高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220237.doi: 10.7503/cjcu20220237
王慧1,2, 赵德偲2(), 杨乃亮2,3(), 王丹1,2,3()
收稿日期:
2022-04-11
出版日期:
2023-01-10
发布日期:
2022-05-14
通讯作者:
赵德偲,杨乃亮,王丹
E-mail:dczhao@ipe.ac.cn;nlyang@ipe.ac.cn;danwang@ipe.ac.cn
基金资助:
WANG Hui1,2, ZHAO Decai2(), YANG Nailiang2,3(), WANG Dan1,2,3()
Received:
2022-04-11
Online:
2023-01-10
Published:
2022-05-14
Contact:
ZHAO Decai, YANG Nailiang, WANG Dan
E-mail:dczhao@ipe.ac.cn;nlyang@ipe.ac.cn;danwang@ipe.ac.cn
Supported by:
摘要:
由于具有独特新颖的结构和广泛的应用领域, 中空材料已成为合成化学和材料化学研究的热点; 特别是其高的表面体积比、 低密度及大空腔等特点, 成为药物递送载体的最佳选择. 通过对中空结构的精确选择和精准修饰, 可赋予中空材料独特的刺激响应行为, 从而实现该类药物载体的智能设计和药物的可控释放. 目前, 构建中空智能载体主有以下两条思路: (1) 利用自身可对环境中的物理化学刺激做出响应的中空材料作 为载体; (2) 在中空载体表面修饰功能性分子, 以实现在特定的刺激下精确控制孔道的“开-关”转换. 其核心 在于分子组成和构型的精准调控. 基于此, 本文综合评述了中空智能载体的可控释放机制. 首先介绍中空药物载体的发展历史, 随后阐述药物分子在中空结构中的扩散规律, 并总结了中空结构载体的智能响应行为、 不同的门控机制、 控制释放原理以及应用前景, 最后对未来的发展做了展望.
中图分类号:
TrendMD:
王慧, 赵德偲, 杨乃亮, 王丹. 智能中空药物载体的门控设计. 高等学校化学学报, 2023, 44(1): 20220237.
WANG Hui, ZHAO Decai, YANG Nailiang, WANG Dan. Gate Keeper in the Smart Hollow Drug Carrier. Chem. J. Chinese Universities, 2023, 44(1): 20220237.
Fig.1 Statistics of published papers and cited numbers with the keywords of “hollow drug carrier”(A) and “hollow smart drug delivery”(B)Data are from the Web of Science.
Fig.2 Design of cationic lipid⁃incorporated liposomes modified with pH⁃sensitive polymer as efficient antigen carriers for induction of antigen⁃specific immune responses(A)[18]and degradable nanocapsules(B)[23](A) Copyright 2014, Elsevier; (B) Copyright2013, Elsevier.
Fig.3 Schematic diagrams of loading and release of 3s⁃CaCO3 HMCN(A)[32] and multi⁃stage drug release of HoMS(B)[33](A) Copyright 2016, the Royal Society of Chemistry; (B) an open access article distributed under the terms of the Creative Commons CC BY license.
Fig.4 Schematic diagrams of preparation and release of HMOCs(A) [34] and release of ibuprofen in carrier with yolk shell structure(B)[35](A) An open access article distributed under the terms of the Creative Commons CC BY license; (B) Copyright 2010, Wiley-VCH.
Fig.5 H⁃MnO2⁃PEG synthesis and pH⁃responsive drug delivery diagram(A)[36] and MCONP synthesis and drug release intention in response to GSH(B)[39](A) An open access article distributed under the terms of the Creative Commons CC BY license; (B) Copyright 2019, the Royal Society of Chemistry.
Fig.6 Schematic diagrams of the construction of targeted tumor therapy drug delivery system based on HMSNs(A)[44] and preparation drug release of pH responsive HMSNs⁃based drug delivery system(B)[46](A) Copyright 2016, the Royal Society of Chemistry; (B) Copyright 2016, Elsevier.
Fig.7 Release of DOX/HMSN⁃SS⁃S⁃CS@PEG in response to GSH and pH(A)[52] and drug delivery system based on GSH response of PHNPs(B)[54](A) Copyright 2016, Elsevier; (B) Copyright 2020, the Royal Society of Chemistry.
Fig.8 Irreversible degradation of coumarin⁃modified MSN under NIR light(A)[55] and schematic diagram of silicone nano⁃platform(HMONs@GOQDs) for combined cancer therapy(B)[57](A) Copyright 2013, the Royal Society of Chemistry; (B) an open access article distributed under the terms of the Creative Commons CC BY license.
