高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (8): 2592.doi: 10.7503/cjcu20210088

• 物理化学 • 上一篇    下一篇

氮杂碳原位包覆Cu2O/Co3O4@C异质结构复合材料的设计构筑及高效储锂性能

田润赛1, 卢芊1, 张洪滨1, 张渤2, 冯源源2, 魏金香2, 冯季军1,2   

  1. 1.山东高校界面反应与传感分析重点实验室
    2.济南大学化学化工学院, 济南 250022
  • 收稿日期:2021-02-08 出版日期:2021-08-10 发布日期:2021-08-05
  • 基金资助:
    国家自然科学基金(51102114);国家大学生创新训练计划项目(201910427025)

Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage

TIAN Runsai1, LU Qian1, ZHANG Hongbin1, ZHANG Bo2, FENG Yuanyuan2, WEI Jinxiang2, FENG Jijun1,2   

  1. 1.Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
    2.School of Chemistry and Chemical Engineering,University of Jinan,Jinan 250022,China
  • Received:2021-02-08 Online:2021-08-10 Published:2021-08-05
  • Supported by:
    the National Natural Science Foundation of China(51102114);the National Innovation Training Program for College Students, China(201910427025)

摘要:

通过液相法合成了Cu2O纳米立方体, 并在其基础上利用金属有机框架化合物(MOFs)的自组装形貌调控, 进一步构建了层级多孔Co3O4和氮杂碳双壳层的Cu2O/Co3O4@C异质结构复合材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 热重分析(TGA)、 BET比表面积及孔径分析、 拉曼光谱和X射线光电子能谱(XPS)等表征手段证实了Cu2O/Co3O4@C异质结构复合材料的成功构筑. 双壳层结构设计和丰富的层级孔道结构有效抑制了材料在充放电循环过程中的体积膨胀, 材料在循环100次后仍保持了原有的形貌和构造. 表面多孔结构对电解液的充分浸润、 异质结构的界面内建电场以及缺陷氮杂碳的表面包覆有效提升了材料的电子和离子导电能力. 异质结构设计、 形貌调控、 多孔特性和氮杂碳的协同作用, 使得Cu2O/Co3O4@C复合材料呈现出优异的电化学性能, 在0.1 A/g电流密度下的首次放电比容量达到2065 mA·h/g, 在 2 A/g电流密度下的可逆放电比容量高于360 mA·h/g, 在1 A/g电流密度下循环350次后仍有530 mA·h/g的高可逆放电比容量.

关键词: 复合负极材料, 异质结构, 双沸石咪唑酯骨架结构, 氮杂碳, 协同效应

Abstract:

Transition metal oxides have been intensively studied as potential anode materials for the next generation lithium-ion batteries due to their high theoretical capacity, low cost and higher safety. Herein, the nano-cubic Cu2O was fabricated through simple liquid-phase method followed by the self assembly of ZIF-67/ZIF-8 bi-metal organic framework(MOF), then the hierarchical porous Cu2O/Co3O4@C heterostructured composite material with Co3O4 and N-doped carbon as double shell was successfully constructed. XRD, SEM, TGA, BET, Raman spectra and XPS characterization proved the successful engineering of the heterostructured Cu2O/Co3O4@C composite material. Benefiting from the double-shell and hierarchical porous construction, the volume expansion of the composite material during cycling was effectively restrained. The SEM images after even 100 cycles proved the maintaining of the original morphology and structure of the composite material. The sufficient electrolyte infiltration owing to the porous surface structure, the built-in electric field at the heterostructure interface and the coating of defective N-doped carbon mutually enhance the electronic and ionic conductivity and facilitate the reaction kinetics. The synergistic effects of heterostructure design, morphology regulation, porous properties and N-doped carbons coating endow the Cu2O/Co3O4@C composite material with excellent electrochemical performance. An as high initial discharge capacity as 2065 mA·h/g at 0.1 A/g and reversible discharge capacity of 360 mA·h/g at 2 A/g are delivered, and the stable discharge capacity of 550 mA·h/g maintains after 350 cycles at 1 A/g.

Key words: Hybrid anode material, Heterostructure, Bi-ZIF, N-Doped carbon, Synergistic effect

中图分类号: 

TrendMD: