• 综合评述 •
石颖1,2, 胡广剑1,3, 吴敏杰1,3, 李峰1,2,3()
收稿日期:
2020-09-11
出版日期:
2020-12-25
发布日期:
2020-12-25
通讯作者:
李峰
E-mail:fli@imr.ac.cn
基金资助:
SHI Ying1,2, HU Guangjian1,3, WU Minjie1,3, LI Feng1,2,3()
Received:
2020-09-11
Online:
2020-12-25
Published:
2020-12-25
Contact:
LI Feng
E-mail:fli@imr.ac.cn
Supported by:
摘要:
综述了低温等离子体技术的基本原理、 常用方法及其在锂离子电池材料领域中的研究进展, 重点评述了等离子体技术在锂离子电池正极、 负极、 隔膜及固态电解质等重要组分中的材料制备与表面改性方面的主要研究结果和应用优势, 并对其所面临的挑战和未来的应用方向进行了展望.
中图分类号:
石颖, 胡广剑, 吴敏杰, 李峰. 低温等离子体在锂离子电池材料中的应用[J]. 高等学校化学学报, doi: 10.7503/cjcu20200675.
SHI Ying, HU Guangjian, WU Minjie, LI Feng. Applications of Low Temperature Plasma for the Materials in Li-ion Batteries[J]. Chemical Journal of Chinese Universities, doi: 10.7503/cjcu20200675.
Plasma technology | Applications for Li?ion battery | Advantage |
---|---|---|
Glow discharge plasma | Surface processing, such as etching and doping | Simple, inexpensive, wide pressure range |
Dielectric barrier discharge plasma(DBD) | Synthesis and polymerization of materials | Simple excitation, wide pressure range, large plasma discharge zone |
Radio frequency(RF) plasma | Synthesis of electrode materials and solid?state electrolytes, surface etching | Less charge accumulation |
Spark plasma sintering(SPS) | Synthesis of electrode materials and inorganic solid?state electrolytes | Short holding times, reduced temperature, pressure to achieve dense materials |
Plasma?enhanced chemical vapor deposition(PECVD) | Synthesis of thin films and coatings | Lower temperature for deposition and high film quality |
Magnetron sputtering | Synthesis of thin films and inorganic solid?state electrolytes | High film purity and density, good contact with the substrate and low damage to the substrate, controllable film thickness |
Plasma spray | Synthesis of thin films and coatings | High film quality and density, no damage to substrate |
表1 中归纳了目前锂离子电池中常用的等离子体技术及其应用优势.
Table 1 Plasma technologies commonly used for Li-ion batteries
Plasma technology | Applications for Li?ion battery | Advantage |
---|---|---|
Glow discharge plasma | Surface processing, such as etching and doping | Simple, inexpensive, wide pressure range |
Dielectric barrier discharge plasma(DBD) | Synthesis and polymerization of materials | Simple excitation, wide pressure range, large plasma discharge zone |
Radio frequency(RF) plasma | Synthesis of electrode materials and solid?state electrolytes, surface etching | Less charge accumulation |
Spark plasma sintering(SPS) | Synthesis of electrode materials and inorganic solid?state electrolytes | Short holding times, reduced temperature, pressure to achieve dense materials |
Plasma?enhanced chemical vapor deposition(PECVD) | Synthesis of thin films and coatings | Lower temperature for deposition and high film quality |
Magnetron sputtering | Synthesis of thin films and inorganic solid?state electrolytes | High film purity and density, good contact with the substrate and low damage to the substrate, controllable film thickness |
Plasma spray | Synthesis of thin films and coatings | High film quality and density, no damage to substrate |
Fig.2 Plasma?enhanced low temperature preparation of LiMn2O4[24](A) Schematic diagram of the plasma-enhanced tube furnace for the preparation of LiMn2O4; (B) XRD patterns for the as-prepared spinel LiMn2O4 by the plasma-enhanced low temperature solid-state method(PLA-LMO-30) and the conventional thermal annealing method(LMO-40 and LMO-4 h). Copyright 2016, Royal Society of Chemistry.