Fig.9 Drug release intention of functional MSN to enzyme response(A)[60] and schematic diagram of drug release of GHCNS⁃HA nanoparticles triggered by enzyme response(B)[61](A) Copyright 2015, the Royal Society of Chemistry; (B) Copyright 2016, the Royal Society of Chemistry.
Fig.10 Schematic diagrams of preparation and pH response release mechanism of HMSNS⁃GM⁃CS⁃FA@DOX/PA(A)[67], CHI/SA/HAP hollow particles[68](B), drug release of Au⁃nanocage@mSiO2@PNIPAM controlled by NIR stimulation(C)[82] and pH response of MDNPs(D)[86](A) Copyright 2019, Elsevier; (B) Copyright 2013, the Royal Society of Chemistry; (C) Copyright 2013, American Chemical Society; (D) an open access article distributed under the terms of the Creative Commons CC BY license.
Fig.11 Schematic diagrams of responsive release of PLGA hollow microspheres doped with iron oxide nanoparticles(A)[90] and DOX release in chitosan⁃HMMC⁃NCs triggered by magnetic field(B)[91](A) Copyright 2012, Wiley‐VCH; (B) Copyright 2017, Wiley‐VCH.
Fig.13 Schematic diagrams of reversible release of DNA(A)[93] and PNIPAM modified with azobenzene under ultraviolet⁃visible light(B)[95](A) Copyright 2012, American Chemical Society; (B) Copyright, 2018, American Chemical Society.
1 | Liu C., Li F., Ma L. P., Cheng H. M., Adv. Mater., 2010, 22(8), E28—E62 |
2 | Chaudhuri R. G., Paria S., Chem. Rev., 2012, 112(4), 2373—2433 |
3 | Razaq R., Zhang N. N., Xin Y., Li Q., Wang J., Zhang Z. L., EcoMat, 2020, 2(2), e12020 |
4 | Jiang S., van Dyk A., Maurice A., Bohling J., Fasano D., Brownell S., Chem. Soc. Rev., 2017, 46(12), 3792—3807 |
5 | Huang Z. G., Guo J., Wang X. L., Gao H. Y., Yu J. G., Zhao Y. N., Li G. D., Chem. Res. Chinese Universities, 2015, 31(5), 719—723 |
6 | Wang J. Y., Cui Y., Wang D., Adv. Mater., 2019, 31(38), 1801993 |
7 | Zhu M. Y., Tang J. J., Wei W. J., Li S. J., Mat. Chem. Front., 2020, 4(4), 1105—1149 |
8 | Conley B. M., Pongkulapa T., Lee K. B., Chem., 2020, 6(11), 2875—2877 |
9 | Lin L. S., Song J. B., Yang H. H., Chen X. Y., Adv. Mater., 2018, 30(6), 1704639 |
10 | Popat A., Hartono S. B., Stahr F., Liu J., Qiao S. Z., Lu G. Q., Nanoscale, 2011, 3(7), 2801—2818 |
11 | Wang Z. J., Qi J., Yang N. L., Yu R. B., Wang D., Mat. Chem. Front., 2021, 5(3), 1126—1139 |
12 | Wang J. Y., Yang M., Wang D., Chin. J. Chem., 2022, 40(10), 1190—1203 |
13 | Wang J., Wan J., Yang N., Li Q., Wang D., Nat. Rev. Chem, 2020, 4(3), 159—168 |
14 | Zhao D. C., Yang N. L., Xu L. K., Du J., Yang Y., Wang D., Nano Res., 2022, 15(2), 739—757 |
15 | Fleige E., Quadir M. A., Haag R., Adv. Drug Deliv. Rev., 2012, 64(9), 866—884 |
16 | Liu M., Du H., Zhang W., Zhai G., Mater. Sci. Eng. C⁃Mater. Biol. Appl., 2017, 71,1267—1280 |
