高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1513-1520.doi: 10.7503/cjcu20200133
黄加玲1,刘凤娇1,2,王婷婷1,刘翠娥1,郑凤英1,2,王振红1,李顺兴1,2,*()
收稿日期:
2020-03-12
出版日期:
2020-07-10
发布日期:
2020-05-20
通讯作者:
李顺兴
E-mail:lishunxing@mnnu.edu.cn
基金资助:
HUANG Jialing1,LIU Fengjiao1,2,WANG Tingting1,LIU Cuie1,ZHENG Fengying1,2,WANG Zhenhong1,LI Shunxing1,2,*()
Received:
2020-03-12
Online:
2020-07-10
Published:
2020-05-20
Contact:
Shunxing LI
E-mail:lishunxing@mnnu.edu.cn
Supported by:
摘要:
以水杨酸和硫脲为原料, 通过水热法一步合成水溶性好、 稳定性强、 量子产率高(36.23%)、 呈蓝光的氮硫共掺杂碳量子点(N,S-CQDs). 在302 nm波长激发下, N,S-CQDs在发射波长409 nm处的荧光强度与pH值(在2.01~5.11范围内)线性关系良好, 相关系数为0.9931, 可原位、 实时检测胃液内pH值在Δ0.01范围内的变化. 可用于胃癌早期诊断和新生儿健康防护. 400 μg/mL N,S-CQDs孵育铜绿微囊藻细胞48 h, 存活率82.8%, 其可作为人体胃细胞荧光探针, 经人体排泄进入水环境, 对淡水浮游生物毒性低, 环境友好.
中图分类号:
黄加玲,刘凤娇,王婷婷,刘翠娥,郑凤英,王振红,李顺兴. 氮硫共掺杂碳量子点对胃液pH值的精确检测[J]. 高等学校化学学报, 2020, 41(7): 1513-1520.
HUANG Jialing,LIU Fengjiao,WANG Tingting,LIU Cuie,ZHENG Fengying,WANG Zhenhong,LI Shunxing. Nitrogen and Sulfur co-Doped Carbon Quantum Dots for Accurate Detection of pH in Gastric Juice†[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1513-1520.
Fig.4 UV-Vis absorption spectrum and fluorescence spectra of N,S-CQDs(A) and fluorescence spectroscopy of N,S-CQDs with different excitation wavelengths(B) Insets in (A) are photos of N,S-CQDs irradiated by natural light(left) and 300 nm UV light(right).
Fig.7 Effect of different metal ions on the fluorescence intensity of N,S-CQDs a. Blank; b. Na+; c. K+; d. Fe3+; e. Mn2+; f. Cd2+; g. Ca2+; h. Pb2+; i. Zn2+; j. Hg+; k. Co2+; l. Mg2+; m. Ni2+.
Fig.8 Fluorescence emission spectra of N,S-CQDs with different concentrations of Fe(Ⅲ)(A) and the linear relationship between(F0-F)/F0 and Fe(Ⅲ) concentration(B)
Fig.9 Influence of pH value on the fluorescence intensity of N,S-CQDs in gastric juice(A) and the linear relationship between FL intensity at 409 nm and pH value(B) pH: a. 2.01; b. 2.26; c. 2.53; d. 2.76; e. 3.00; f. 3.26; g. 3.53; h. 3.77; i. 3.99; j. 4.20; k. 4.54; l. 5.11.
Carbon quantum dots | Raw material | Linear range | Quantum yield(%) | Sample | Ref. |
---|---|---|---|---|---|
dCDs | o-Phenylenediamine phosphoric acid | 1.5—5.0 | 10.34 | E. coli | [ |
DECDs | o-Phenylenediamine polyethylene glycol oxalic acid | 2.2—4.0 | 4.72(integrating sphere) | pH test papers | [ |
N,S-CDs | Ammoniumpersulfate, glucose, ethylenediamine | 3.0—10.0 | 10.34 | HePG2 cells | [ |
N-OGQDs | CA, L-DOPA | 4—8 | 18.0 | | [ |
S-doped carbon dots | Waste frying oil, sulfuric acid | 3.0—9.0 | 3.66 | Helacells | [ |
N,S-CQDs | L-cysteine NH3·H2O | 5.5—7.0 | 17.2 | Silk fiber | [ |
N,S-QDs | Salicylic acid, thiourea | 2.01—5.11 | 36.23 | Human gastric juice | This work |
Table 1 pH Detection with carbon quantum dot-based fluorescent probes
Carbon quantum dots | Raw material | Linear range | Quantum yield(%) | Sample | Ref. |
---|---|---|---|---|---|
dCDs | o-Phenylenediamine phosphoric acid | 1.5—5.0 | 10.34 | E. coli | [ |
DECDs | o-Phenylenediamine polyethylene glycol oxalic acid | 2.2—4.0 | 4.72(integrating sphere) | pH test papers | [ |
N,S-CDs | Ammoniumpersulfate, glucose, ethylenediamine | 3.0—10.0 | 10.34 | HePG2 cells | [ |
N-OGQDs | CA, L-DOPA | 4—8 | 18.0 | | [ |
S-doped carbon dots | Waste frying oil, sulfuric acid | 3.0—9.0 | 3.66 | Helacells | [ |
N,S-CQDs | L-cysteine NH3·H2O | 5.5—7.0 | 17.2 | Silk fiber | [ |
N,S-QDs | Salicylic acid, thiourea | 2.01—5.11 | 36.23 | Human gastric juice | This work |
[1] |
Tang G., Hart R., Sholzberg M., Brezden-Masley C., Eur. J. Gastroenterol. Hepatol., 2018, 30(12), 1497—1501
