高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (6): 1194.doi: 10.7503/cjcu20190656
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2019-12-11
出版日期:
2020-06-10
发布日期:
2020-03-09
通讯作者:
薛斌,王炜,曹毅
E-mail:xuebinnju@nju.edu.cn;wangwei@nju.edu.cn;caoyi@nju.edu.cn
基金资助:
SHENG Hui,XUE Bin*(),QIN Meng,WANG Wei*(
),CAO Yi*(
)
Received:
2019-12-11
Online:
2020-06-10
Published:
2020-03-09
Contact:
Bin XUE,Wei WANG,Yi CAO
E-mail:xuebinnju@nju.edu.cn;wangwei@nju.edu.cn;caoyi@nju.edu.cn
Supported by:
摘要:
综述了可拉伸超韧水凝胶的设计原理及其在组织工程和柔性电子器件领域的应用. 通过将网络结构层次、 化学结构、 增韧机制与宏观力学性能相结合, 重点讨论了单网络水凝胶、 双网络水凝胶、 纳米复合水凝胶及其它水凝胶等可拉伸超韧水凝胶的研究进展, 并总结和展望了新思路和新方向.
中图分类号:
TrendMD:
盛卉, 薛斌, 秦猛, 王炜, 曹毅. 可拉伸超韧水凝胶的制备和应用. 高等学校化学学报, 2020, 41(6): 1194.
SHENG Hui, XUE Bin, QIN Meng, WANG Wei, CAO Yi. Preparation and Applications of Stretchable and Tough Hydrogels . Chem. J. Chinese Universities, 2020, 41(6): 1194.
Fig.1 Schematic of the classification and applications of stretchable and tough hydrogels (A, D) Copyright 2015, American Chemical Society; (B, C, F, G) Copyright 2018, American Chemical Society; (E) Copyright 2019, American Chemical Society.
Fig.2 Schematic of the measurement of toughness and fracture energy (A) Measurement and calculation of toughness; (B) measurement and calculation of fracture energy.
Fig.3 Schematic of different kinds of hydrogels (A) Single network hydrogel; (B) double network hydrogel; (C) nanocomposite hydrogel; (D) slide-ring hydrogel; (E) tetra-PEG hydrogel.
Classification | Sample code | Young’s modulus/MPa | Break strain/ (mm·mm-1) | Fracture strength/MPa | Toughness/ (MJ·m-3) | Fracture energy/ (kJ·m-2) |
---|---|---|---|---|---|---|
Single network | CB[ | 0.02—0.42 | 107 | 1.8 | —— | —— |
hydrogel | PAM-peptide-Zn2+[ | 0.01—0.12 | 4.3—7.8 | 0.2—0.56 | —— | 0.63—1.35 |
P(NaSS-co-MPTC)[ | 1.53 | 9.4 | 2.6 | —— | 4 | |
DMAA-co-MAAc[ | 28 | ca.8 | 2 | —— | 9.3 | |
Double network | PAMPS/PAAm[ | 0.1—10 | 10—20 | 1—10 | —— | 0.1—4.4 |
hydrogel | Alginate/PAAm[ | 0.029 | 23 | 0.156 | —— | 8.7 |
PS-DN(compression)[ | 0.32—0.57 | —— | 0.21—1.6 | —— | 0.3—2.67 | |
Crystallized PVA/PAAm[ | 5 | ca.3.8 | 2.5 | —— | 14 | |
Agar/PAAm[ | 0.082 | 20 | 1 | 9 | —— | |
Agar/HPAM[ | 0.106 | 52.6 | 0.267 | 9.35 | 1 | |
Nanocomposite | PAM/CNS[ | ca. 0.1 | 121 | 0.43 | 33.9 | —— |
hydrogel | NPs-P-PAA[ | ca.0.02 | 26 | 0.11 | —— | 5.5 |
Oxidized CNT/PAACA[ | 0.028 | 14.1 | 0.364 | —— | —— | |
Clay-PNIPA[ | 0.1—1 | 10—20 | >1 | ca.10 | —— | |
PDA-pGO-PAM[ | ca.0.01 | >35 | ca.0.17 | —— | 6.78 | |
P(BMA-co-AA)/PAM[ | 0.028 | 17.4 | 0.74 | ca.6 | —— | |
(PDDA/PEI)-(PSS/PAA)[ | 0.36±0.03 | 24.3±1.5 | 1.26±0.06 | 19.53±0.48 | —— | |
Other hydrogel | NIPA-AAcNa-HPR-C[ | ca.0.01 | ca.15 | ca.0.033 | —— | —— |
Carboxyl-Fe3+/PR[ | 8.3 | 5 | 4 | —— | 10 | |
Tetra-PEG[ | 0.054 | 7.4 | 0.136 | 0.59 | —— | |
Tetra-PEG Protein[ | 0.027 | 2.5 | 0.035 | —— | —— |
Table 1 Comparison of mechanical properties for various stretchable and tough hydrogels
Classification | Sample code | Young’s modulus/MPa | Break strain/ (mm·mm-1) | Fracture strength/MPa | Toughness/ (MJ·m-3) | Fracture energy/ (kJ·m-2) |
---|---|---|---|---|---|---|
Single network | CB[ | 0.02—0.42 | 107 | 1.8 | —— | —— |
hydrogel | PAM-peptide-Zn2+[ | 0.01—0.12 | 4.3—7.8 | 0.2—0.56 | —— | 0.63—1.35 |
P(NaSS-co-MPTC)[ | 1.53 | 9.4 | 2.6 | —— | 4 | |
DMAA-co-MAAc[ | 28 | ca.8 | 2 | —— | 9.3 | |
Double network | PAMPS/PAAm[ | 0.1—10 | 10—20 | 1—10 | —— | 0.1—4.4 |
hydrogel | Alginate/PAAm[ | 0.029 | 23 | 0.156 | —— | 8.7 |
PS-DN(compression)[ | 0.32—0.57 | —— | 0.21—1.6 | —— | 0.3—2.67 | |
Crystallized PVA/PAAm[ | 5 | ca.3.8 | 2.5 | —— | 14 | |
Agar/PAAm[ | 0.082 | 20 | 1 | 9 | —— | |
Agar/HPAM[ | 0.106 | 52.6 | 0.267 | 9.35 | 1 | |
Nanocomposite | PAM/CNS[ | ca. 0.1 | 121 | 0.43 | 33.9 | —— |
hydrogel | NPs-P-PAA[ | ca.0.02 | 26 | 0.11 | —— | 5.5 |
Oxidized CNT/PAACA[ | 0.028 | 14.1 | 0.364 | —— | —— | |
Clay-PNIPA[ | 0.1—1 | 10—20 | >1 | ca.10 | —— | |
PDA-pGO-PAM[ | ca.0.01 | >35 | ca.0.17 | —— | 6.78 | |
P(BMA-co-AA)/PAM[ | 0.028 | 17.4 | 0.74 | ca.6 | —— | |
(PDDA/PEI)-(PSS/PAA)[ | 0.36±0.03 | 24.3±1.5 | 1.26±0.06 | 19.53±0.48 | —— | |
Other hydrogel | NIPA-AAcNa-HPR-C[ | ca.0.01 | ca.15 | ca.0.033 | —— | —— |
Carboxyl-Fe3+/PR[ | 8.3 | 5 | 4 | —— | 10 | |
Tetra-PEG[ | 0.054 | 7.4 | 0.136 | 0.59 | —— | |
Tetra-PEG Protein[ | 0.027 | 2.5 | 0.035 | —— | —— |
Fig.4 Chemical and crosslinking structures of CB[8]-PAM single network hydrogel[49](A) and PAM-Peptide-Zn2+ hydrogel[50](B) (A) Copyright 2017, WILEY-VCH; (B) Open access.
Fig.5 Illustration of the mechanism of PAMPS/PAAm double network hydrogels (A) Chemical structure and crosslinking[53]; (B) schematic of the tensile experiments; (C) stretch mechanism[81].(A) Copyright 2009, American Chemical Society; (C) Copyright 2010, Royal Society of Chemistry.
Fig.6 Chemical structures and crosslinking of double network hydrogels based on hybrids of physical and chemical cross-linkers (A) Self-assembled peptides used in PS-DN hydrogels[54]; (B) chemical structures and crosslinking in crystallized PVA/PAAm hydrogels[55]. (A) Copyright 2016, Wiley-VCH; (B) Copyright 2014, Royal Society of Chemistry.
Fig.7 Illustration of the mechanism of nanocomposite hydrogels (A) Mechanism of the stretch of nanocomposite hydrogels; (B) 0D, 1D, 2D and 3D nanomaterials act as the cross-linker of nanocomposite hydrogels.
Fig.8 Schematic of Typical Tetra-PEG hydrogel[36](A) and Tetra-PEG protein hydrogel[66](B) (A) Copyright 2017, American Chemical Society; (B) Copyright 2018, Springer Nature.
Fig.9 Applications of stretchable and tough hydrogels on drug release[39](A), 3D printing[41](B), wearable force sensors[44](C) and supercapacitor[43](D) (A) Copyright 2015, American Chemical Society; (B, C) Copyright 2018, American Chemical Society; (D) Copyright 2019, American Chemical Society.
[1] | Yahia L., Chirani N., Gritsch L., Motta F. L., Chirani S., Fare S., J. Biomed. Sci., 2015, 4(2), 1—23 |
[2] | Kim U., Park J., Li C., Jin H., Valluzzi R., Kaplan D. L., Biomacromolecules, 2004, 5(3), 786—792 |
[3] | Griffith L. G., Naughton G., Science, 2002, 295(5557), 1009—1014 |
[4] | Tang J. D., Mura C., Lampe K. J., J. Am. Chem. Soc., 2019, 141(12), 4886—4899 |
[5] |
Han L., Lu X., Liu K., Wang K., Fang L., Weng L., Zhang H., Tang Y., Ren F., Zhao C., ACS Nano, 2017, 11(3), 2561—2574
doi: 10.1021/acsnano.6b05318 URL |
[6] | Gao Y., Wu K., Suo Z., Adv. Mater., 2019, 31(6), 1806948 |
[7] |
Wu J., Chen A., Qin M., Huang R., Zhang G., Xue B., Wei J., Li Y., Cao Y., Wang W., Nanoscale, 2015, 7(5), 1655—1660
doi: 10.1039/C4NR05798H URL |
[8] | Qu J., Liang Y., Shi M., Guo B., Gao Y., Yin Z., Int. J. Biol. Macromol. 2019, 140, 255—264 |
[9] | Xie W., Zeng J., Cui Y., Li J., Li Z., Liao W., Yang X., Int. J. Ophthalmol., 2015, 8(6), 1131—1135 |
[10] | Dhivya S., Padma V. V., Santhini E., IEEE Trans. Biomed. Eng., 2015, 5(4), 22 |
[11] | Gupta A., Kowalczuk M., Heaselgrave W., Britland S. T., Martin C., Radecka I., Eur. Polym. J., 2019, 111, 134—151 |
[12] | Bassil M., Davenas J., Tahchi M. E., Sen. Actuator B: Chem. 2008, 134(2), 496—501 |
[13] | Ismail Y. A., Martinez J. G., Harrasi A. S. A., Kim S. J., Otero T. F., Sen. Actuator B: Chem., 2011, 160(1), 1180—1190 |
[14] | Banerjee H., Ren H., Soft Robot, 2017, 4(3), 191—201 |
[15] | Banerjee H., Suhail M., Ren H., Biomimetics, 2018, 3(3),, 15, 1—41 |
[16] | Cai G., Wang J., Qian K., Chen J., Li S., Lee P. S., Adv. Sci., 2017, 4(2), 1600190 |
[17] |
Jing X., Li H., Mi H., Liu Y., Feng P., Tan Y., Turng L., Sen. Actuator B: Chem., 2019, 295, 159—167
doi: 10.1016/j.snb.2019.05.082 URL |
[18] |
Choudhury N. A., Sampath S., Shukla A. K., Energ. Environ. Sci., 2009, 2(1), 55—67
doi: 10.1039/B811217G URL |
[19] | Wang Z., Tao F., Pan Q., J. Mater. Chem., 2016, 4(45), 17732—17739 |
[20] | Simha N. K., Carlson C. S., Lewis J., J. Mater. Sci. Mater. Med., 2004, 15(5), 631—639 |
[21] | Lake G. J., Rubber Chem. Technol., 1995, 68(3), 435—460 |
[22] |