17 | Dai Y. N., Su J. Z., Wu K., Ma W. K., Wang B., Li M. X., Sung P. F., Shen Q. M., Wang Q., Fan Q. L., ACS Appl. Mater. Interfaces, 2019, 11(11), 10540—10553 |
18 | Yoshizaki Y., Yuba E., Sakaguchi N., Koiwai K., Harada A., Kono K., Biomaterials, 2014, 35(28), 8186—8196 |
19 | Shim Y. B., Jung H. H., Jang J. W., Yang H. S., Bae H., Park J. C., Choi B., Lee S. H., J. Ind. Eng. Chem., 2016, 37, 101—106 |
20 | Ke C. J., Su T. Y., Chen H. L., Liu H. L., Chiang W. L., Chu P. C., Xia Y., Sung H. W., Angew. Chem. Int. Ed., 2011, 50(35), 8086—8089 |
21 | Liu Y. S., Wu H. L., Jia Z., Du B., Liu D. Y., Zhou Z. M., Chem. J. Chinese Universities, 2019, 40(11), 2419—2426 |
刘垚杉, 吴海林, 贾智, 杜博, 刘大勇, 周志敏. 高等学校化学学报, 2019, 40(11), 2419—2426 | |
22 | Kamaly N., Yameen B., Wu J., Farokhzad O. C., Chem. Rev., 2016, 116(4), 2602—2663 |
23 | Zhao M. X., Hu B. L., Gu Z., Joo K. I., Wang P., Tang Y., Nano Today, 2013, 8(1), 11—20 |
24 | Liang S., Liu Y., Jin X., Liu G., Wen J., Zhang L. L., Li J., Yuan X. B., Chen I. S. Y., Chen W., Wang H., Shi L. Q., Zhu X. Y., Lu Y. F., Nano Res., 2016, 9(4), 1022—1031 |
25 | Li W., Liu J., Zhao D. Y., Nat. Rev. Mater., 2016, 1(6), 16023 |
26 | Zhu Y. F., Shi J. L., Shen W. H., Chen H. R., Dong X. P., Ruan M. L., Nanotechnology, 2005, 16(11), 2633—2638 |
27 | Li J., Shen S. Q., Kong F., Jiang T., Tang C., Yin C. H., RSC Adv., 2018, 8(43), 24633—24640 |
28 | Balas F., Manzano M., Colilla M., Vallet-Regi M., Acta Biomater., 2008, 4(3), 514—522 |
29 | Gu J., Su S., Li Y., He Q., Zhong F., Shi J., J. Phys. Chem. Lett., 2010, 1(24), 3446—3450 |
30 | Li Y. H., Li N., Pan W., Yu Z. Z., Yang L. M., Tang B., ACS Appl. Mater. Interfaces, 2017, 9(3), 2123—2129 |
31 | Jiao Y., Guo J., Shen S., Chang B., Zhang Y., Jiang X., Yang W., J. Mater. Chem., 2012, 22(34), 17636—17643 |
32 | Ma X. M., Zhang X. T., Yang L., Wang G., Jiang K., Wu G., Cui W. G., Wei Z. P., Nanoscale, 2016, 8(16), 8687—8695 |
33 | Zhao D. C., Yang N. L., Wei Y., Jin Q., Wang Y. L., He H. Y., Yang Y., Han B., Zhang S. J., Wang D., Nat. Commun., 2020, 11(1), 4450 |
34 | Li B. Y., Yang X. J., Xia L. L., Majeed M. I., Tan B., Sci. Rep., 2013, 3,6 |
35 | Liu J., Qiao S. Z., Hartono S. B., Lu G. Q., Angew. Chem. Int. Ed., 2010, 49(29), 4981—4985 |
36 | Yang G., Xu L., Chao Y., Xu J., Sun X., Wu Y., Peng R., Liu Z., Nat. Commun., 2017, 8, 902 |
37 | Dong Z., Feng L., Hao Y., Chen M., Gao M., Chao Y., Zhao H., Zhu W., Liu J., Liang C., Zhang Q., Liu Z., J. Am. Chem. Soc., 2018, 140(6), 2165—2178 |
38 | Jia X., Yang Z., Wang Y., Chen Y., Yuan H., Chen H., Xu X., Gao X., Liang Z., Sun Y., Li J. R., Zheng H., Cao R., ChemMedChem, 2018, 13(5), 400—405 |
