高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220512.doi: 10.7503/cjcu20220512
刘双红1, 夏思玉1, 刘世奇1, 李旻1, 孙嘉杰2, 钟永1(), 张锋3(
), 白锋1(
)
收稿日期:
2022-08-02
出版日期:
2023-01-10
发布日期:
2022-09-06
通讯作者:
钟永,张锋,白锋
E-mail:yzhong@henu.edu.cn;hbzhangfeng1977@163.com;10330010@henu.edu.cn
基金资助:
LIU Shuanghong1, XIA Siyu1, LIU Shiqi1, LI Min1, SUN Jiajie2, ZHONG Yong1(), ZHANG Feng3(
), BAI Feng1(
)
Received:
2022-08-02
Online:
2023-01-10
Published:
2022-09-06
Contact:
ZHONG Yong, ZHANG Feng, BAI Feng
E-mail:yzhong@henu.edu.cn;hbzhangfeng1977@163.com;10330010@henu.edu.cn
Supported by:
摘要:
中空结构材料由于比表面积大、 密度低和电荷传输距离短等特点, 在光催化反应中具有巨大的应用价值. Z型光催化剂具有宽光谱响应、 高稳定性、 高光生载流子的分离效率以及强氧化还原能力等优点, 受到了广泛关注. 然而, 由于Z型多元组分和中空结构不稳定, 设计并制备高效稳定的中空全固态Z型光催化剂仍是一大挑战. 本文综合评述了近年来中空全固态Z型光催化剂的种类、 构筑策略及性能等方面的研究进展, 并进一步展望了其在未来应用中面临的问题与挑战, 最后归纳总结了其设计与发展方向, 为高效稳定光催化剂的设计提供了思路.
中图分类号:
TrendMD:
刘双红, 夏思玉, 刘世奇, 李旻, 孙嘉杰, 钟永, 张锋, 白锋. 中空全固态Z型异质结光催化剂的研究进展. 高等学校化学学报, 2023, 44(1): 20220512.
LIU Shuanghong, XIA Siyu, LIU Shiqi, LI Min, SUN Jiajie, ZHONG Yong, ZHANG Feng, BAI Feng. Current Advances of Hollow All-solid-state Z-Scheme Photocatalysts. Chem. J. Chinese Universities, 2023, 44(1): 20220512.
Fig.1 Charge transfer routes of different photocatalytic systems[39](A) Single particulate photocatalyst; (B) type-I heterojunction; (C) type-II heterojunction; (D) Z-scheme system with redox mediator; (E) all-solid Z-scheme system. Copyright 2018, Wiley-VCH.
Fig.3 Schematic illustration of the formation the hollow structure[53](A) Template strategy; (B) ion exchange; (C) ostwald ripening; (D) kirkendall effect.Copyright 2015, the Royal Society of Chemistry.
Fig.4 Construction of hollow monolayer all⁃solid⁃state Z⁃scheme heterojunction(A) Schematic illustration of the fabrication of In2O3@ZnFe2O4 heterojunctions[68]; (B) schematic illustration of the formation of the Z-scheme Co3O4@CoFe2O4 hierarchical hollow nanoboxes[69]; (C—E) the photocatalytic mechanism of MoSe2/CdSe heterostructure with different lights irradiation[74].(A) Copyright 2019, the Royal Society of Chemistry; (B) Copyright 2021, Elsevier; (C—E) Copyright 2019, Elsevier.
Fig.5 Construction of hollow dual all⁃solid⁃state Z⁃scheme heterojunction(A) Schematic illustration of the synthesis of MoSe2@Bi2S3/CdS dual Z-Scheme heterojunction; (B) the HRTEM images of MS@BS/CS; (C) the schematic diagram of photocatalytic applications by MS@BS/CS dual Z-Scheme heterojunction[76]; (D) schematic illustration of the synthesis of hollow dodecahedral ZnIn2S4@K3PW12O40@ZnIn2S4/Ag2S superstructure nanoreactors; (E) schematic diagram of the possible mechanism of dual ZIS@HD-KPW@ZIS/AS[77].(A—C) Copyright 2021, Elsevier; (D, E) Copyright 2022, the Royal Society of Chemistry.