Guo J., Liu M., Zehnder A. T., Zhao J., Narita T., Creton C., Hui C., J. Mech. Phys. Solids, 2018, 120, 79—95
doi: 10.1016/j.jmps.2018.03.009 URL |
[23] | Lucantonio A., Noselli G., Trepat X., Desimone A., Arroyo M., Phys. Rev. Lett., 2015, 115(18), 188105 |
[24] | Sun J., Zhao X., Illeperuma W. R. K., Chaudhuri O., Oh K. H., Mooney D. J., Vlassak J. J., Suo Z., Nature, 2012, 489(7414), 133—136 |
[25] | Hu Y., Han W., Huang G., Zhou W., Yang Z., Wang C., Macromol. Chem. Phys., 2016, 217(240), 2717—2725 |
[26] | Shi F. K., Zhong M., Zhang L. Q., Liu X. Y., Xie X. M., J. Mat. Chem. B, 2016, 4(37), 6221—6227 |
[27] |
Li C., Zhou X., Shao Y., Chen P., Xing Y., Yang Z., Li Z., Liu D., Materials Chemistry Frontiers, 2017, 1(4), 654—659
doi: 10.1039/C6QM00176A URL |
[28] |
Sakai T., Matsunaga T., Yamamoto Y., Ito C., Yoshida R., Suzuki S., Sasaki N., Shibayama M., Chung U., Macromolecules, 2008, 41(14), 5379—5384
doi: 10.1021/ma800476x URL |
[29] |
Pan W., Wen H., Niu L., Su C., Liu C., Zhao J., Mao C., Liang D., Soft Matter, 2016, 12(25), 5537—5541
doi: 10.1039/C6SM00283H URL |
[30] | Ahmed E. M., J. Adv. Res., 2015, 6(2), 105—121 |
[31] | Chen Q., Chen H., Zhu L., Zheng J., J. Mat. Chem. B, 2015, 3(18), 3654—3676 |
[32] | Nakayama A., Kakugo A., Gong J. P., Osada Y., Takai M., Erata T., Kawano S., Adv. Funct. Mater., 2004, 14(11), 1124—1128 |
[33] | Chen H., Chen Q., Hu R., Wang H., Newby B. Z., Chang Y., Zheng J., J. Mat. Chem. B, 2015, 3(27), 5426—5435 |
[34] | Shao C., Chang H., Wang M., Xu F., Yang J., ACS Appl. Mater. Interfaces, 2017, 9(34), 28305—28318 |
[35] |
Lei Y., Zhang G., Jiang H., Li F., Liu H., Xia Y., Zhang Y., Xin F., Zhang X., Li H., Polym. Compos., 2019, 40(3), 942—951
doi: 10.1002/pc.v40.3 URL |
[36] | Ishii S., Kokubo H., Hashimoto K., Imaizumi S., Watanabe M., Macromolecules, 2017, 50(7), 2906—2915 |
[37] | Imran D. A., Esaki K., Gotoh H., Seki T., Ito K., Sakai Y., Takeoka Y., Nat. Commun., 2014, 5, 5124 |
[38] | Zheng S. Y., Liu C., Jiang L., Lin J., Qian J., Mayumi K., Wu Z. L., Ito K., Zheng Q., Macromolecules, 2019, 52(17), 6748—6755 |
[39] | Di J., Yao S., Ye Y., Cui Z., Yu J., Ghosh T. K., Zhu Y., Gu Z., ACS Nano, 2015, 9(9), 9407—9415 |
[40] | Gan D., Han L., Wang M., Xing W., Xu T., Zhang H., Wang K., Fang L., Lu X., ACS Appl. Mater. Interfaces, 2018, 10(42), 36218—36228 |
[41] | Li X., Wang H., Li D., Long S., Zhang G., Wu Z., ACS Appl. Mater. Interfaces, 2018, 10(37), 31198—31207 |
[42] |
Zheng W. J., An N., Yang J. H., Zhou J., Chen Y. M., ACS Appl. Mater. Interfaces, 2015, 7(3), 1758—1764
doi: 10.1021/am507339r URL |
[43] | Fang L., Cai Z., Ding Z., Chen T., Zhang J., Chen F., Shen J., Chen F., Li R., Zhou X., Xie Z., ACS Appl. Mater. Interfaces, 2019, 11(24), 21895—21903 |