39 | Ren Q., Yang K., Zou R., Wan Z., Shen Z., Wu G., Zhou Z., Ni Q., Fan W., Hu J., Liu Y., Nanoscale, 2019, 11(47), 23021—23026 |
40 | Zhuang H., Zhao M., Ding S., Liu L., Yuan W., Jiang L., Han X., Jiang L., Yi T., ACS Appl. Mater. Interfaces, 2020, 12(35), 38906—38917 |
41 | Thambi T., Deepagan V. G., Yoo C. K., Park J. H., Polymer, 2011, 52(21), 4753—4759 |
42 | Sawant R. M., Hurley J. P., Salmaso S., Kale A., Tolcheva E., Levchenko T. S., Torchilin V. P., Bioconjugate Chem., 2006, 17(4), 943—949 |
43 | Knorr V., Russ V., Allmendinger L., Ogris M., Wagner E., Bioconjugate Chem., 2008, 19(8), 1625—1634 |
44 | Dai L., Zhang Q., Shen X., Sun Q., Mu C., Gu H., Cai K., J. Mat. Chem. B, 2016, 4(26), 4594—4604 |
45 | Ding M., Song N., He X., Li J., Zhou L., Tan H., Fu Q., Gu Q., ACS Nano, 2013, 7(3), 1918—1928 |
46 | Liu J., Luo Z., Zhang J., Luo T., Zhou J., Zhao X., Cai K., Biomaterials, 2016, 83, 51—65 |
47 | Li Z. Y., Hu J. J., Xu Q., Chen S., Jia H. Z., Sun Y. X., Zhuo R. X., Zhang X. Z., J. Mat. Chem. B, 2015, 3(1), 39—44 |
48 | Lu L. L., Xiong W. Y., Ma J. B., Gao T. F., Peng S. Y., Xiao W., Mater. Chem. Phys., 2019, 233, 230—235 |
49 | Zhao N. N., Lin X. Y., Zhang Q., Ji Z. X., Xu F. J., Small, 2015, 11(48), 6467—6479 |
50 | Zhao Q., Wang S., Yang Y., Li X., Di D., Zhang C., Jiang T., Wang S., Mater. Sci. Eng. C⁃Mater. Biol. Appl., 2017, 78, 475—484 |
51 | Wu M., Meng Q., Chen Y., Zhang L., Li M., Cai X., Li Y., Yu P., Zhang L., Shi J., Adv. Mater., 2016, 28(10), 1963—1969 |
52 | Jiao J., Li X., Zhang S., Liu J., Di D., Zhang Y., Zhao Q., Wang S., Mater. Sci. Eng. C⁃Mater. Biol. Appl., 2016, 67, 26—33 |
53 | Tian Y., Guo R., Jiao Y., Sun Y., Shen S., Wang Y., Lu D., Jiang X., Yang W., Nanoscale Horiz., 2016, 1(6), 480—487 |
54 | Li K., Lu L., Xue C., Liu J., He Y., Zhou J., Xia Z., Dai L., Luo Z., Mao Y., Cai K., Nanoscale, 2020, 12(1), 130—144 |
55 | Ji W., Li N., Chen D., Qi X., Sha W., Jiao Y., Xu Q., Lu J., J. Mat. Chem. B, 2013, 1(43), 5942—5949 |
56 | Park C., Lee K., Kim C., Angew. Chem. Int. Ed., 2009, 48(7), 1275—1278 |
57 | Fan J., Zhang Z., Wang Y., Lin S., Yang S., J. Nanobiotechnol., 2020, 18(1), 91 |
58 | Misra S., Heldin P., Hascall V. C., Karamanos N. K., Skandalis S. S., Markwald R. R., Ghatak S., FEBS J., 2011, 278(9), 1429—1443 |
59 | Nawaz M., Shah N., Zanetti B. R., Maugeri M., Silvestre R. N., Fatima F., Neder L., Valadi H., Cells, 2018, 7(10), 167 |
60 | Liu J. J., Zhang B. L., Luo Z., Ding X. W., Li J. H., Dai L. L., Zhou J., Zhao X. J., Ye J. Y., Cai K. Y., Nanoscale, 2015, 7(8), 3614—3626 |
61 | Liu C., Chen Z., Wang Z., Li W., Ju E., Yan Z., Liu Z., Ren J., Qu X., Nanoscale, 2016, 8(25), 12570—12578 |
