高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (12): 3547.doi: 10.7503/cjcu20210639
收稿日期:
2021-09-06
出版日期:
2021-12-10
发布日期:
2021-10-13
通讯作者:
赵丽娜,孙洁
E-mail:zhaolina841015@163.com;jies@tju.edu.cn
基金资助:
HAN Muyao, ZHAO Lina(), SUN Jie()
Received:
2021-09-06
Online:
2021-12-10
Published:
2021-10-13
Contact:
ZHAO Lina,SUN Jie
E-mail:zhaolina841015@163.com;jies@tju.edu.cn
Supported by:
摘要:
硅(Si)具有极高的理论容量、 较低的电压平台和丰富的自然资源, 有成为下一代高能量密度锂离子电池负极材料的潜力. 但Si不同于石墨, 其固有电导率低, 循环过程中体积变化巨大, 不宜直接作为负极材料. 因此出现了许多从维度结构、 复合材料、 黏结剂和电解质等方面改善或适配Si基负极材料的改性方案, 以使其满足商业化的要求. 本文综合评述了近年Si基负极材料的研究进展, 总结了不同方面的设计要素, 介绍了代表性材料的性能表现, 最后, 对目前Si基材料面临的问题进行了简要分析, 并展望了其作为锂离子电池负极的研究前景.
中图分类号:
TrendMD:
韩慕瑶, 赵丽娜, 孙洁. 硅及硅基负极材料的研究进展. 高等学校化学学报, 2021, 42(12): 3547.
HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials. Chem. J. Chinese Universities, 2021, 42(12): 3547.
Fig.2 Morphology characterization and electrochemical properties of Si materials with different dimensions(A—C) Zero-dimensional materials[21]. Copyright 2012, American Chemical Society. (D—F) one-dimensional materials[35]. Copyright 2013, American Chemical Society. (G—I) two-dimensional materials[46]. Copyright 2016, American Chemical Society. (J—L) three-dimensional materials[49]. Copyright 2017, Wiley‐VCH.
Fig.3 HRTEM image of a single Si0.25Ge0.75 nanocolumn(A), EDS line?scan across the nanocolumn(B) and rate capacity of Ge, Si0.25Ge0.75, Si0.5Ge0.5, Si0.75Ge0.25 and Si(C)[65]Copyright 2013, American Chemical Society.
Fig.4 Schematic illustration of Ag nanoparticles forming an interconnected network providing electron pathways from the current collector to the whole surface area of the 3D porous silicon particles(A), voltage profiles of the two electrodes cycled between 0.005?V and 1.0?V(vs. Li+/Li) at a cycling rate of 0.2C: 3D macroporous Si(B) and Ag?coated 3D macroporous Si(C)[75]Copyright 2010, Wiley‐VCH.
Fig.5 Schematic diagram of manufacturing process of Si@a?TiO2(A)[76], pSiMPs coating design and structural evolution in the cycle process(B) and time?lapse images of the lithium process of nC?pSiMPs(C)[78](A) Copyright 2017, Wiley‐VCH. (B,C) Copyright 2015, American Chemical Society.
Fig.6 Prelithiation improving initial Coulomb efficiency(A) Graphical illustration of prelithiation process of c?SiOx electrode [30]. Copyright 2016, American Chemical Society. (B) Schematic diagram of the artificial SEI coating formed by reduction of 1?fluorodecane on the surface of LixSi NPs in cyclohexane [80].Copyright 2015, American Chemical Society.
Fig.7 Schematic diagram of the passivation mechanism of sulfide as part of SEI in the presence of PAA binder[84]Copyright 2019, American Chemical Society.
72 | Sun Y., Lopez J., Lee H. W., Liu N., Zheng G., Wu C. L., Sun J., Liu W., Chung J. W., Bao Z., Cui Y., Adv. Mater.,2016, 28, 2455—2461 |
73 | Wang B., Li X., Qiu T., Luo B., Ning J., Li J., Zhang X., Liang M., Zhi L., Nano Lett., 2013, 13(11), 5578—5584 |
74 | Shen X., Mu D., Chen S., Xu B., Wu B., Wu F., J. Alloys Compd., 2013, 552, 60—64 |
75 | Yu Y., Gu L., Zhu C., Tsukimoto S., van Aken P. A., Maier J., Adv. Mater., 2010, 22(20), 2247—2250 |
76 | Yang J., Wang Y., Li W., Wang L., Fan Y., Jiang W., Luo W., Wang Y., Kong B., Selomulya C., Liu H. K., Dou S. X., Zhao D., Adv. Mater., 2017, 29(48), 1—7 |
77 | Lu Z., Liu N., Lee H. W., Zhao J., Li W. Y., Li Y. Z., Cui Y., ACS Nano,2015, 9(3), 2540—2547 |
78 | Jia H., Zheng J., Song J., Luo L., Yi R., Estevez L., Zhao W., Patel R., Li X., Zhang J. G., Nano Energy, 2018, 50, 589—597 |
79 | Seong I. W., Kim K. T., Yoon W. Y., J. Power Sources, 2009, 189(1), 511—514 |
80 | Zhao J., Lu Z., Wang H., Liu W., Lee H. W., Yan K., Zhuo D., Lin D., Liu N., Cui Y., J. Am. Chem. Soc., 2015, 137(26), 8372—8375 |
81 | Wang X. Y., Liu C., Zhang S. J., Wang H. P., Wang R. Y., Li Y. T., Sun J., ACS Appl. Energy Mater., 2021, 4, 5246—5254 |
82 | Zhan R. M., Wang X. C., Wang Z. H., Seh Z. W., Wang L., Sun Y. M., Adv. Energy Mater.,2021, 11(35), 1—20 |
83 | Komaba S., Yabuuchi N., Ozeki T., Han Z. J., Shimomura K., Yui H., Katayama Y., Miura T., J. Phys. Chem. C,2012, 116(1), 1380—1389 |
84 | Parikh P., Sina M., Banerjee A., Wang X., D’Souza M. S., Doux J. M., Wu E. A., Trieu O. Y., Gong Y., Zhou Q., Snyder K., Meng Y. S., Chem. Mater.,2019, 31(7), 2535—2544 |
85 | Wang S., Duan Q., Lei J., Yu D. Y. W., J. Power Sources, 2020, 468, 228365 |
86 | Chen P., Huang W., Liu H., Cao Z., Yu Y., Liu Y., Shan Z., J. Mater. Sci., 2019, 54(12), 8941—8954 |
87 | Liu T. F., Zhang B., Sheng O. W., Nai J. W., Wang Y., Liu Y. J., Tao X. Y., Chem. J. Chinese Universities, 2021, 42(5), 1446—1463(刘铁峰, 张奔, 盛欧微, 佴建威, 王垚, 刘育京, 陶新永. 高等学校化学学报, 2021, 42(5), 1446—1463) |
88 | Liu G., Xun S., Vukmirovic N., Song X., Olalde⁃Velasco P., Zheng H., Battaglia V. S., Wang L., Yang W., Adv. Mater., 2011, 23(40), 4679—4683 |
89 | Qin D., Xue L., Du B., Wang J., Nie F., Wen L., J. Mater. Chem. A, 2015, 3(20), 10928—10934 |
90 | Li Z. H., Zhang Y. P., Liu T. F., Gao X. H., Li S. Y., Ling M., Liang C. D., Zheng J. C., Lin Z., Adv. Energy Mater., 2020, 10(20), 1903110 |
91 | Zhu G., Yang S., Wang Y., Qu Q., Zheng H., RSC Adv., 2019, 9(1), 435—443 |
92 | Tesemma M., Wang F. M., Haregewoin A. M., Hamidah N. L., Muhammad Hendra P., Lin S. D., Chern C. S., Pham Q. T., Su C. H., ACS Sustain. Chem. Eng., 2019, 7(7), 6640—6653 |
1 | Diouf B., Pode R., Renew. Energy, 2015, 76, 375—380 |
2 | Erickson E. M., Ghanty C., Aurbach D., J. Alloys Compd., 2014, 5(19), 3313—3324 |
3 | Kim T., Park J., Chang S. K., Choi S., Ryu J. H., Song H., Adv. Energy Mater., 2012, 2(7), 860—872 |
4 | Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G., Nat. Mater., 2010, 9(4), 353—358 |
5 | Chen T., Jin Y., Lv H., Yang A., Liu M., Chen B., Xie Y., Chen Q., Trans. Tianjin Univ., 2020, 26(3), 208—217 |
6 | Lee J. K., Oh C., Kim N., Hwang J. Y., Sun Y. K., J. Mater. Chem. A, 2016, 4(15), 5366—5384 |
7 | Wang J., Xu T., Huang X., Li H., Ma T., RSC Adv., 2016, 6(90), 87778—87790 |
8 | Rahman M. A., Song G., Bhatt A. I., Wong Y. C., Wen C., Adv. Funct. Mater., 2016, 26(5), 647—678 |
9 | Li J., Dahn J. R., J. Electrochem. Soc., 2007, 154(3), A156 |
10 | Zuo X., Zhu J., Mueller⁃Buschbaum P., Cheng Y. J., Nano Energy, 2017, 31, 113—143 |
11 | Zhang W. J., J. Power Sources, 2011, 196(1), 13—24 |
12 | Wu H., Cui Y., Nano Today, 2012, 7(5), 414—429 |
13 | Wang D., Gao M., Pan H., Wang J., Liu Y., J. Power Sources, 2014, 256, 190—199 |
14 | Ahn D., Kim C., Lee J. G., Park B., J. Solid State Chem., 2008, 181(9), 2139—2142 |
15 | Lv P., Zhao H., Wang J., Liu X., Zhang T., Xia Q., J. Power Sources, 2013, 237, 291—294 |
16 | Terranova M. L., Orlanducci S., Tamburri E., Guglielmotti V., Rossi M., J. Power Sources, 2014, 246, 167—177 |
17 | Hwa Y., Kim W. S., Hong S. H., Sohn H. J., Electrochim. Acta, 2012, 71, 201—205 |
18 | Wu H., Chan G., Choi J. W., Ryu I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Nat. Nanotechnol., 2012, 7(5), 310—315 |
19 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat. Nanotechnol., 2008, 3(1), 31—35 |
20 | Hertzberg B., Alexeev A., Yushin G., J. Am. Chem. Soc., 2010, 132(25), 8548—8549 |
21 | Liu N., Wu H., McDowell M. T., Yao Y., Wang C., Cui Y., Nano Lett., 2012, 12(6), 3315—3321 |
22 | Li Y., Yan K., Lee H. W., Lu Z., Liu N., Cui Y., Nat. Energy, 2016, 1(2), 1—9 |
23 | Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y., Nano Lett., 2011, 11(7), 2949—2954 |
24 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4(1), 1—6 |
25 | Kwon T., Jeong Y. K., Deniz E., AlQaradawi S. Y., Choi J. W., Coskun A., ACS Nano, 2015, 9(11), 11317—11324 |
26 | Jeong Y. K., Kwon T., Lee I., Kim T. S., Coskun A., Choi J. W., Nano Lett., 2014, 14(2), 864—870 |
27 | Park M. H., Kim M. G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J., Nano Lett., 2009, 9(11), 3844—3847 |
28 | Ling M., Xu Y., Zhao H., Gu X., Qiu J., Li S., Wu M., Song X., Yan C., Liu G., Zhang S., Nano Energy, 2015, 12, 178—185 |
29 | Jaumann T., Balach J., Klose M., Oswald S., Eckert J., Giebeler L., J. Electrochem. Soc., 2016, 163(3), A557—A564 |
30 | Kim H. J., Choi S., Lee S. J., Seo M. W., Lee J. G., Deniz E., Lee Y. J., Kim E. K., Choi J. W., Nano Lett., 2016, 16(1), 282—288 |
31 | Ko M., Chae S., Ma J., Kim N., Lee H. W., Cui Y., Cho J., Nature Energy, 2016, 1(9), 1—8 |