[44] |
Wei S., Qu G., Luo G., Huang Y., Zhang H., Zhou X., Wang L., Liu Z., Kong T., ACS Appl. Mater. Interfaces, 2018, 10(13), 11204—11212
doi: 10.1021/acsami.8b00379 URL |
[45] | Lake G. J., Thomas A. G., Tabor D., Proc. R. Soc. A, 1967, 300(1460), 108—119 |
[46] |
Yang C., Yin T., Suo Z., J. Mech. Phys. Solids, 2019, 131, 43—55
doi: 10.1016/j.jmps.2019.06.018 URL |
[47] |
Gong J. P., Katsuyama Y., Kurokawa T., Osada Y., Adv. Mater., 2003, 15(14), 1155—1158
doi: 10.1002/adma.200304907 URL |
[48] |
Naficy S., Brown H. R., Razal J. M., Spinks G. M., Whitten P. G., Aust. J. Chem., 2011, 64(8), 1007—1025
doi: 10.1071/CH11156 URL |
[49] |
Liu J., Tan C. S. Y., Yu Z., Li N., Abell C., Scherman O. A., Adv. Mater., 2017, 29(22), 1605325
doi: 10.1002/adma.v29.22 URL |
[50] |
Zeng L., Song M., Gu J., Xu Z., Xue B., Li Y., Cao Y., Biomimetics, 2019, 4(2), 36
doi: 10.3390/biomimetics4020036 URL |
[51] |
Sun T. L., Kurokawa T., Kuroda S., Bin Ihsan A., Akasaki T., Sato K., Haque M. A., Nakajima T., Gong J. P., Nat. Mater., 2013, 12(10), 932—937
doi: 10.1038/nmat3713 URL |
[52] |
Hu X., Vatankhah-Varnoosfaderani M., Zhou J., Li Q., Sheiko S. S., Adv. Mater., 2015, 27(43), 6899—6905
doi: 10.1002/adma.201503724 URL |
[53] |
Nakajima T., Furukawa H., Tanaka Y., Kurokawa T., Osada Y., Gong J. P., Macromolecules, 2009, 42(6), 2184—2189
doi: 10.1021/ma802148p URL |
[54] |
Sun W., Xue B., Li Y., Qin M., Wu J., Lu K., Wu J., Cao Y., Zhang P., Wang Y., Adv. Funct. Mater., 2016, 26, 9044—9052
doi: 10.1002/adfm.v26.48 URL |
[55] |
Li J., Suo Z., Vlassak J. J., J. Mat. Chem. B, 2014, 2(39), 6708—6713
doi: 10.1039/C4TB01194E URL |
[56] |
Chen Q., Zhu L., Zhao C., Wang Q., Zheng J., Adv. Mater., 2013, 25(30), 4171—4176
doi: 10.1002/adma.201300817 URL |
[57] |
Chen Q., Zhu L., Chen H., Yan H., Huang L., Yang J., Zheng J., Adv. Funct. Mater., 2015, 25(10), 1598—1607
doi: 10.1002/adfm.201404357 URL |
[58] |
Sun G., Li Z., Liang R., Weng L. T., Zhang L., Nat. Commun., 2016, 7(1), 12095
doi: 10.1038/ncomms12095 URL |
[59] |
Gan D., Xing W., Jiang L., Fang J., Zhao C., Ren F., Fang L., Wang K., Lu X., Nat. Commun., 2019, 10(1), 1487
doi: 10.1038/s41467-019-09351-2 URL |
[60] | Rehman H. U., Chen Y., Guo Y., Du Q., Zhou J., Guo Y., Duan H., Li H., Liu H., Compos. Pt. A: Appl.Sci. Manuf., 2016, 90, 250—260 |
[61] |
Haraguchi K., Li H. J., Macromolecules, 2006, 39(5), 1898—1905
doi: 10.1021/ma052468y URL |
[62] |
Han L., Lu X., Wang M., Gan D., Deng W., Wang K., Fang L., Liu K., Chan C. W., Tang Y., Weng L. T., Yuan H., Small, 2017, 13(2), 1601916
doi: 10.1002/smll.v13.2 URL |
[63] |
Xu K., Liang X., Li P., Deng Y., Pei X., Tan Y., Zhai K., Wang P., Polymer, 2017, 118, 58—67
doi: 10.1016/j.polymer.2017.04.055 URL |
[64] |
Yuan T., Cui X., Liu X., Qu X., Sun J., Macromolecules, 2019, 52(8), 3141—3149
doi: 10.1021/acs.macromol.9b00053 URL |
[65] |
Imran A. B., Esaki K., Gotoh H., Seki T., Ito K., Sakai Y., Takeoka Y., Nat. Commun., 2014, 5(1), 5124
doi: 10.1038/ncomms6124 URL |
[66] |
Wu J., Li P., Dong C., Jiang H., Bin X., Gao X., Qin M., Wang W., Bin C., Cao Y., Nat. Commun., 2018, 9(1), 620
doi: 10.1038/s41467-018-02917-6 URL |
[67] |
Wu X., Huang W., Wu W. H., Xue B., Xiang D., Li Y., Qin M., Sun F., Wang W., Zhang W. B., Cao Y., Nano Res., 2018, 11(10), 5556—5565
doi: 10.1007/s12274-017-1890-y URL |
[68] |
Xiang D., Wu X., Cao W., Xue B., Qin M., Cao Y., Wang W., Front Chem., 2020, 8, 7
doi: 10.3389/fchem.2020.00007 URL |
[69] |
Zhong M., Liu Y., Liu X., Shi F., Zhang L., Zhu M., Xie X., Soft Matter, 2016, 12(24), 5420—5428
doi: 10.1039/C6SM00242K URL |
[70] |
Liu M., Guo J., Hui C., Zehnder A. T., Extreme Mechanics Letters, 2019, 29, 100457
doi: 10.1016/j.eml.2019.100457 URL |
[71] |
Dai X., Zhang Y., Gao L., Bai T., Wang W., Cui Y., Liu W., Adv. Mater., 2015, 27(23), 3566—3571
doi: 10.1002/adma.v27.23 URL |
[72] |
Long T., Li Y., Fang X., Sun J., Adv. Funct. Mater., 2018, 28(44), 1804416
doi: 10.1002/adfm.v28.44 URL |
[73] |
Xue B., Qin M., Wang T., Wu J., Luo D., Jiang Q., Li Y., Cao Y., Wang W., Adv. Funct. Mater., 2016, 26(48), 9053—9062
doi: 10.1002/adfm.v26.48 URL |
[74] |
Xia Y., Xue B., Qin M., Cao Y., Li Y., Wang W., Sci. Rep., 7(1), 9691
doi: 10.1038/s41598-017-10162-y URL |
[75] |
Wei Z., Yang J. H., Liu Z. Q., Xu F., Zhou J. X., Zrínyi M., Osada Y., Chen Y. M., Adv. Funct. Mater., 2015, 25(9), 1352—1359
doi: 10.1002/adfm.v25.9 URL |
[76] | Li L., Yan B., Yang J., Chen L., Zeng H., Adv. Funct. Mater., 2015, 27(7), 1294—1299 |
[77] |
Yang B., Zhang Y., Zhang X., Tao L., Li S., Wei Y., Polym. Chem., 2012, 3, 3235—3238
doi: 10.1039/c2py20627g URL |
[78] | Tseng T. C., Tao L., Hsieh F. Y., Wei Y., Chiu I. M., Hsu S. H., Adv. Mater.( Deerfield Beach Fla.), 2015, 27, 3518—3524 |
[79] |
Lin P., Zhang T., Wang X., Yu B., Zhou F., Small, 2016, 12(32), 4386—4392
doi: 10.1002/smll.v12.32 URL |
[80] |
Wu Q., Wei J., Xu B., Liu X., Wang H., Wang W., Wang Q., Liu W., Sci. Rep., 2017, 7(1), 41566
doi: 10.1038/srep41566 URL |
[81] |
Gong J., Soft Matter, 2010, 6, 2583—2590
doi: 10.1039/b924290b URL |
[82] |
Bai R., Yang Q., Tang J., Morelle X. P., Vlassak J., Suo Z., Extreme Mechanics Letters, 2017, 15, 91—96
doi: 10.1016/j.eml.2017.07.002 URL |
[83] |
Xu R., Ma S., Lin P., Yu B., Zhou F., Liu W., ACS Appl. Mater. Interfaces, 2018, 10(9), 7593—7601
doi: 10.1021/acsami.7b04290 URL |
[84] | Zhang Y. S., Khademhosseini A., Science, 2017, 356(6337), eaaf3627 |
[85] |
Su T., Zhang D., Tang Z., Wu Q., Wang Q., Chem. Commun., 2013, 49(73), 8033—8035
doi: 10.1039/c3cc44296a URL |
[86] |
Gaharwar A. K., Peppas N. A., Khademhosseini A., Biotechnol. Bioeng., 2014, 111(3), 441—453
doi: 10.1002/bit.25160 URL |
[87] |
Schexnailder P., Schmidt G., Colloid. Polym. Sci., 2009, 287(1), 1—11
doi: 10.1007/s00396-008-1949-0 URL |
[88] |
Ma P. C., Siddiqui N. A., Marom G., Kim J. K., Compos. Pt. A: Appl. Sci. Manuf., 2010, 41(10), 1345—1367
doi: 10.1016/j.compositesa.2010.07.003 URL |
[89] |
Li B., Wang T., Wang X., Wu X., Wang C., Miao F., Qin M., Wang W., Cao Y., Chem.: Eur. J., 2019, 25(34), 7991—7997
doi: 10.1002/chem.v25.34 URL |
[90] |
Haraguchi K., Takehisa T., Adv. Mater., 2002, 14(16), 1120—1124
doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 URL |
[91] |
Haraguchi K., Li H. J., Matsuda K., Takehisa T., Elliott E., Macromolecules, 2005, 38(8), 3482—3490
doi: 10.1021/ma047431c URL |
[92] | Haraguchi K., Polym. J., 2011, 43(3), 223—241 |
[93] |
Peak C. W., Wilker J. J., Schmidt G., Colloid. Polym. Sci., 2013, 291(9), 2031—2047
doi: 10.1007/s00396-013-3021-y URL |
[94] |
Fu J., J. Polym. Sci., Part B: Polym. Phys., 2018, 56(19), 1336—1350
doi: 10.1002/polb.24728 URL |
[95] |
Zhao Z., Zhuo S., Fang R., Zhang L., Zhou X., Xu Y., Zhang J., Dong Z., Jiang L., Liu M., Adv. Mater., 2018, 30(51), 1804435
doi: 10.1002/adma.v30.51 URL |
[96] |
Zhao Z., Zhang K., Liu Y., Zhou J., Liu M., Adv. Mater., 2017, 29(33), 1701695
doi: 10.1002/adma.v29.33 URL |
[97] |
Matsunaga T., Sakai T., Akagi Y., Chung U. I., Shibayama M., Macromolecules, 2009, 42(4), 1344—1351
doi: 10.1021/ma802280n URL |
[98] |
Annabi N., Tamayol A., Uquillas J. A., Akbari M., Bertassoni L. E., Cha C., Camci-Unal G., Dokmeci M. R., Peppas N. A., Khademhosseini A., Adv. Mater., 2014, 26(1), 85—124
doi: 10.1002/adma.201303233 URL |
[99] |
Lin S., Liu J., Liu X., Zhao X., Proc. Natl. Acad. Sci., 2019, 116(21), 10244
doi: 10.1073/pnas.1903019116 URL |
[100] |
Zhou Y., Liao S., Tao X., Xu X. Q., Hong Q., Wu D., Wang Y., ACS Appl. Bio Mater., 2018, 1(20), 502—510
doi: 10.1021/acsabm.8b00230 URL |
[101] |
Zhou Y., Gui Q., Yu W., Liao S., He Y., Tao X., Yu Y., Wang Y., ACS Biomater. Sci. Eng., 2019, 5(11), 6311—6318
doi: 10.1021/acsbiomaterials.9b01293 URL |
[102] |
Zhai X., Ma Y., Hou C., Gao F., Zhang Y., Ruan C., Pan H., Lu W. W., Liu W., ACS Biomater. Sci. Eng., 2017, 3(6), 1109—1118
doi: 10.1021/acsbiomaterials.7b00224 URL |
[103] |