Fig.3 Schematics for the Li?doped carbon material by solution plasma process[36](A) Schematics showing concept of anode material and solution plasma process; (B) schematic showing formation of Li domains and delithiation process. Copyright 2018, Wiley.
Fig.4 Co3O4/graphene nanocomposites prepared by low pressure capacitively?coupled?plasma treatment[44](A) Schematics for the synthesis process of Co3O4/graphene nanocomposites by CCP treatment; (B) TEM images of graphene/Co3O4 nanocomposites; (C) the cycling performance and coulombic efficiency of Co3O4/graphene nanocomposites with/without CCP treatment at the current density of 125 mA/g. Copyright 2017, Elsevier.
Fig.5 Plasma nitriding process of nitride decorated nickel foams(PNNF)[53](A) The schematics of the plasma nitriding process of PNNF; (B) SEM images of nickel foam(NF); (C) SEM images of PNNF. Copyright 2019, Elsevier.
Fig.6 Illustrative comparison of lithium ion flux through pores of the separators and the resulting SEI layers[69](A) Lithium ion flux in cells with bare separators; (B) lithium ion flux in cells with negatively charged separators.Copyright 2019, American Chemical Society.
Fig. 7 Interfacial liquid plasma polymerization of the polymer electrolyte from ionic liquids(IL)[81](A) Scheme illustrating the synthesis route of the polymer electrolyte from ionic liquid and surfactant via interfacial liquid plasma polymerization; (B) photographs of polymer electrolyte films on glass substrates with different plasma exposure times; (C) surface and cross-sectional morphology of polymer electrolyte film; (D) thermal properties of polymer electrolyte. Copyright 2016, American Chemical Society.
Fig. 8 Nano?thin graphite layer covered LiMn2O4 electrode via room?temperature DC magnetron sputtering[83](A) Schematic diagram for the preparation of the graphite layer covered LiMn2O4 electrode; (B) schematic conduction/diffusion of electron and lithium ions during the electrochemical kinetics process in the BLMO and GLMO-30 electrode, respectively; (C) cycle performance of the electrodes at 1 C rate under 55 ℃. Copyright 2014, Royal Society of Chemistry.
Fig. 9 Water?soluble CMC?based LiFePO4 electrode for aqueous Li?ion battery systems protected by a plasma induced thin membrane[88](A) Schematic for the electrode protected by a thin membrane obtained by the plasma treatment; (B) stability of the untreated electrode before, during, and after immersion in water; (C) comparative result obtained with plasma treated electrodes. Copyright 2020, American Chemical Society.
23 | Ajayi B. P., Thapa A. K., Cvelbar U., Jasinski J. B., Sunkara M. K., Chem. Eng. Sci., 2017, 174, 302—310 |
24 | Jiang Q. Q., Zhang H., Wang S. Y., Green Chem., 2016, 18(3), 662—666 |
25 | Jiang Q. Q., Xu L., Huo J., Zhang H., Wang S. Y., RSC Adv., 2015, 5(92), 75145—75148 |
26 | Dumont-Botto E., Bourbon C., Patoux S., Rozier P., Dolle M., J. Power Sources, 2011, 196(4), 2274—2278 |
27 | Ouyang L. Z., Cao Z. J., Wang H., Hu R. Z., Zhu M., J. Alloy. Compd., 2017, 691, 422—435 |
28 | Needham S. A., Calka A., Wang G. X., Mosbah A., Liu H. K., Electrochem. Commun., 2006, 8(3), 434—438 |
29 | Sun W., Hu R. Z., Liu H., Zeng M. Q., Yang L. C., Wang H. H., Zhu M., J. Power Sources, 2014, 268, 610—618 |
30 | Shigeta M., Murphy A. B., J. Phys. D⁃Appl. Phys., 2011, 44(17), 174025 |
31 | Yoshida T., Pure Appl. Chem., 1994, 66(6), 1223—1230 |
32 | Ketterer B., Vasilchina H., Seemann K., Ulrich S., Besser H., Pfleging W., Kaiser T., Adelhelm C., International Journal of Materials Research, 2008, 99(10), 1171—1176 |
33 | Chiu K. F., Chen C. C., Chiang M. H., Ho W. H., J. Electrochem. Soc., 2010, 157(2), A130—A135 |
34 | Pentyala N., Guduru R. K., Mohanty P. S., Electrochim. Acta, 2011, 56(27), 9851—9859 |
35 | He M., Zhou H. P., Ding G. Q., Zhang Z. D., Ye X., Cai D., Wu M. Q., Carbon, 2019, 146, 194—199 |
36 | Kang J., Kim H. V., Chae S. A., Kim K. H., Small, 2018, 14(20), 1704394 |
37 | Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. M., Nature, 2000, 407(6803), 496—499 |
38 | Kasavajjula U., Wang C. S., Appleby A. J., J. Power Sources, 2007, 163(2), 1003—1039 |
39 | Marcinek A., Hardwick L. J., Richardson T. J., Song X., Kostecki R., J. Power Sources, 2007, 173(2), 965—971 |
40 | Bo Z., Mao S., Han Z. J., Cen K. F., Chen J. H., Ostrikov K., Chem. Soc. Rev., 2015, 44(8), 2108—2121 |
41 | Yang J. H., de Guzman R. C., Salley S. O., Ng K. Y. S., Chen B. H., Cheng M. M. C., J. Power Sources, 2014, 269, 520—525 |
42 | Wei Y., Yu H., Li H. T., Ming H., Pan K. M., Huang H., Liu Y., Kang Z. H., Mater. Res. Bull., 2013, 48(10), 4072—4077 |
43 | Zhou Q., Zhao Z. B., Wang Z. Y., Dong Y. F., Wang X. Z., Gogotsi Y., Qiu J. S., Nanoscale, 2014, 6(4), 2286—2291 |
44 | Long H. F., Zhang M. Y., Wang Q., Xing L. L., Wang S., Xue X. Y., J. Alloy. Compd., 2017, 701, 200—207 |
45 | Tsai H. S., Hsu C. H., Chi C. C., Wang Y. C., Liu F. W., Tang S. Y., Tsai C. J., Ouyang H., Chueh Y. L., Liang J. H., Inorg. Chem. Front., 2019, 6(1), 172—175 |
46 | Liu Y. Y., Zhang L., Zhao Y. C., Shen T. D., Yan X. L., Yu C., Wang H. Q., Zeng H., J. Alloy. Compd., 2019, 787, 996—1003 |
47 | Chang X. H., Zheng X. Y., Guo Y. R., Chen J., Zheng J., Li X. G., Nano Res., 2018, 11(5), 2724—2732 |
48 | Lin D. C., Liu Y. Y., Cui Y., Nat. Nanotechnol., 2017, 12(3), 194—206 |
49 | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117(15), 10403—10473 |
50 | Zhang R., Li N. W., Cheng X. B., Yin Y. X., Zhang Q., Guo Y. G., Adv. Sci., 2017, 4(3), 1600445 |
51 | Hu Z., Li Z., Xia Z., Jiang T., Wang G., Sun J., Sun P., Yan C., Zhang L., Energy Storage Materials, 2019, 22, 29—39 |
52 | Luan J. Y., Zhang Q., Yuan H. Y., Sun D., Peng Z. G., Tang Y. G., Ji X. B., Wang H. Y., Adv. Sci., 2019, 6(20), 1901433 |
53 | Zhu J. F., Chen J., Luo Y., Sun S. Q., Qin L. G., Xu H., Zhang P. G., Zhang W., Tian W. B., Sun Z. M., Energy Storage Materials, 2019, 23, 539—546 |
54 | Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., Mitsui A., Nat. Mater., 2011, 10(9), 682—686 |
55 | Wu M. F., Wen Z. Y., Liu Y., Wang X. Y., Huang L. Z., J. Power Sources, 2011, 196(19), 8091—8097 |
56 | Li Y. B., Sun Y. M., Pei A., Chen K. F., Vailionis A., Li Y. Z., Zheng G. Y., Sun J., Cui Y., Acs Central Sci., 2018, 4(1), 97— 104 |
57 | Chen K., Pathak R., Gurunga A., Adhamash E. A., Bahrami B., He Q. Q., Qiao H., Smirnova A. L., Wu J. J., Qiao Q. Q., Zhou Y., Energy Storage Materials, 2019,(18), 389—396 |
58 | Li Y., Yin Y., Guo K., Xue X. Z., Zou Z. Q., Li X. M., He T., Yang H., J. Power Sources, 2013, 241, 288—294 |
59 | Phan L. T., Yoon S. M., Moon M. W., Polymers⁃Basel, 2017, 9(9), 9090417 |
60 | Jiang Q. Q., Li Z., Wang S. Y., Zhang H., RSC Adv., 2015, 5(113), 92995—93001 |
61 | Fang J., Kelarakis A., Lin Y. W., Kang C. Y., Yang M. H., Cheng C. L., Wang Y., Giannelis E. P., Tsai L. D., Phys. Chem. Chem. Phys., 2011, 13(32), 14457—14461 |
62 | Correia D. M., Ribeiro C., Sencadas V., Botelho G., Carabineiro S. A. C., Ribelles J. L. G., Lanceros⁃Mendez S., Prog. Org. Coat., 2015, 85, 151—158 |
63 | Jin S. Y., Manuel J., Zhao X., Park W. H., Ahn J. H., J. Ind. Eng. Chem., 2017, 45, 15—21 |
64 | Huang C., Lin C. C., Tsai C. Y., Juang R. S., Plasma Process. Polym., 2013, 10(5), 407—415 |
65 | Son J., Kim M. S., Lee H. W., Yu J. S., Kwon K. H., J. Nanosci. Nanotechnol., 2014, 14(12), 9368—9372 |
66 | Chen H., Lin Q., Xu Q., Yang Y., Shao Z. P., Wang Y., J. Membr. Sci., 2014, 458, 217—224 |
67 | Kim J. Y., Lim D. Y., Energies, 2010, 3(4), 866—885 |
68 | Li X. F., He J. L., Wu D. Z., Zhang M. Z., Meng J. W., Ni P. H., Electrochim. Acta, 2015, 167, 396—403 |
69 | Han M., Kim D. W., Kim Y. C., ACS Appl. Mater. Interfaces, 2016, 8(39), 26073—26081 |
70 | Shi Q. A., Vitchuli N., Nowak J., Lin Z., Guo B. K., McCord M., Bourham M., Zhang X. W., J. Polym. Sci. Pt. B⁃Polym. Phys., 2011, 49(2), 115—122 |
71 | Colombo V., Fabiani D., Focarete M. L., Gherardi M., Gualandi C., Laurita R., Zaccaria M., Plasma Process. Polym., 2014, 11(3), 247—255 |
72 | Laurita R., Zaccaria M., Gherardi M., Fabiani D., Merlettini A., Pollicino A., Focarete M. L., Colombo V., Plasma Process. Polym., 2016, 13(1), 124—133 |
73 | Jeon H., Jin S. Y., Park W. H., Lee H., Kim H. T., Ryou M. H., Lee Y. M., Electrochim. Acta, 2016, 212, 649—656 |
74 | Qin S. C., Wang M., Wang C. L., Jin Y. C., Yuan N. N., Wu Z. C., Zhang J., Adv. Mater. Interfaces, 2018, 5(19), 1800579 |
75 | Zhu H. Z., Liu J., J. Power Sources, 2018, 391, 10—25 |
76 | Aboulaich A., Bouchet R., Delaizir G., Seznec V., Tortet L., Morcrette M., Rozier P., Tarascon J. M., Viallet V., Dolle M., Adv. Energy Mater., 2011, 1(2), 179—183 |
77 | Wei X. L., Rechtin J., Olevsky E. A., Metals, 2017, 7(9), 7090372 |
78 | Westover A. S., Kercher A. K., Kornbluth M., Naguib M., Palmer M. J., Cullen D. A., Dudney N. J., ACS Appl. Mater. Interfaces, 2020, 12(10), 11570—11578 |
79 | Ogumi Z., Uchimoto Y., Takehara Z., J. Power Sources, 1989, 26(3/4), 457—460 |
80 | Ogumi Z., Uchimoto Y., Takehara Z., Kanamori Y., J. Electrochem. Soc., 1988, 135(10), 2649—2650 |
81 | Tran Q. C., Bui V. T., Dao V. D., Lee J. K., Choi H. S., ACS Appl. Mater. Interfaces, 2016, 8(25), 16125—16135 |
82 | Marcinek M. L., Wilcox J. W., Doeff M. M., Kostecki R. M., J. Electrochem. Soc., 2009, 156(1), A48—A51 |
83 | Wang J. X., Zhang Q. B., Li X. H., Wang Z. X., Guo H. J., Xu D. G., Zhang K. L., Phys. Chem. Chem. Phys., 2014, 16(30), 16021—16029 |
84 | Wang K. X., Wang C. Z., Yang H., Wang X. B., Cao F., Wu Q. C., Peng H. L., Nano Res., 2020, doi: s12274⁃020⁃2780⁃2 |
85 | Luo W., Lin C. F., Zhao O., Noked M., Zhang Y., Rubloff G. W., Hu L. B., Adv. Energy Mater., 2017, 7(2), 1601526 |
86 | Qiu B., Wang J., Xia Y. G., Wei Z., Han S. J., Liu Z. P., ACS Appl. Mater. Interfaces, 2014, 6(12), 9185—9193 |
87 | Chang W., Choi J. W., Im J. C., Lee J. K., J. Power Sources, 2010, 195(1), 320—326 |
88 | Profili J., Rousselot S., Tomassi E., Briqueleur E., Ayme⁃Perrot D., Stafford L., Dolle M., ACS Sustain. Chem. Eng., 2020, 8(12), 4728—4733 |
89 | Rao P., Cui P., Yang L., Wang M. S., Wang S., Cai H., Wang Y., Zhao X. S., Wilkinson D. P., Zhang J. J., J. Power Sources, 2020, 453, 227858 |
90 | Liu F. Z., Leung Y. H., Djurisic A. B., Ng A. M. C., Chan W. K., Ng K. L., Wong K. S., Liao C. Z., Shih K., Surya C., J. Phys. Chem. C, 2014, 118(39), 22760—22767 |
91 | Xu L., Jiang Q. Q., Xiao Z. H., Li X. Y., Huo J., Wang S. Y., Dai L. M., Angew. Chem. Int. Ed., 2016, 55(17), 5277—5281 |
92 | Wang Q., He H. N., Luan J. Y., Tang Y. G., Huang D., Peng Z. G., Wang H. Y., Electrochim. Acta, 2019, 309, 242—252 |