Fig.6 Construction of double⁃shelled all⁃solid⁃state Z⁃scheme heterojunction[80]TEM(A, C) and HRTEM(B, D) images of S-CMH(A, B) and D-CMH(C, D); the photoreaction processes with CP(E) and D-CMH(F, G); (G) the magnified diagram for the shell of (F). Copyright 2020, the Royal Society of Chemistry.
Fig.7 Construction of yolk⁃shell hollow all⁃solid⁃state Z⁃scheme heterojunction(A) Nanostructure engineering in photocatalysts[81]; (B) schematic representation of the synthesis of IBO[81]; (C) schematic diagram of the synthesis of CCS@3B-TiO2[84]; (D) CO2 photoreduction mechanism on CCS@3B-TiO2[84].(A, B) Copyright 2021, Elsevier; (C, D) Copyright 2020, Elsevier.
Fig.8 Construction of sugar⁃gourd⁃shaped hollow all⁃solid⁃state Z⁃scheme heterojunction[87](A) TEM image; (B) HRTEM image; (C) corresponding SAED pattern; STEM(D) and STEM-EDS elemental mapping images for Cd(E), S(F) and Co(G) elements of the as-prepared CCS-2 HHNSs; (H) photocatalytic H2 evolution rates on various samples; (I) schematic illustration of the charge transfer pathway in the CCS HHNSs. Copyright 2020, Elsevier.
Fig.9 Fabrication of g⁃C3N4/Au/C⁃TiO2 hollow all⁃solid⁃state Z⁃scheme photocatalytic system[91]TEM images Au/C-TiO2(A) and g-C3N4/Au/C-TiO2(B); (C) the corresponding HRTEM images of (B); the average H2 production rates(D) and photocurrent response(E) of C-TiO2, g-C3N4, TCN, ACN, and TACN-x; (F) mechanism of the photoexcited electron-hole separation and transport processes at the g-C3N4/Au/C-TiO2 interface. Copyright 2020, Wiley-VCH.
Fig.10 Fabrication of STO:La/Rh⁃BVO hollow all⁃solid⁃state Z⁃scheme photocatalytic system[101]TEM images of STO:La/Rh HSs(A) and STO:La/Rh HoMSs(B); (C) UV-Vis absorption spectra; (D) photocurrent responses of samples; (E) photocatalytic overall water splitting performances; (F) Proposed Z-scheme mechanism for STO:La/Rh-BVO composites. Copyright 2021, Wiley-VCH.
Photocatalyst | Strategy | Application | Electron transfer pathway | Ref. |
---|---|---|---|---|
g⁃C3N4/Au/C⁃TiO2 | Hard template⁃carbon colloidal spheres | H2 production(129.0 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
SrTiO3:La/Rh/GR/BiVO4 | Hard template⁃carbon colloidal spheres | H2 production(462 μmol·h-1·g-1) O2 production(223 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
Cu2O@CuCo2O4 | Self⁃template | Oxidation of chlorote⁃tracycline(CTC) and reduction of nitrobenzene(NB) | Direct Z⁃scheme | [ |
MoSe2/CdSe | Template⁃free⁃Kirkendall effect | H2 production(7120.0 μmol·h-1·g-1) O2 production(348.0 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
InVO4/CeVO4 | Template⁃free⁃Kirkendall effect | Degradation of TC | Direct Z⁃scheme | [ |
In2O3@ZnFe2O4 | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Direct Z⁃scheme | [ |
Co3O4@CoFe2O4 | Hard template⁃ZIF⁃67 | Reduction of CO2, CH4 2.06 μmol·h-1·g-1 CO 72.2 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CuInS2@C3N4 | Hard template⁃SiO2 spheres | H2 production(373 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
