高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (10): 3195.doi: 10.7503/cjcu20210404

• 高分子化学 • 上一篇    下一篇

注压成型纳米结构PP/POE共混物表面的液滴低温冲击行为

黄辉龙, 黄汉雄()   

  1. 华南理工大学广东省高分子先进制造技术及装备重点实验室, 微/纳成型与流变学研究室, 广州 510640
  • 收稿日期:2021-06-15 出版日期:2021-10-10 发布日期:2021-10-10
  • 通讯作者: 黄汉雄 E-mail:mmhuang@scut.edu.cn
  • 基金资助:
    广东省科技计划项目(2017B090911009);广东省自然科学基金(2016A030308018);国家自然科学基金(51533003)

Low-temperature Impact Behavior of Droplet on Injection-compression Molded Nanostructured PP/POE Blend Surfaces

HUANG Huilong, HUANG Hanxiong()   

  1. Lab for Micro/Nano Molding & Polymer Rheology,Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology,Guangzhou 510640,China
  • Received:2021-06-15 Online:2021-10-10 Published:2021-10-10
  • Contact: HUANG Hanxiong E-mail:mmhuang@scut.edu.cn
  • Supported by:
    the Science and Technology Project of Guangdong Province, China(2017B090911009);the Guangdong Provincial Natural Science Foundation, China(2016A030308018);the National Natural Science Foundation of China(51533003)

摘要:

以制备的阳极氧化不锈钢模板为模具嵌件, 采用注射压缩成型(ICM)工艺快速成型表面具有纳米丝结构的柔性聚丙烯/乙烯-辛烯共聚物(PP/POE, PP与POE质量比为3∶1)共混物复制物和准刚性PP复制物, 研究常温液滴冲击?10 ℃复制物表面的动态行为. 结果表明, 致密的纳米丝使复制物表面呈现超疏水、 极低黏附的润湿状态. 在低冲击速度范围内, 共混物复制物表面上液滴的接触时间比PP复制物上的短, 可归因于液滴铺展阶段柔性纳米丝储存的弹性势能在回缩阶段转换为液滴的动能; 在高冲击速度范围内, 共混物复制物基板和纳米丝储存的弹性势能被转换为液滴的动能, 进一步缩短了液滴的接触时间. 此结果表明, 共混物复制物的柔性和表面超疏水性使其具有优异的防冻黏性能. 共混物复制物表面上水滴(50 μL)的结冰时间得到明显延长、 冰黏附强度明显降低. 研究结果表明, 可采用ICM快速成型具有优异防冻黏和防冰性能的柔性超疏水高分子材料表面.

关键词: 液滴冲击, 接触时间, 柔性, 防冻黏/防冰, 聚丙烯/乙烯-辛烯共聚物共混物, 注射压缩成型

Abstract:

An anodic stainless steel template was prepared by two-step anodic oxidation. Using injection- compression molding with the template, replicas with the nanopillars on their surfaces were molded for flexible polypropylene/poly(ethylene-co-octene)(PP/POE) blend with a mass ratio of 3∶1 and quasi-rigid PP. The dynamic behavior of the droplets impacting the replicas with ?10 ℃ was investigated. It was demonstrated that the dense nanopillars endowed the replica surfaces with superhydrophobicity and extremely low adhesion. In a lower impact velocity range, the contact times of the droplets impacting on the blend replica surface were shorter than those on the PP replicas. This is attributed to the conversion of the elastic potential energy within the flexible nanopillars stored in the spreading stage to the kinetic energy of the droplets in the retraction stage. In a higher impact velocity range, the contact time of the droplets on the blend replica surface was further shortened when the elastic potential energy stored within both replica substrate and nanopillars was converted into the kinetic energy of the droplets. The results suggest that the flexibility and surface superhydrophobicity of the PP/POE replica endow it with excellent anti-freezing adhesive properties. Compared with the PP counterpart surface, the freezing time of the droplet(50 μL) was extended by 2.71 times and the ice adhesion strength was reduced by 58% on the PP/POE blend replica surface. The results demonstrate that it is feasible to rapidly and massively mold flexible superhydrophobic polymer surfaces with anti-freezing adhesive/anti-icing function.

Key words: Droplet impact, Contact time, Flexibility, Anti-freezing adhesive/anti-icing, Polypropylene/poly(ethylene-co-octene) blend, Injection-compression molding

中图分类号: 

TrendMD: