang K., Xu D., Yang G., Huang H., Nie F., Liu C., Yang S., Prog. Mater Sci., 2014, 60, 208—337 |
36 | Kannan K., Radhika D., Sadasivuni K. K., Reddy K. R., Raghu A. V., Science I., Adv. Colloid Interface Sci., 2020, 281, 102178 |
37 | Sun Y. G., Piao J. Y., Hu L. L., Bin D. S., Lin X. J., Duan S. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2018, 140(29), 9070—9073 |
38 | Figuerola A., Di Corato R., Manna L., Pellegrino T., Pharmacol. Res., 2010, 62(2), 126—143 |
39 | Hajipour P., Eslami A., Bahrami A., Hosseini⁃Abari A., Saber F. Y., Mohammadi R., Mehr M. Y., Ceram. Int., 2021, 47(23), 33875—33885 |
40 | Lin L. Y., Karakocak B. B., Kavadiya S., Soundappan T., Biswas P., Sensor Actuat B: Chem., 2018, 259, 745—752 |
41 | Wang H., Wang W., Liu L., Wang M., Li G., Li H., Li B., Yu S., Ma D., Xue W., ACS Appl. Mater. Interfaces, 2021, 13(48), 57009—57022 |
42 | Xing R., Bhirde A. A., Wang S., Sun X., Liu G., Hou Y., Chen X., Nano Res., 2013, 6, 1—9 |
43 | Yu X. Y., Yu L., Lou X. W., Adv. Energy Mater., 2016, 6(3), 1501333 |
44 | Park J. S., Yang S. Y., Lee J. K., Kang Y. C., J. Mater. Chem. A, 2022, 10(34), 17790—17800 |
45 | Zhou H., Lv Z., Liu H., Liang M., Liu B., Guo H., Electrochim. Acta, 2017, 250, 376—383 |
46 | Fu J., Bie C., Cheng B., Jiang C., Yu J., Engineering, ACS Sustainable Chem. Eng., 2018, 6(2), 2767—2779 |
47 | Nan Z. A., Wang Y., Chen Z. X., Yuan S. F., Tian Z. Q., Wang Q. M., Commun. Chem., 2018, 1(1), 99 |
48 | Ding H., Yong J., Zhang J., Chen B., Ding B., Wang X., Ceram. Int., 2022, 48(11), 16085—16090 |
49 | Ma X., Zhang X., Yang L., Wang G., Jiang K., Wu G., Cui W., Wei Z., Nanoscale, 2016, 8(16), 8687—8695 |
50 | Boopathy A. V., Mandal A., Kulp D. W., Menis S., Bennett N. R., Watkins H. C., Wang W., Martin J. T., Thai N. T., He Y., PNAS, 2019, 116(33), 16473—16478 |
51 | Qiu M., Wang D., Liang W., Liu L., Zhang Y., Chen X., Sang D. K., Xing C., Li Z., Dong B., PNAS, 2018, 115(3), 501—506 |
52 | Zhao D., Wei Y., Jin Q., Yang N., Yang Y., Wang D., Angew. Chem. Int. Ed., 2022, 61(36), e202206807 |
53 | Zhao D., Yang N., Wei Y., Jin Q., Wang Y., He H., Yang Y., Han B., Zhang S., Wang D., Nat. Commun., 2020, 11(1), 4450 |
54 | Wu L., Zhang H., Wu M., Zhong Y., Liu X., Jiao Z., Micropor. Mesopor. Mater., 2016, 228, 318—328 |