SnS2/SnS | Hard template⁃MnCO3 microboxes | Degradation of cyanide, Reduction of Cr(Ⅵ) | Direct Z⁃scheme | [ |
g⁃C3N4@a⁃Fe2O3/Co⁃Pi | Hard template⁃SiO2 spheres | H2 production(450 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
In2O3⁃Bi2O3 | Hard template⁃InBi⁃MOFs | H2 production(22.73 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
CuCo2S4/3B⁃TiO2 | Template free⁃ion exchange | Reduction of CO2, CH4 4.22 μmol·h-1·g-1 CO 2.55 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CdS/Co1-xS | Hard template⁃ZIF⁃67 | H2 production(13.48 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
Co9S8/CdS | Hard template⁃ZIF⁃67 | H2 production(15.0 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
ZnIn2S4@K3PW12O40/ZnIn2S4/Ag2S | Template free⁃ion exchange | Degradation of TC, H2 production (2107.3 μmol·h-1·g-1) | Dual Z⁃scheme | [ |
In2O3/TiO2/Cu2O | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Type⁃II⁃Z⁃scheme | [ |
MoSe2@Bi2S3/CdS | Soft template⁃PEG | Degradation of TCP/Cr(Ⅵ), H2 production(11.84 mmol·h-1·g-1) | Dual Z⁃scheme | [ |
Table 1 Applications of hollow all-solid-state Z-scheme photocatalysts
Photocatalyst | Strategy | Application | Electron transfer pathway | Ref. |
---|---|---|---|---|
g⁃C3N4/Au/C⁃TiO2 | Hard template⁃carbon colloidal spheres | H2 production(129.0 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
SrTiO3:La/Rh/GR/BiVO4 | Hard template⁃carbon colloidal spheres | H2 production(462 μmol·h-1·g-1) O2 production(223 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
Cu2O@CuCo2O4 | Self⁃template | Oxidation of chlorote⁃tracycline(CTC) and reduction of nitrobenzene(NB) | Direct Z⁃scheme | [ |
MoSe2/CdSe | Template⁃free⁃Kirkendall effect | H2 production(7120.0 μmol·h-1·g-1) O2 production(348.0 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
InVO4/CeVO4 | Template⁃free⁃Kirkendall effect | Degradation of TC | Direct Z⁃scheme | [ |
In2O3@ZnFe2O4 | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Direct Z⁃scheme | [ |
Co3O4@CoFe2O4 | Hard template⁃ZIF⁃67 | Reduction of CO2, CH4 2.06 μmol·h-1·g-1 CO 72.2 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CuInS2@C3N4 | Hard template⁃SiO2 spheres | H2 production(373 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
SnS2/SnS | Hard template⁃MnCO3 microboxes | Degradation of cyanide, Reduction of Cr(Ⅵ) | Direct Z⁃scheme | [ |
g⁃C3N4@a⁃Fe2O3/Co⁃Pi | Hard template⁃SiO2 spheres | H2 production(450 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
In2O3⁃Bi2O3 | Hard template⁃InBi⁃MOFs | H2 production(22.73 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
CuCo2S4/3B⁃TiO2 | Template free⁃ion exchange | Reduction of CO2, CH4 4.22 μmol·h-1·g-1 CO 2.55 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CdS/Co1-xS | Hard template⁃ZIF⁃67 | H2 production(13.48 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