93 | Dou S., Tao L., Huo J., Wang S. Y., Dai L. M., Energ Environ. Sci., 2016, 9(4), 1320—1326 |
1 | Armand M., Tarascon J. M., Nature, 2008, 451(7179), 652—657 |
2 | van Noorden R., Nature, 2014, 507(7490), 26—28 |
3 | Evarts E. C., Nature, 2015, 526(7575), S93—S95 |
94 | Lan C. K., Chuang S. I., Bao Q., Liao Y. T., Duh J. G., J. Power Sources, 2015, 275, 660—667 |
95 | Zhu J. F., Chen J., Xu H., Sun S. Q., Xu Y., Zhou M., Gao X., Sun Z. M., ACS Appl. Mater. Interfaces, 2019, 11(19), 17384—17392 |
4 | Nava⁃Avendano J., Veilleux J., J. Phys. D⁃Appl. Phys., 2017, 50(16), 163001 |
5 | He B., Yang Y., Yuen M. F., Chen X. F., Lee C. S., Zhang W. J., Nano Today, 2013, 8(3), 265—289 |
6 | Cheruthazhekatt S., Cernak M., Slavicek P., Havel J., J. Appl. Biomed., 2010, 8(2), 55—66 |
96 | Conder J., Urbonaite S., Streich D., Novak P., Gubler L., RSC Adv., 2015, 5(97), 79654—79660 |
97 | Ahn J. H., Shin H. J., Abbas S., Lee K. Y., Ha H. Y., J. Mater. Chem. A, 2019, 7(8), 3772—3782 |
7 | Lu T., Qiao Y. Q., Liu X. Y., Interface Focus, 2012, 2(3), 325—336 |
8 | Desmet T., Morent R., de Geyter N., Leys C., Schacht E., Dubruel P., Biomacromolecules, 2009, 10(9), 2351—2378 |
9 | Lloyd G., Friedman G., Jafri S., Schultz G., Fridman A., Harding K., Plasma Process. Polym., 2010, 7(3-4), 194—211 |
98 | Duan L. F., Zhao L. J., Cong H., Zhang X. Y., Lu W., Xue C. L., Small, 2019, 15(7), 1804347 |
99 | Hsieh Y. Y., Zhang L., DeArmond D., Kanakaraj S. N., Adusei P. K., Alvarez N. T., Fang Y. B., Daum J., Shanov V., Carbon, 2018, 139, 1093—1103 |
100 | Huang S. T., Fan W. G., Guo X. X., Meng F. H., Liu X. Y., ACS Appl. Mater. Interfaces, 2014, 6(23), 21567—21575 |
10 | Zheng Z. W., Deng K. M., Ren L., Wang Y. J., Chem. J. Chinese Universities, 2012, 33(6), 1350—1354(郑志雯, 邓凯敏, 任力, 王迎军. 高等学校化学学报, 2012, 33(6), 1350—1354) |
11 | Sankaran R. M., Kortshagen U., J. Phys. D⁃Appl. Phys., 2015, 48(31), 310301 |
101 | Han C. P., Veeramani V., Hsu C. C., Jena A., Chang H., Yeh N. C., Hu S. F., Liu R. S., Nanotechnology, 2018, 29(50), 505401 |
102 | Chen J. Z., Liao W. Y., Hsieh W. Y., Hsu C. C., Chen Y. S., J. Power Sources, 2015, 274, 894—898 |
12 | Kortshagen U. R., Sankaran R. M., Pereira R. N., Girshick S. L., Wu J. J., Aydil E. S., Chem. Rev., 2016, 116(18), 11061—11127 |
13 | Seo J. H., Hong B. G., Nucl. Eng. Technol., 2012, 44(1), 9—20 |
14 | Chen X., Hu Z., Wang X. Z., Wu Q., Chen Y., Yang S. G., Du Y. W., Chem. J. Chinese Universities, 2001, 22(5), 731—733(陈新, 胡征, 王喜章, 吴强, 陈懿, 杨绍光, 都有为. 高等学校化学学报, 2001, 22(5), 731—733) |
103 | He H. N., Huang D., Pang W. K., Sun D., Wang Q., Tang Y. G., Ji X. B., Guo Z. P., Wang H. Y., Adv. Mater., 2018, 30(26), 1801013 |