62 | Itoh Y., Matsusaki M., Kida T., Akashi M., Biomacromolecules, 2006, 7(10), 2715—2718 |
63 | Liu J., Huang Y. R., Kumar A., Tan A., Jin S. B., Mozhi A., Liang X. J., Biotechnol. Adv., 2014, 32(4), 693—710 |
64 | Qu J., Zhao X., Ma P. X., Guo B. L., Acta Biomater., 2017, 58, 168—180 |
65 | Popat A., Liu J., Lu G. Q., Qiao S. Z., J. Mater. Chem., 2012, 22(22), 11173—11178 |
66 | Deng Z., Zhen Z., Hu X., Wu S., Xu Z., Chu P. K., Biomaterials, 2011, 32(21), 4976—4986 |
67 | Yan T., He J., Liu R., Liu Z., Cheng J., Carbohydr. Polym., 2020, 231, 115706 |
68 | Feng D., Shi J., Wang X., Zhang L., Cao S., RSC Adv., 2013, 3(47), 24975—24982 |
69 | Cui D. C., Lu W. L., Sa E. A., Gu M. J., Lu X. J., Fan T. Y., Int. J. Pharm., 2012, 436(1/2), 527—535 |
70 | Hong C. Y., Li X., Pan C. Y., J. Mater. Chem., 2009, 19(29), 5155—5160 |
71 | Yuan L., Tang Q., Yang D., Zhang J. Z., Zhang F., Hu J., J. Phys. Chem. C, 2011, 115(20), 9926—9932 |
72 | Zhang L., Zhang M., Zhou L., Han Q., Chen X., Li S., Li L., Su Z., Wang C., Biomaterials, 2018, 181, 113—125 |
73 | Paris J. L., Cabanas M. V., Manzano M., Vallet⁃Regi M., ACS Nano, 2015, 9(11), 11023—11033 |
74 | Hoare T., Pelton R., Macromolecules, 2004, 37(7), 2544—2550 |
75 | Ramos J., Imaz A., Forcada J., Polym. Chem., 2012, 3(4), 852—856 |
76 | Kim M. R., Park T. G., J. Control. Release, 2002, 80(1—3), 69—77 |
77 | Ha D. I., Lee S. B., Chong M. S., Lee Y. M., Kim S. Y., Park Y. H., Macromol. Res., 2006, 14(1), 87—93 |
78 | Dreher M. R., Simnick A. J., Fischer K., Smith R. J., Patel A., Schmidt M., Chilkoti A., J. Am. Chem. Soc., 2008, 130(2), 687—694 |
79 | Ganta S., Devalapally H., Shahiwala A., Amiji M., J. Control. Release, 2008, 126(3), 187—204 |
80 | Das S. S., Bharadwaj P., Bilal M., Barani M., Rahdar A., Taboada P., Bungau S., Kyzas G. Z., Polymers, 2020, 12(6), 1397 |
81 | Shi J., Liu X., Sun X., Cao S., Polym. Adv. Technol., 2011, 22(11), 1539—1546 |
82 | Yang J., Shen D., Zhou L., Li W., Li X., Yao C., Wang R., El⁃Toni A. M., Zhang F., Zhao D., Chem. Mat., 2013, 25(15), 3030—3037 |
83 | Jadhav S. A., Scalarone D., Brunella V., Ugazio E., Sapino S., Berlier G., Express Polym. Lett., 2017, 11(2), 96—105 |
84 | Curcio M., Spizzirri U. G., Iemma F., Puoci F., Cirillo G., Parisi O. I., Picci N., Eur. J. Pharm. Biopharm., 2010, 76(1), 48—55 |
85 | Na Y. H., He Y., Shuai X., Kikkawa Y., Doi Y., Inoue Y., Biomacromolecules, 2002, 3(6), 1179—1186 |
86 | Menon J. U., Kuriakose A., Iyer R., Hernandez E., Gandee L., Zhang S., Takahashi M., Zhang Z., Saha D., Nguyen K. T., Sci. Rep., 2017, 7, 13249 |
87 | Pankhurst Q. A., Connolly J., Jones S. K.,Dobson J., J. Phys. D⁃Appl. Phys., 2003, 36(13), R167—R181 |