Co9S8/CdS | Hard template⁃ZIF⁃67 | H2 production(15.0 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
ZnIn2S4@K3PW12O40/ZnIn2S4/Ag2S | Template free⁃ion exchange | Degradation of TC, H2 production (2107.3 μmol·h-1·g-1) | Dual Z⁃scheme | [ |
In2O3/TiO2/Cu2O | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Type⁃II⁃Z⁃scheme | [ |
MoSe2@Bi2S3/CdS | Soft template⁃PEG | Degradation of TCP/Cr(Ⅵ), H2 production(11.84 mmol·h-1·g-1) | Dual Z⁃scheme | [ |
1 | Zhong Y., Liu S., Wang J., Zhang W., Tian T., Sun J., Bai F., APL Mater., 2020, 8(12), 120706 |
2 | Ni L., Xu G. J., Li C. C., Cui G. L., Exploration, 2022, 2(2), 20210239 |
3 | Wang L., Fan H. Y., Bai F., MRS Bull., 2020, 45(1), 49—56 |
4 | Li Q., Bao Y., Bai F., MRS Bull., 2020, 45(7), 569—573 |
5 | Song Y. J., Ji K. Y., Duan H. H., Shao M. F., Exploration, 2021, 1(3), 20210050 |
6 | Zhang N., Wang L., Wang H. M., Cao R. H., Wang J. F., Bai F., Fan H. Y., Nano Lett., 2018, 18(1), 560—566 |
7 | Wang J. F., Zhong Y., Wang L., Zhang N., Cao R. H., Bian K. F., Alarid L., Haddad R. E., Bai F., Fan H. Y., Nano Lett., 2016, 16(10), 6523—6528 |
8 | Tian S. F., Chen S. D., Ren X. T., Cao R. H., Hu H. Y., Bai F., Nano Res., 2019, 12(12), 3109—3115 |
9 | Tian S. F., Chen S. D., Ren X. T., Hu Y. Q., Hu H. Y., Sun J. J., Bai F., Nano Res., 2020, 13(10), 2665—2672 |
10 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
11 | Wang Z. L., Hisatomi T., Li R. G., Sayama K., Liu G., Domen K., Li C., Wang L. Z., Joule, 2021, 5(2), 344—359 |
12 | Fu C. F., Wu X. J., Yang J. L., Adv. Mater., 2018, 30(48), 1802106 |
13 | Wang W. K., Gao M., Zhang X., Fujitsuka M., Majima T., Yu H. Q., Appl. Catal. B, 2017, 205, 165—172 |
14 | Xiong H. L., Wu L. L., Liu Y., Gao T. N., Li K. Q. O., Long Y., Zhang R., Zhang L., Qiao Z. A., Huo Q. S., Ge X., Song S. Y., Zhang H. J., Adv. Energy Mater., 2019, 9(31), 1901634 |
15 | Yu J. G., Yu Y. F., Zhou P., Xiao W., Cheng B., Appl. Catal. B, 2014, 156, 184—191 |
16 | Ismael M., Wu Y., Wark M., New J. Chem., 2019, 43(11), 4455—4462 |
17 | Wang S. B., Zhang X. W., Li S., Fang Y., Pan L., Zou J. J., J. Hazard. Mater., 2017, 331, 235—245 |
18 | Hao Q., Liu Y., Chen T., Guo Q., Wei W., Ni B., ACS Appl. Nano Mater., 2019 , 2, 2308—2316 |
19 | Lin R., Wan J., Xiong Y., Wu K. L., Cheong W. C., Zhou G., Wang D. S., Peng Q., Chen C., Li Y. D., J. Am. Chem. Soc., 2018, 140(29), 9078—9082 |
20 | Dong P. Y., Hou G. H., Xi X. U., Shao R., Dong F., Environ. Sci. Nano, 2017, 4(3), 539—557 |
21 | Ren L. P., Zhou W., Sun B. J., Li H. Z., Qiao P. Z., Xu Y. C., Wu J. X., Lin K., Fu H. G., Appl. Catal. B, 2019, 240, 319—328 |
22 | Sun B. J., Zhou W., Li H. Z., Ren L. P., Qiao P. Z., Xiao F., Wang L., Jiang B. J., Fu H. G., Appl. Catal. B, 2018, 221, 235—242 |