104 | Ma L. T., Chen S. M., Pei Z. X., Li H. F., Wang Z. F., Liu Z. X., Tang Z. J., Zapien J. A., Zhi C. Y., ACS Nano, 2018, 12(8), 8597—8605 |
15 | Joseph J., Murdock A. T., Seo D. H., Han Z. J., O’Mullane A. P., Ostrikov K., Adv. Mater. Technol., 2018, 3(9), 1800070 |
16 | Liu A. G., Low Temperature Plasma Surface Strengthening Technologies, Harbin Institute of Technology Press, Harbin, 2015, 6—39(刘爱国. 低温等离子体表面强化技术, 哈尔滨: 哈尔滨工业大学出版社, 2015, 6—39) |
17 | Tyczkowski J.,Ed.: Shao Y., Electrochemical Cells⁃New Advances in Fundamental Researches and Applications, InTech, Croatia, 2012, 105—138 |
18 | Dou S., Tao L., Wang R. L., El Hankari S., Chen R., Wang S. Y., Adv. Mater., 2018, 30(21), 1705850 |
19 | Kali R., Mukhopadhyay A., J. Power Sources, 2014, 247, 920—931 |
20 | Galy J., Dolle M., Hungria T., Rozier P., Monchoux J. P., Solid State Sci., 2008, 10(8), 976—981 |
21 | Meyyappan M., Delzeit L., Cassell A., Hash D., Plasma Sources Sci. Technol., 2003, 12(2), 205—216 |
22 | Tanaka M., Kageyama T., Sone H., Yoshida S., Okamoto D., Watanabe T., Nanomaterials, 2016, 6(4), 6040060 |
[1] | 周战, 马录芳, 谭超良. 层状钒青铜纳米片的制备及其锂离子电池阳极材料性能[J]. 高等学校化学学报, 2021, 42(Album-3): 1-9. |
[2] | 高小雅, 左自成, 李玉良. 石墨炔电化学电池界面构筑[J]. 高等学校化学学报, 2021, 42(Album-3): 1-12. |
[3] | 王弈艨, 刘凯, 王保国. 高镍三元正极材料的表面包覆策略[J]. 高等学校化学学报, 2021, 42(Album-2): 1-16. |
[4] | 项厚政, 谢鸿翔, 李文超, 刘晓磊, 冒爱琴, 俞海云. 尖晶石型高熵氧化物的制备和电化学性能[J]. 高等学校化学学报, 2020, 41(8): 1801-1809. |
[5] | 陆地,郑春满,陈宇方,李宇杰,张红梅. 以酚醛树脂为碳源原位合成富锂层状相/尖晶石/碳核壳结构正极材料及其电化学性能[J]. 高等学校化学学报, 2020, 41(7): 1684-1690. |
[6] | 彭新艳, 刘云鸿, 李嘉文, 冯乙胧, 王汉春. 单宁酸/两性离子改性油-水分离膜的制备及性能[J]. 高等学校化学学报, 2020, 41(6): 1337-1344. |
[7] | 陈良丹,邹伟,吴亮,夏凡杰,胡执一,李昱,苏宝连. 纳米Al2O3包覆富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2的性能研究[J]. 高等学校化学学报, 2020, 41(6): 1329-1336. |
[8] | 张晨阳,文越华,赵鹏程,程杰,邱景义,孙艳芝. 有机碳源对LiTi2(PO4)3/C复合水系负极性能的影响[J]. 高等学校化学学报, 2020, 41(6): 1352-1361. |
[9] | 计天溢, 刘晓旭, 赵九蓬, 李垚. 三维交联石墨烯纳米纤维的合成及储锂性能[J]. 高等学校化学学报, 2020, 41(4): 821-828. |
[10] | 刘帅卓,张骞,刘宁,肖文艳,范雷倚,周莹. 三聚氰胺海绵的一步式协同超疏水改性及在油水分离中的应用[J]. 高等学校化学学报, 2020, 41(3): 521-529. |
[11] | 陈静,陈进华,尹德忠,张伟. 己二酸二酯原位功能化SiO2稳定Pickering乳液的相反转研究[J]. 高等学校化学学报, 2020, 41(1): 140-144. |
[12] | 李向南, 王秋娴, 范涌, 于明明, 张会双, 杨书廷. 沉积法合成生物质碳磷锂离子负极材料及其高低温电化学性能[J]. 高等学校化学学报, 2019, 40(9): 1949-1954. |
[13] | 毛龙, 刘跃军, 范淑红. 聚吡咯改性层状黏土/聚己内酯抗菌纳米复合材料的制备与性能[J]. 高等学校化学学报, 2019, 40(8): 1726-1732. |
[14] | 杨金戈, 李宇杰, 陆地, 陈宇方, 孙巍巍, 郑春满. 微纳结构富锂锰基层状正极材料的形貌调控与储锂性能[J]. 高等学校化学学报, 2019, 40(7): 1495-1500. |
[15] | 隋佳烊, 刘晓旸, 钱苗苗, 朱燕超, 薛北辰, 丰祎, 田玉美, 王晓峰. 稻壳基二氧化硅/碳复合材料的表面改性及对天然橡胶的影响[J]. 高等学校化学学报, 2019, 40(7): 1561-1570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||