55 | Guo W., Chen Z., Chen J., Feng X., Yang Y., Huang H., Liang Y., Shen G., Liang Y., Peng C., J. Nanobiotechnol., 2020, 18, 1—18 |
56 | Wang J., Chen D., Ho E., J. Controlled Release, 2021, 329, 894—906 |
57 | Peng H., Ji W., Zhao R., Yang J., Lu Z., Li Y., Zhang X., J. Mater. Chem. B, 2020, 8(34), 7591—7608 |
58 | Dad H. A., Gu T., Zhu A., Huang L., Peng L., Mol. Ther., 2021, 29(1), 13—31 |
59 | Yuan A., Ruan L., Jia R., Wang X., Wu L., Cao J., Qi X., Wei Y., Shen S., ACS Appl. Nano Mater., 2021, 5(1), 996—1002 |
60 | Zhao T., Wang P., Li Q., Al‐Khalaf A. A., Hozzein W. N., Zhang F., Li X., Zhao D., Angew. Chem. Int. Ed., 2018, 57(10), 2611—2615 |
61 | Li X., Zhao W., Liu X., Chen K., Zhu S., Shi P., Chen Y., Shi J., Acta Biomater., 2016, 30, 378—387 |
62 | Zhang J., Lin Y., Lin Z., Wei Q., Qian J., Ruan R., Jiang X., Hou L., Song J., Ding J., Adv. Sci., 2022, 9(5), 2103444 |
63 | Ding C., Tong L., Feng J., Fu J., Molecules, 2016, 21(12), 1715 |
64 | Chen Q., Chen Y., Zhang W., Huang Q., Hu M., Peng D., Peng C., Wang L., Chen W., ChemMedChem, 2020, 15(20), 1940—1946 |
65 | Qiu J., Huo D., Xue J., Zhu G., Liu H., Xia Y., Angew. Chem. Int. Ed., 2019, 58(31), 10606—10611 |
66 | Xie J., Liu G., Eden H. S., Ai H., Chen X., Acc. Chem. Res., 2011, 44(10), 883—892 |
67 | Lee D. E., Koo H., Sun I. C., Ryu J. H., Kim K., Kwon I. C., Chem. Soc. Rev., 2012, 41(7), 2656—2672 |
68 | Guo Z., Chen M., Peng C., Mo S., Shi C., Fu G., Wen X., Zhuang R., Su X., Liu T., Biomaterials, 2018, 179, 134—143 |
69 | Biffi S., Voltan R., Rampazzo E., Prodi L., Zauli G., Secchiero P., Expert Opin. Drug Del., 2015, 12(12), 1837—1849 |
70 | Mieszawska A. J., Mulder W. J., Fayad Z. A., Cormode D. P., Mol. Pharmaceutics, 2013, 10(3), 831—847 |
71 | Ni G., Yang G., He Y., Li X., Du T., Xu L., Zhou S., Chem. Eng. J., 2020, 379, 122317 |
72 | Yang L., Hu B., Liu A. H., Zhang Y., Talanta, 2020, 215, 120893 |
73 | Xu X., Duan J., Liu Y., Kuang Y., Duan J., Liao T., Xu Z., Jiang B., Li C., Acta Biomater., 2021, 126, 445—462 |
74 | Lv K., Lin H., Qu F., Chem. Eng. J., 2020, 392, 124555 |
75 | Giardino A., Gupta S., Olson E., Sepulveda K., Lenchik L., Ivanidze J., Rakow⁃Penner R., Patel M. J., Subramaniam R. M., Ganeshan D., Acad. Radiol., 2017, 24(5), 639—649 |
76 | Yang X., Chen L., Han B., Yang X., Duan H., Polymer, 2010, 51(12), 2533—2539 |
77 | Liang S., Liao G., Zhu W., Zhang L., Biomater. Res., 2022, 26(1), 1—21 |
78 | Wang Y., Zhang F., Lin H., Qu F., ACS Appl. Mater. Interfaces, 2019, 11(47), 43964—43975 |
79 | Geng B., Xu S., Li P., Li X., Fang F., Pan D., Shen L., Small, 2022, 18(6), 2103528 |
80 | Liu T., Sun L., Zhang Y., Wang Y., Zheng J., J. Biochem. Mol. Toxicol., 2022, 36(1), e22942 |
81 | Di Rosanna P., Salvatore C., Curr. Pharm. Des., 2012, 18(26), 3889—3900 |
82 | Sho T., Xu J., Biotechnol. Appl. Biochem., 2019, 66(1), 4—13 |
83 | Tian Q., Xue F., Wang Y., Cheng Y., An L., Yang S., Chen X., Huang G., Nano Today, 2021, 39, 101162 |
84 | Liang Z., Liu W., Wang Z., Zheng P., Liu W., Zhao J., Zhong Y., Zhang Y., Lin J., Xue W., Acta Biomater., 2022, 143, 428—444 |
85 | Song G., Chao Y., Chen Y., Liang C., Yi X., Yang G., Yang K., Cheng L., Zhang Q., Liu Z., Adv. Funct. Mater., 2016, 26(45), 8243—8254 |
86 | Li X., Liu Y., Qi X., Xiao S., Xu Z., Yuan Z., Liu Q., Li H., Ma S., Liu T., Adv. Mater., 2022, 34(19), 2109004 |
[1] | 李瑞松, 苗政培, 李静, 田新龙. 中空贵金属纳米材料氧还原催化的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220730. |
[2] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[3] | 沈欣怡, 张森, 王树涛, 宋永杨. 聚合物中空微球的合成策略[J]. 高等学校化学学报, 2023, 44(1): 20220627. |
[4] | 叶祖洋, 殷亚东. 基于刻蚀反应的纳米结构空心化[J]. 高等学校化学学报, 2023, 44(1): 20220656. |
[5] | 王慧, 赵德偲, 杨乃亮, 王丹. 智能中空药物载体的门控设计[J]. 高等学校化学学报, 2023, 44(1): 20220237. |
[6] | 刘双红, 夏思玉, 刘世奇, 李旻, 孙嘉杰, 钟永, 张锋, 白锋. 中空全固态Z型异质结光催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220512. |
[7] | 朱科润, 任雯萱, 张威, 李伟. 单分散中空介孔结构的盐模板合成及形貌调控[J]. 高等学校化学学报, 2023, 44(1): 20220607. |
[8] | 张钤, 刘雅薇, 王帆, 刘凯, 张洪杰. 稀土纳米材料在高分辨活体成像及诊疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220552. |
[9] | 章丽玲, 刘浏, 郑明秋, 方文凯, 刘达, 唐宏武. 基于上转换发光共振能量转移的CRISPR/Cas12a生物传感系统用于HPV16 DNA双信号检测[J]. 高等学校化学学报, 2022, 43(11): 20220412. |
[10] | 丁中振, 李天, 李长明, 赵宇飞, 宋宇飞. 水滑石基催化剂催化合成碳纳米材料的研究进展[J]. 高等学校化学学报, 2021, 42(6): 1622. |
[11] | 王常耀, 王帅, 段林林, 朱晓航, 张兴淼, 李伟. 原位限域生长策略制备有序介孔碳负载的超小MoO3纳米颗粒[J]. 高等学校化学学报, 2021, 42(5): 1589. |
[12] | 杨瑞琪, 于欣, 刘宏. 四氧化三锡基光催化纳米材料的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1340. |
[13] | 葛浩英, 杜健军, 龙飒然, 孙文, 樊江莉, 彭孝军. 功能化金纳米材料在肿瘤诊疗中的研究与应用[J]. 高等学校化学学报, 2021, 42(4): 1202. |
[14] | 佘沛鸿, 徐文洲, 关卜源. 大孔道介孔氧化硅/碳基纳米材料的设计合成与应用[J]. 高等学校化学学报, 2021, 42(3): 671. |
[15] | 郑海娇, 姜丽艳, 贾琼. 精氨酸功能化磁性纳米材料的制备及在磷酸化肽富集中的应用[J]. 高等学校化学学报, 2021, 42(3): 717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||