Qiao Z., Parks J., Choi P., Ji H. F., Polymers, 2019, 11(11), 1773
doi: 10.3390/polym11111773 URL |
[104] | Zhao Y., Nakajima T., Yang J., Kurokawa T., Liu J., Lu J., Mizumoto S., Sugahara K., Kitamura N., Yasuda K., Daniels A. U., Gong J. P., Adv. Mater.( Deerfield Beach Fla.), 2014, 26, 436—442 |
[105] |
Yasuda K., Gong J. P., Katsuyama Y., Nakayama A., Tanabe Y., Kondo E., Ueno M., Osada Y., Biomaterials, 2005, 26(21), 4468—4475
doi: 10.1016/j.biomaterials.2004.11.021 URL |
[106] | Arakaki K., Kitamura N., Fujiki H., Kurokawa T., Iwamoto M., Ueno M., Kanaya F., Osada Y., Gong J. P., Yasuda K., J. Biomed. Mater. Res. Part A, 2010, 93A(3), 1160—1168 |
[107] |
Liu Y., Wu Y., Zhou L., Wang Z., Dai C., Ning C., Tan G., Materials, 2017, 10(2), 191
doi: 10.3390/ma10020191 URL |
[108] |
Hong S., Sycks D., Chan H. F., Lin S., Lopez G. P., Guilak F., Leong K. W., Zhao X., Adv. Mater., 2015, 27(27), 4035—4040
doi: 10.1002/adma.201501099 URL |
[109] | Zhang Y. Z., Lee K. H., Anjum D. H., Sougrat R., Jiang Q., Kim H., Alshareef H. N., Science Advances, 2018, 4(6), eaat0098 |
[110] |
Ducrot E., Chen Y., Bulters M., Sijbesma R. P., Creton C., Science, 2014, 344(6180), 186
doi: 10.1126/science.1248494 URL |
[111] | Zeng J., Dong L., Sha W., Wei L., Guo X ., Chem. Eng. J., 2019,123098 |
[1] | 王明霞, 刘志辉, 朱镇, 李凌锋, 王博蔚. 纳米硅酸镁锂-壳聚糖-海藻酸钠复合支架材料的制备与性能[J]. 高等学校化学学报, 2021, 42(10): 3240. |
[2] | 秦春萍, 王先流, 唐寒, 易兵成, 刘畅, 张彦中. 含骨脱细胞基质电纺纤维的成骨性能[J]. 高等学校化学学报, 2020, 41(4): 780. |
[3] | 汪阮峰, 颜世峰, 胡圳, 尹静波. 原位沉淀法制备CS/nHA多孔复合支架及其性能[J]. 高等学校化学学报, 2019, 40(5): 1080. |
[4] | 周颖, 王先流, 易兵成, 余哲泡, 杨上莹, 沈炎冰, 张彦中. 具有形状记忆效应的仿生复合纳米纤维的制备与性能评价[J]. 高等学校化学学报, 2018, 39(7): 1554. |
[5] | 刘志辉, 邱添源, 杜留熠, 杨军星, 柳康, 王博蔚. 海藻酸壳聚糖可塑性支架材料的制备及表征[J]. 高等学校化学学报, 2018, 39(5): 1105. |
[6] | 龙星潼, 管娟, 陈新, 邵正中. 基于再生丝蛋白水凝胶的研究前沿[J]. 高等学校化学学报, 2018, 39(1): 1. |
[7] | 徐盛华, 夏鹏飞, 张坤玺, 高龙, 尹静波. 四氧化三铁纳米粒子表面接枝聚L-谷氨酸苄酯多孔微载体的构建和性能[J]. 高等学校化学学报, 2017, 38(7): 1295. |
[8] | 靳林, 徐钦炜, 胡彬, 黄敬斌, 张宜磊, 王振领. 基于可控定向PVDF电纺纤维构建细胞相容性的三维微环境[J]. 高等学校化学学报, 2017, 38(6): 1002. |
[9] | 李星, 颜世峰, 简宇航, 尹静波. 聚L-谷氨酸可注射水凝胶的制备及性能[J]. 高等学校化学学报, 2017, 38(5): 872. |
[10] | 张会兰, 易兵成, 王先流, 李碧云, 余哲泡, 娄向新, 张彦中. 用高度取向石墨烯/聚乳酸(Gr/PLLA)复合超细纤维构建神经导管[J]. 高等学校化学学报, 2016, 37(5): 972. |
[11] | 薛丽, 聂涛涛, 马海云. 聚乳酸组织工程支架结构的精密调控[J]. 高等学校化学学报, 2015, 36(7): 1409. |
[12] | 张伟骏, 张坤玺, 李贵飞, 张丹青, 尹静波. 海藻酸钠和壳聚糖静电复合弹性支架的制备和表征[J]. 高等学校化学学报, 2015, 36(4): 758. |
[13] | 张霞, 周浩, 杨宇红, 黄郁芳, 陈新. 氧化纤维素增强胶原水凝胶[J]. 高等学校化学学报, 2015, 36(10): 2040. |
[14] | 于美华, 杜凤移, 饶霞, 姚芳莲, 杨军. 人工细胞外基质对血管内皮细胞生存的影响[J]. 高等学校化学学报, 2013, 34(3): 746. |
[15] | 高素照, 陈际达, 亓倩倩, 舒荣德, 邱智萍, 任竞争. 高强度聚乙烯醇水凝胶微球的制备[J]. 高等学校化学学报, 2011, 32(10): 2437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||