23 | Zhang S., Yi J. J., Chen J. R., Yin Z. L., Tang T., Wei W. X., Cao S. S., Xu H., Chem. Eng. J., 2020, 380, 122583 |
24 | Chen S., Huang D. L., Xu P., Gong X. M., Xue W. J., Lei L., Deng R., Li J., Li Z. H., ACS Catal., 2020, 10(2), 1024—1059 |
25 | Bai S., Jiang J., Zhang Q., Xiong Y. J., Chem. Soc. Rev., 2015, 44(10), 2893—2939 |
26 | Bai S., Jiang W. Y., Li Z. Q., Xiong Y. J., ChemNanoMat, 2015, 1(4), 223—239 |
27 | Yang M., Zhang C. H., Li N. W., Luan D. Y., Yu L., Lou X. W., Adv. Sci., 2022, 9(9), 2105135 |
28 | Wang S. B., Wang Y., Zang S. Q., Lou X. W., Small Methods, 2019, 4(1), 1900586 |
29 | Jiang K. Y., Dai X. C., Yu Y., Mo Q. L., Xiao F. X., J. Phys. Chem. C, 2018, 122(23), 12291—12306 |
30 | Yu W. L., Chen J. X., Shang T. T., Chen L. F., Gu L., Peng T. Y., Appl. Catal. B, 2017, 219, 693—704 |
31 | Ma G. J., Chen S. S., Kuang Y. B., Akiyama S., Hisatomi T., Nakabayashi M., Shibata N., Katayama M., Minegishi T., Domen K., J. Phys. Chem. Lett., 2016, 7(19), 3892—3896 |
32 | Liang Z. Y., Wei J. X., Wang X., Yu Y., Xiao F. X., J. Mater. Chem. A, 2017, 5(30), 15601—15612 |
33 | Xu Q. L., Zhang L. Y., Cheng B., Fan J. J., Yu J. G., Chem, 2020, 6(7), 1543—1559 |
34 | Pan J. Q., Wang P. H., Wang P. P., Yu Q., Wang J. J., Song C. S., Zheng Y. Y., Li C. R., Chem. Eng. J., 2021, 405, 126622 |
35 | Qin Y. Y., Li H., Lu J., Meng F. Y., Ma C. C., Yan Y. S., Meng M. J., Chem. Eng. J., 2020, 384, 123275 |
36 | Hu J. Q., Zhang F., Yang Y., Han Q. T., Li Z. S., Shen Q., Zhang Y. C., Zhou Y., Zou Z. G., Catal. Sci. Technol., 2020, 10(12), 3843—3847 |
37 | Li H. L., Chen Y. J., Li L., Liu H., Jiang H. Y., Du L. Z., Tian G. H., ChemCatChem, 2020, 12(12), 3223—3229 |
38 | Zhong M., Ma Y. H., Oleynikov P., Domen K., Delaunay J. J., Energy Environ. Sci., 2014 , 7(5), 1693—1699 |
39 | Xiao M., Wang Z. L., Lyu M. Q., Luo B., Wang S. C., Liu G., Cheng H. M., Wang L. Z., Adv. Mater., 2019, 31(38), 1801369 |
40 | Zuo G. C., Wang Y. T., Teo W. L., Xian Q. M., Zhao Y. L., Appl. Catal. B, 2021, 291, 120126 |
41 | Chen X. J., Wang J., Chai Y. Q., Zhang Z. J., Zhu Y. F., Adv. Mater., 2021, 33(7), 2007479 |
42 | She X. J., Wu J. J., Xu H., Zhong J., Wang Y., Song Y. H., Nie K. Q., Liu Y., Yang Y. C., Rodrigues M. T. F., Vajtai R., Lou J., Du D. L., Li H. M., Ajayan P. M., Adv. Energy Mater., 2017, 7(17), 1700025 |
43 | Ma Y. Y., Jiang X., Sun R. X., Yang J. L., Jiang X. L., Liu Z. Q., Xie M. Z., Xie E. Q., Han W. H., Chem. Eng. J., 2020, 382, 123020 |
44 | Du X., Zhao T. Y., Xiu Z. Y., Xing Z. P., Li Z. Z., Pan K., Yang S. L., Zhou W., Appl. Mater. Today, 2020, 20, 100719 |
45 | Zhao D. M., Wang Y. Q., Dong C. L., Huang Y. C., Chen J., Xue F., Shen S. H., Guo L. J., Nat. Energy, 2021, 6(4), 388—397 |
46 | Zhang P., Lou X. W., Adv. Mater., 2019, 31(29), 1900281 |
47 | Gao L., Chen Z., Zheng H., Hu J., Mater. Today Chem., 2022, 24, 100800 |
48 | Wei S. H., Chang S. F., Qian J., Xu X. X., Small, 2021, 17(11), 2100084 |