32 | Obrovac M. N., Chevrier V. L., Chem. Rev., 2014, 114(23), 11444—11502 |
33 | Casimir A., Zhang H., Ogoke O., Amine J. C., Lu J., Wu G., Nano Energy, 2016, 27, 359—376 |
34 | Tiwari J. N., Tiwari R. N., Kim K. S., Prog. Mater. Sci., 2012, 57(4), 724—803 |
35 | Wang B., Li X., Zhang X., Luo B., Jin M., Liang M., Dayeh S. A., Picraux S. T., Zhi L., ACS Nano, 2013, 7(2), 1437—1445 |
36 | Lim K. W., Lee J. I., Yang J., Kim Y. K., Jeong H. Y., Park S., Shin H. S., ACS Appl. Mater. Interfaces, 2014, 6(9), 6340—6345 |
37 | Cao F., Deng J., Xin S., Ji H., Schmidt O. G., Wan L., Guo Y., Adv. Mater., 2011, 23(38), 4415—4420 |
38 | Chockla A. M., Klavetter K. C., Mullins C. B., Korgel B. A., Chem. Mater., 2012, 24(19), 3738—3745 |
39 | Chan C. K., Patel R. N., O’connell M. J., Korgel B. A., Cui Y., ACS Nano, 2010, 4(3), 1443—1450 |
40 | Gohier A., Laik B., Pereira⁃Ramos J. P., Cojocaru C. S., Tran⁃Van P., J. Power Sources, 2012, 203, 135—139 |
41 | Ge M., Rong J., Fang X., Zhou C., Nano Lett., 2012, 12(5), 2318—2323 |
42 | Iijima S., Nature, 1991, 354(6348), 56—58 |
43 | Yao Y., Liu N., McDowell M. T., Pasta M., Cui Y., Energy Environ. Sci., 2012, 5(7), 7927—7930 |
44 | Chen Z., Dahn J. R., J. Electrochem. Soc., 2002, 149(9), A1184 |
45 | Yu C., Li X., Ma T., Rong J., Zhang R., Shaffer J., An Y., Liu Q., Wei B., Jiang H., Adv. Energy Mater., 2012, 2(1), 68—73 |
46 | Ryu J., Hong D., Shin M., Park S., ACS Nano, 2016, 10(11), 10589—10597 |
47 | Sun H., Zhu J., Baumann D., Peng L., Xu Y., Shakir I., Huang Y., Duan X., Nat. Rev. Mater., 2019, 4(1), 45—60 |
48 | Yang T., Tian X., Li X., Wang K., Liu Z., Guo Q., Song Y., Chem. Eur. J., 2017, 23(9), 2165—2170 |
49 | Xu Q., Li J., Sun J., Yin Y., Wan L., Guo Y., Adv. Energy Mater., 2017, 7(3), 1601481 |
50 | Liu C., Wang Y., Sun J., Chen A., Trans. Tianjin Univ., 2020, 26(2), 104—126 |
51 | Gao P., Fu J., Yang J., Lv R., Wang J., Nuli Y., Tang X., Phys. Chem. Chem. Phys., 2009, 11(47), 11101—11105 |
52 | Chen T., Zhang Q., Xu J., Pan J., Cheng Y. T., RSC Adv., 2016, 6(35), 29308—29313 |
53 | Fleischauer M. D., Obrovac M. N., Dahn J. R., J. Electrochem. Soc., 2008, 155(11), A851 |
54 | Dahn J. R., Mar R. E., Fleischauer M. D., Obrovac M. N., J. Electrochem. Soc., 2006, 153(6), A1211 |
55 | Zhou R., Guo H., Yang Y., Wang Z., Li X., Zhou Y., J. Alloys Compd., 2016, 689, 130—137 |
56 | Cao Z., Liu H., Huang W., Chen P., Liu Y., Yu Y., Shan Z., Meng S., Trans. Tianjin Univ., 2020, 26(1), 13—21 |
57 | Liu Y., Wen Z. Y., Wang X. Y., Hirano A., Imanishi N., Takeda Y., J. Power Sources, 2009, 189(1), 733—737 |
58 | Luo W., Wang Y., Chou S., Xu Y., Li W., Kong B., Dou S. X., Liu H. K., Yang J., Nano Energy, 2016, 27, 255—264 |
59 | Tao H. C., Yang X. L., Zhang L. L., Ni S. B., Ionics, 2014, 20(11), 1547—1552 |
60 | Yang J., Wang Y. X., Chou S. L., Zhang R., Xu Y., Fan J., Zhang W., Liu H. K., Zhao D., Dou S. X., Nano Energy, 2015, 18, 133—142 |