88 | Mura S., Nicolas J., Couvreur P., Nat. Mater., 2013, 12(11), 991—1003 |
89 | Zanganeh S., Hutter G., Spitler R., Lenkov O., Mahmoudi M., Shaw A., Pajarinen J. S., Nejadnik H., Goodman S., Moseley M., Coussens L. M., Daldrup⁃Link H. E., Nat. Nanotechnol., 2016, 11(11), 986—994 |
90 | Chiang W. L., Ke C. J., Liao Z. X., Chen S. Y., Chen F. R., Tsai C. Y., Xia Y., Sung H. W., Small, 2012, 8(23), 3584—3588 |
91 | Wang H., Mu Q., Revia R., Wang K., Zhou X., Pauzauskie P. J., Zhou S., Zhang M., Adv. Healthc. Mater., 2017, 6(6), 1601080 |
92 | Wang P., Yin T., Li J., Zheng B., Wang X., Wang Y., Zheng J., Zheng R., Shuai X., Nanomed. Nanotechnol. Biol. Med., 2016, 12(4), 1139—1149 |
93 | Yuan Q., Zhang Y., Chen T., Lu D., Zhao Z., Zhang X., Li Z., Yan C. H., Tan W., ACS Nano, 2012, 6(7), 6337—6344 |
94 | Mei X., Yang S., Chen D., Li N., Li H., Xu Q., Ge J., Lu J., Chem. Commun., 2012, 48(80), 10010—10012 |
95 | Wang X. T., Huang T., Law W. C., Cheng C. H., Tang C. Y., Chen L., Gong X. H., Liu Z. F., Long S. J., J. Phys. Chem. C, 2018, 122(5), 3039—3046 |
96 | Sun H., Wang Y., He T., He D., Hu Y., Fu Z., Wang Y., Sun D., Wang J., Liu Y., Shu L., He L., Deng Z., Yang X., J. Nanobiotechnol., 2021, 19(1), 304 |
97 | Yang Y., Lu Y., Abbaraju P. L., Zhang J., Zhang M., Xiang G., Yu C., Angew. Chem. Int. Ed., 2017, 56(29), 8446—8450 |
98 | Huang G., Hua S., Liu H., Zhou H., Chen X., Wang Z., Yu W., Am. J. Transl. Res., 2022, 14(2), 1288—1296 |
[1] | 刘双红, 夏思玉, 刘世奇, 李旻, 孙嘉杰, 钟永, 张锋, 白锋. 中空全固态Z型异质结光催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220512. |
[2] | 朱科润, 任雯萱, 张威, 李伟. 单分散中空介孔结构的盐模板合成及形貌调控[J]. 高等学校化学学报, 2023, 44(1): 20220607. |
[3] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[4] | 沈欣怡, 张森, 王树涛, 宋永杨. 聚合物中空微球的合成策略[J]. 高等学校化学学报, 2023, 44(1): 20220627. |
[5] | 叶祖洋, 殷亚东. 基于刻蚀反应的纳米结构空心化[J]. 高等学校化学学报, 2023, 44(1): 20220656. |
[6] | 王学斌, 薛源, 茆华女, 项艳鑫, 包春燕. 光/还原双重响应水凝胶微球的制备及在细胞三维(3D)培养中的应用[J]. 高等学校化学学报, 2022, 43(8): 20220116. |
[7] | 李佩鸿, 张春玲, 戴雪岩, 隋颜隆. 氧化石墨烯/聚合物复合水凝胶的研究进展[J]. 高等学校化学学报, 2021, 42(6): 1694. |
[8] | 夏嘉豪, 许华平. 含 硒 表 界 面 化 学[J]. 高等学校化学学报, 2021, 42(4): 997. |
[9] | 韩延东, 韩明勇, 杨文胜. 溶胶-凝胶法构筑介孔二氧化硅纳微结构[J]. 高等学校化学学报, 2021, 42(4): 965. |
[10] | 张鑫宇, 王红, 方云, 樊晔. 共轭亚油酸修饰Fe3O4纳米颗粒的刺激响应性[J]. 高等学校化学学报, 2020, 41(11): 2519. |
[11] | 王星火,汤钧,杨英威. 由聚合物门控的介孔二氧化硅基刺激响应性药物递送系统[J]. 高等学校化学学报, 2020, 41(1): 28. |
[12] | 王斌, 王晓红, 段莉梅, 许良, 赵鹏, 菅金鹏, 刘宗瑞. 基于P2Mo18 |
[13] | 徐凯, 李毅, 赵南, 杜文修, 曾炜炜, 高帅, 程晓农, 杨娟. 中空铂镍/三维石墨烯催化剂的制备及电化学性能[J]. 高等学校化学学报, 2016, 37(8): 1476. |
[14] | 罗泽伟, 王益民, 刘坤平, 魏福静, 李玉, 段忆翔. 功能化石墨烯的制备及抗癌药物递送载体的研究[J]. 高等学校化学学报, 2016, 37(10): 1900. |
[15] | 杨年旺, 陈涛, 傅佳骏. 智能纳米容器对缓蚀剂酸/碱双刺激的响应释放性能[J]. 高等学校化学学报, 2014, 35(5): 971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||