49 | Dong S. Y., Cui L. F., Zhang W., Xia L. J., Zhou S. J., Russell C. K., Fan M. H., Feng J. L., Sun J. H., Chem. Eng. J., 2020, 384, 123279 |
50 | Pan J. Q., Wang P. H., Chen Z. F., Yu Q., Wang P. P., Zhu M., Zhao W. J., Wang J. J., Zheng Y. Y., Li C. R., Mater. Today Chem., 2021, 21, 100528 |
51 | Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012, 5(2), 5604—5618 |
52 | Yu L., Yu X. Y., Lou X. W., Adv. Mater., 2018, 30(38), 1800939 |
53 | Nguyen C. C., Vu N. N., Do T. O., J. Mater. Chem. A, 2015, 3(36), 18345—18359 |
54 | Wang J. L., Wang X. Q., Chen Q. H., Xu H. L., Dai M., Zhang M., Wang W. Y., Song H., Appl. Surf. Sci., 2021, 535, 147641 |
55 | Ma X. Z., Wang X. Y., Yu C. L., Song Y., Liang J., Min Q. W., Zhang F., J. Alloys Compd., 2019, 773, 352—360 |
56 | Xu Y., Wen W., Tang M. Z., Wu J. M., Mater. Chem. Front., 2017, 1(7), 1453—1458 |
57 | Wang F., Sun L. M., Li Y. A., Zhan W. W., Wang X. J., Han X. G., Inorg. Chem., 2018, 57(8), 4550—4555 |
58 | Gao L. J., Li Y. G., Ren J. B., Wang S. F., Wang R. N., Fu G. S., Hu Y., Appl. Catal., B, 2017, 202, 127—133 |
59 | Wang S. B., Zhang X. W., Li S., Fang Y., Pan L., Zou J. J., J. Hazard. Mater., 2017, 331, 235—245 |
60 | Zhang P., Wang S., Guan B. Y., Lou X. W., Energy Environ. Sci., 2019, 12(1), 164—168 |
61 | Zhang L., Niu C. G., Wen X. J., Guo H., Zhao X. F., Huang D. W., Zeng G. M., J. Colloid Interface Sci., 2018, 514, 396—406 |
62 | Chen L., Zhao X., Duan X. G., Zhang J. Q., Ao Z. M., Li P., Wang S. J., Wang Y. X., Cheng S., Zhao H. F., He F. T., Dong P., Zhao C. C., Wang S. B., Sun H. Q., ACS Sustainable Chem. Eng., 2020, 8(38), 14386—14396 |
63 | He F., Wang M., Luo L., Wang Z. X., Peng S. Q., Li Y. X., Appl. Surf. Sci., 2021, 562, 150103 |
64 | Li Y., Zhang D. N., Fan J. J., Xiang Q. J., Chin. J. Catal., 2021, 42(4), 627—636 |
65 | Li H. L., Bao X. L., Wang Z. Y., Zheng Z. K., Wang P., Liu Y. Y., Zhang X. Y., Qin X. Y., Dai Y., Li Y. J., Zou H. L., Huang B. B., Int. J. Hydrogen Energy, 2019, 44(54), 28780—28788 |
66 | Sun Z. Z., Wang W., Chen Q. W., Pu Y. Y., He H., Zhuang W. M., He J. Q., Huang L. M., J. Mater. Chem. A, 2020, 8(6), 3160—3167 |
67 | Zou Y. Y., Guo C. Y., Cao X. L., Zhang L. G., Chen T. X., Guo C., Wang J. D., J. Environ. Chem. Eng., 2021, 9(6), 106270 |
68 | Fei W. H., Song Y., Li N. J., Chen D. Y., Xu Q. F., Li H., He J. H., Lu J. M., Environ. Sci. Nano, 2019, 6(10), 3123—3132 |
69 | Long D., Li X. Y., Yin Z. F., Fan S. Y., Wang P. L., Xu F. Q., Wei L. H., Tadé M. O., Liu S. M., J. Alloy. Compd., 2021, 854, 156942 |
70 | Dong Y. L., Li G., Xu D. Y., Wang Q. W., Yang T. S., Pang S. X., Zhang G. M., Lv L. Y., Xia Y. G., Ren Z. J., Wang P. F., Chem. Eng. J., 2022, 446, 136705 |
71 | Xia C., Xue C. Y., Bian W. X., Liu J., Wang J. J., Wei Y. J., Zhang J. B., ACS Appl. Nano Mater., 2021, 4(3), 2743—2751 |
72 | Xie Q. Y., Zhou H., Lv Z. L., Liu H., Guo H., J. Mater. Chem. A, 2017, 5(13), 6299—6309 |
73 | Yang J., Jing J. F., Zhu Y. F., Adv. Mater., 2021, 33(31), 2101026 |
74 | Wang Y., Zhao J. X., Chen Z., Zhang F., Guo W., Lin H. M., Qu F. Y., Appl. Catal. B, 2019, 244, 76—86 |
75 | Wang M., Tan G. Q., Wang Y., Zhang B. X., Ren H. J., Lv L., Feng S. J., Dang M. Y., J. Alloy. Compd., 2022, 891, 161928 |
76 | Wang K., Xing Z. P., Du M., Zhang S. Y., Li Z. Z., Pan K., Zhou W., Appl. Catal. B, 2021, 281, 119482 |
77 | Wu C. X., Xing Z. P., Fang B., Cui Y. Q., Li Z. Z., Zhou W., J. Mater. Chem. A, 2022, 10, 180—191 |
78 | Hasanvandian F., Shokri A., Moradi M., Kakavandi B., Setayesh S. R., J. Hazard. Mater., 2022, 423, 127090 |
79 | Qiu Y. L., Xing Z. P., Guo M. J., Li Z. Z., Wang N., Zhou W., Appl. Catal. B, 2021, 298, 120628 |
80 | Huo H. L., Liu D., Feng H., Tian Z. H., Liu X., Li A., Nanoscale, 2020, 12(26), 13912—13917 |
81 | Zhang Q. S., Li Y. M., Ren H., Zhai Q. C., Zhang C. L., Cheng L., Chem. Eng. J., 2021, 408, 127267 |
82 | Chen Z. M., Wang J. G., Zhai G. J., An W., Men Y., Appl. Catal. B, 2017, 218, 825—832 |
83 | Sun H., He Q. R., She P., Zeng S., Xu K. L., Li J. Y., Liang S., Liu Z. N., J. Colloid Interface Sci., 2017, 505, 884—891 |
84 | Hasanvandian F., Salmasi M. Z., Moradi M., Saei S. F., Kakavandi B., Setayesh S. R., Chem. Eng. J., 2022, 444, 136493 |
85 | Duan Y. L., Xue J. Q., Dai J. A., Wei Y. R., Wu C., Chang S. H., Ma J., Appl. Surf. Sci., 2022, 592, 153306 |
86 | Li C. Q., Du X., Jiang S., Liu Y., Niu Z. L., Liu Z. Y., Yi S. S., Yue X. Z., Adv. Sci., 2022,2201773 |
87 | Li L., Guo C. F., Shen J. L., Ning J. Q., Zhong Y. J., Hu Y., Chem. Eng. J., 2020, 400, 125925 |
88 | Liu L. Q., Zhang X. N., Yang L. F., Ren L. T., Wang D. F., Ye J. H., Natl. Sci. Rev., 2017, 4(5), 761—780 |
89 | Zhao W., Dong Q., Sun C., Xia D. H., Huang H. B., Yang G., Wang G. X., Leung D. Y. C., Chem. Eng. J., 2021, 409, 128185 |
90 | Ma D. D., Shi J. W., Sun D. K., Zou Y. J., Cheng L. H., He C., Wang H. K., Niu C. M., Wang L. Z., Appl. Catal. B, 2019, 244, 748—757 |
91 | Zou Y. J., Shi J. W., Ma D. D., Fan Z. Y., Niu C. M., Wang L. Z., ChemCatChem, 2017, 9(19), 3752—3761 |
92 | Saha M., Ghosh S., De S. K., Catal. Today, 2020, 340, 253—267 |
93 | Akple M. S., Chimmikuttanda S. P., J. Nanopart. Res., 2018, 20(9), 231—247 |
94 | Liang Y., Chen Y. X., Lin L., Zhao M. J., Zhang L., Yan J., Wang Y., Chen H., Zeng J., Zhang Y. S., New J. Chem., 2020, 44(4), 1579—1587 |
95 | Lu Z. Y., Yu Z. H., Dong J. B., Song M. S., Liu Y., Liu X. L., Ma Z. F., Su H., Yan Y. S., Huo P. W., Chem. Eng. J., 2018, 337, 228—241 |
96 | Wu X. H., Zhang Y. Z., Wu H. D., Guo J., Wu K., Zhang L. F., J. Mater. Sci. ⁃Mater. El., 2021, 32(22), 26241—26257 |
97 | Zhang T. X., Meng F. L., Cheng Y., Dewangan N., Ho G. W., Kawi S., Appl. Catal. B, 2021, 286, 119853 |
98 | Li N., Gao H., Wang X., Zhao S. J., Lv D., Yang G. Q., Gao X. Y., Fan H. K., Gao Y. Q., Ge L., Chin. J. Catal., 2020, 41(3), 426—434 |
99 | Xu X. M., Meng L. J., Dai Y. X., Zhang M., Sun C., Yang S. G., He H., Wang S. M., Li H., J. Hazard. Mater., 2020, 381, 120953 |
100 | Xu X. M., Meng L. J., Luo J., Zhang M. A., Wang Y. T., Dai Y. X., Sun C., Wang Z. Y., Yang S. G., He H., Wang S. B., Appl. Catal. B, 2021, 293, 120231 |
101 | Wei Y. Z., Wan J. W., Wang J. Y., Zhang X., Yu R. B., Yang N. L., Wang D., Small, 2021, 17(22), 2005345 |
102 | Yang Y., Wu J. J., Xiao T. T., Tang Z., Shen J. Y., Li H. J., Zhou Y., Zou Z. G., Appl. Catal. B, 2019, 255, 117771 |
103 | Zheng J. H., Liu X. Y., Zhang L., Chem. Eng. J., 2020, 389, 124339 |
104 | Ding W. C., Lin X., Ma G. H., Lu Q. F., J. Environ. Chem. Eng., 2020, 8(6), 104588 |
105 | Luo J. H., Lin Z. X., Zhao Y., Jiang S. J., Song S. Q., Chin. J. Catal., 2020, 41(1), 122—130 |
106 | Sun Y., Shao S. M., Wang Y. F., Lu W. J., Zhang P. P., Yao Q. Q., Int. J. Hydrogen Energy, 2020, 45(4), 2840—2851 |
107 | Ji Q. J., Yan X. M., Xu J. X., Wang C., Wang L., Sep. Purif. Technol., 2021, 265, 118487 |
108 | Zhang Y., Zhang G. L., Wang Y. T., Ma Z. H., Yang T. Y., Zhang T. H., Zhang Y. H., J. Colloid Interf. Sci., 2021, 596, 342—351 |
109 | Bai F., Bian K. F., Li B. S., Karler C., Bowman A., Fan H. Y., MRS Bull., 2020, 45(2), 135—141 |
110 | Cao R. H., Wang J. H., Li Y. S., Sun J. J., Bai F., Nano Res., 2022, 15(6), 5719—5725 |
111 | Li Q., Zhao N. N., Bai F., MRS Bull., 2019, 44(3), 172—177 |
112 | Cao R. H., Wang G. Y., Ren X. T., Duan P. C., Wang L., Li Y. S., Chen X., Zhu R., Jia Y., Bai F., Nano Lett., 2022, 22(1), 157—163 |
113 | Liu Y. Q., Wang L., Feng H. X., Ren X. T., Ji J. J., Bai F., Fan H. Y., Nano Lett., 2019, 19(4), 2614—2619 |
[1] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[2] | 沈欣怡, 张森, 王树涛, 宋永杨. 聚合物中空微球的合成策略[J]. 高等学校化学学报, 2023, 44(1): 20220627. |
[3] | 叶祖洋, 殷亚东. 基于刻蚀反应的纳米结构空心化[J]. 高等学校化学学报, 2023, 44(1): 20220656. |
[4] | 朱科润, 任雯萱, 张威, 李伟. 单分散中空介孔结构的盐模板合成及形貌调控[J]. 高等学校化学学报, 2023, 44(1): 20220607. |
[5] | 王慧, 赵德偲, 杨乃亮, 王丹. 智能中空药物载体的门控设计[J]. 高等学校化学学报, 2023, 44(1): 20220237. |
[6] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[7] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[8] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[9] | 赵盈喆, 张建玲. 金属-有机框架基材料在二氧化碳光催化转化中的应用[J]. 高等学校化学学报, 2022, 43(7): 20220223. |
[10] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[11] | 夏雾, 任颖异, 刘京, 王锋. 壳聚糖包裹CdSe量子点组装体的水相可见光催化CO2还原[J]. 高等学校化学学报, 2022, 43(7): 20220192. |
[12] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
[13] | 王广琦, 毕艺洋, 王嘉博, 石洪飞, 刘群, 张钰. 非贵金属三元复合Ni(PO3)2-Ni2P/CdS NPs异质结的构建及可见光高效催化产氢性能[J]. 高等学校化学学报, 2022, 43(6): 20220050. |
[14] | 宋颖颖, 黄琳, 李庆森, 陈立妙. CuO/BiVO4光催化剂的制备及光催化CO2还原性能[J]. 高等学校化学学报, 2022, 43(6): 20220126. |
[15] | 陶雨, 欧鸿辉, 雷永鹏, 熊禹. 单原子催化剂在光催化二氧化碳还原中的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||