61 | Tian H., Tan X., Xin F., Wang C., Han W., Nano Energy, 2015, 11, 490—499 |
62 | Sohn M., Kim D. S., Park H. Il, Kim J. H., Kim H., Electrochim. Acta, 2016, 196, 197—205 |
63 | Chou S. L., Wang J. Z., Choucair M., Liu H. K., Stride J. A., Dou S. X., Electrochem. Commun., 2010, 12(2), 303—306 |
64 | Huang Y. Y., Han D., He Y. B., Yun Q., Liu M., Qin X., Li B., Kang F., Electrochim. Acta, 2015, 184, 364—370 |
65 | Abel P. R., Chockla A. M., Lin Y. M., Holmberg V. C., Harris J. T., Korgel B. A., Heller A., Mullins C. B., ACS Nano, 2013, 7(3), 2249—2257 |
66 | Beaulieu L. Y., Hewitt K. C., Turner R. L., Bonakdarpour A., Abdo A. A., Christensen L., Eberman K. W., Krause L. J., Dahn J. R., J. Electrochem. Soc., 2002, 150(2), A149 |
67 | Lee J. I., Ko Y., Shin M., Song H. K., Choi N. S., Kim M. G., Park S., Energy Environ. Sci., 2015, 8(7), 2075—2084 |
68 | Du F. H., Li B., Fu W., Xiong Y. J., Wang K. X., Chen J. S., Adv. Mater., 2014, 26(35), 6145—6150 |
69 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4(1), 1—6 |
70 | Du F. H., Wang K. X., Chen J. S., J. Mater. Chem. A, 2016, 4(1), 32—50 |
71 | Jin Y., Li S., Kushima A., Zheng X., Sun Y., Xie J., Sun J., Xue W., Zhou G., Wu J., Shi F., Zhang R., Zhu Z., So K., Cui Y., Li J., Energy Environ. Sci.,2017, 10(2), 580—592 |
[1] | 何贝贝, 杨葵华, 吕瑞. 锰-铜双金属层状硅酸盐纳米酶的构筑及类酶活性[J]. 高等学校化学学报, 2022, 43(8): 20220150. |
[2] | 骆鑫妍, 贾若男, 向勇, 张晓琨. 可拉伸聚合物基复合固体电解质研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220149. |
[3] | 贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157. |
[4] | 郭谨昌, 刘芳林. 平面五配位硅、 锗XBe5H6(X=Si, Ge)团簇[J]. 高等学校化学学报, 2022, 43(4): 20210807. |
[5] | 于静, 吴超, 李晨阳, 陈丹凤, 丁柳月, 马献涛. 无催化剂下醇和酚的高效O-硅基化[J]. 高等学校化学学报, 2022, 43(2): 20210588. |
[6] | 张涛, 邵亮, 张梦辉, 马忠雷, 李晓强, 马建中. 双功能聚二甲基硅氧烷/铜纳米线复合薄膜的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 20220359. |
[7] | 张洁, 银波, 刘玮欣, 刘兴平, 连文贤, 唐韶坤. 勃姆石纤维增强二氧化硅气凝胶的制备及性能[J]. 高等学校化学学报, 2022, 43(11): 20220483. |
[8] | 乔政华, 范琪, 郝京诚. 硅表面活性剂增强的双网络耐高温多孔有机硅弹性体[J]. 高等学校化学学报, 2022, 43(10): 20220384. |
[9] | 李奕川, 朱国富, 王宇, 柴永明, 刘晨光, 何盛宝. 基底表面性质与前驱液化学环境对原位定向构筑钛硅分子筛膜的影响[J]. 高等学校化学学报, 2021, 42(9): 2934. |
[10] | 鲍俊全, 郑仕兵, 苑旭明, 史金强, 孙田将, 梁静. 有机盐PTO(KPD)2作为高性能锂离子电池正极材料的研究[J]. 高等学校化学学报, 2021, 42(9): 2911. |
[11] | 杨英杰, 张晓蓉, 孙玉雪, 刘军, 谢海明. 一种双锂盐梳状聚合物电解质的制备及电化学性能[J]. 高等学校化学学报, 2021, 42(9): 2861. |
[12] | 李鹏杰, 周春妮, 王泽田, 郑子昂, 张玉敏, 王亮, 肖标. 铑催化吲哚与乙烯基三乙氧基硅烷的C—H烯基化反应[J]. 高等学校化学学报, 2021, 42(8): 2450. |
[13] | 卓增庆, 潘锋. 基于软X射线光谱的锂电池材料的电子结构与演变的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2332. |
[14] | 吴卓彦, 李至, 赵旭东, 王倩, 陈顺鹏, 常兴华, 刘志亮. 一步法高效制备纳米Si/C复合材料及其在高性能锂离子电池中的应用[J]. 高等学校化学学报, 2021, 42(8): 2500. |
[15] | 吴同华, 岳喜贵, 梅笑寒, 梁留博, 彭鑫, 马友美, 张淑玲. 三明治结构多壁碳纳米管/聚醚醚酮电磁屏蔽复合材料的制备[J]. 高等学校化学学报, 2021, 42(8): 2627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||