doi: 10.1097/MEG.0000000000001251 URL pmid: 30179903 |
[2] | Xu Z. J., Lin S. R., Zhou L. Y., Ding S. G., Li Y., Geng Q. M., Chin. J. Gastroenter., 2004, 9(4), 213—216 |
( 徐志洁, 林三仁, 周丽雅, 丁士刚, 李渊, 耿秋明. 胃肠病学, 2004, 9(4), 213—216) | |
[3] | Pi Y. J., You Y., Hao Q. Y., Chinese Nursing Research, 2015, 29(12C), 4578—4580 |
( 皮玉菊, 游勇, 郝群英. 护理研究, 2015, 29(12C), 4578—4580) | |
[4] | Li Z. H., Wang D. H., Chin. J. Perinat. Med., 2013, 16(12), 722—724 |
( 李正红, 王丹华. 中华围产医学杂志, 2013, 16(12), 722—724) | |
[5] | Hu X. M., ., Chin. J. Prac. Nurs., 2013, 29(027), 50—51 |
( 胡小梅. 中国实用护理杂志, 2013, 29(027), 50—51) | |
[6] | Sun L. X., Jia J., Li F. F., Systems Medicine, 2017, 2(1), 146—148 |
( 孙丽霞, 贾静, 李方方. 系统医学, 2017, 2(1), 146—148) | |
[7] | Chen J., Zhang Y. N., Hao Q. Y., J. Kunming Med. Univ., 2015, 36(10), 118—120 |
( 陈军, 张燕妮, 郝群英. 昆明医科大学学报, 2015, 36(10), 118—120) | |
[8] |
Li H., Kang Z., Liu Y., Lee S. T., J. Mater. Chem., 2012, 22(46), 24230—24253
doi: 10.1039/c2jm34690g URL |
[9] |
Krishna A. S., Radhakumary C., Antony M., Sreenivasan K., J. Mater. Chem. B, 2014, 2(48), 8626—8632
URL pmid: 32262221 |
[10] |
Li H., Liu R., Kong W., Liu J., Liu Y., Zhou L., Zhang X., Lee S. T., Kang Z., Nanoscale, 2014, 6(2), 867—873
URL pmid: 24270880 |
[11] | Liu Y., Wu P., Mater. Interfaces, 2013, 5(8), 3362—3369 |
[12] | Zhang Y., Chan K. F., Wang B., Chiu P. W. Y., Zhang L., Sens. Actuators B, 2018, 271, 128—136 |
[13] | Wang R., Wang X., Sun Y., Sens. Actuators B, 2017, 241, 73—79 |
[14] |
Kong B., Zhu A., Ding C., Zhao X., Li B., Tian Y., Adv. Mater., 2012, 24(43), 5844—5848
URL pmid: 22933395 |
[15] |
Atchudan R., Edison T. N. J. I., Aseer K. R., Perumal S., Karthik N., Lee Y. R., Biosens. Bioelectron., 2018, 99, 303—311
doi: 10.1016/j.bios.2017.07.076 URL |
[16] |
Li L. S., Jiao X. Y., Zhang Y., Cheng C., Huang K., Xu L., Sens. Actuators B, 2018, 268, 84—92
doi: 10.1016/j.snb.2018.03.189 URL |
[17] |
Tao H., Yang K., Ma Z., Wan J., Zhang Y., Kang Z., Liu Z., Small, 2012, 8(2), 281—290
URL pmid: 22095931 |
[18] |
Yang K., Gong H., Shi X., Wan J., Zhang Y., Liu Z., Biomaterials, 2013, 34(11), 2787—2795
URL pmid: 23340196 |
[19] |
Guo Y., Cao F., Li Y., Sens. Actuators B, 2018, 255, 1105—1111
doi: 10.1016/j.snb.2017.08.104 URL |
[20] | Tang D., Liu J., Wu X., Liu R., Han X., Han Y., Huang H., Liu Y., Kang Z., Mater. Interfaces, 2014, 6(10), 7918—7925 |
[21] |
Song Z., Quan F., Xu Y., Liu M., Cui L., Liu J., Carbon, 2016, 104, 169—178
doi: 10.1016/j.carbon.2016.04.003 URL |
[22] |
Zhuang Q., Si X., Li L., Zeng H., Ding Y., Talanta, 2020, 208, 119780
URL pmid: 31816740 |
[23] | Song W., Duan W., Liu Y., Ye Z., Chen Y., Chen H., Qi S., Wu J., Liu D., Xiao L., Anal. Chem., 2017, 89(24), 13626—13633 |
[24] | Wang Z. H., Zhang H. P., Luo Z. X., Environmental Science, 2016, 37(7), 2570—2576 |
( 王振红, 张汉鹏, 罗专溪. 环境科学, 2016, 37(7), 2570—2576) | |
[25] | Lin L. X., Li S. X., Zheng F. Y., Chinese J. Anal. Chem., 2010, 38(6), 823—827 |
( 林路秀, 李顺兴, 郑凤英. 分析化学, 2010, 38(6), 823—827) | |
[26] |
Ding H., Wei J. S., Xiong H. M., Nanoscale, 2014, 6(22), 13817—13823
URL pmid: 25297983 |
[27] |
Li Y., Liu F., Cai J., Huang X., Lin L., Lin Y., Yang H., Li S., Microchem. J., 2019, 147, 1038—1047
doi: 10.1016/j.microc.2019.04.015 URL |
[28] |
Wu C. W., Wei Y. Y., Chi C. W., Lui W. Y., P'eng F. K., Chung C., Dig. Dis. Sci., 1996, 41(1), 119—125
URL pmid: 8565743 |
[29] |
Lu W., Qin X., Liu S., Chang G., Zhang Y., Luo Y., Asiri A. M., Al-Youbi A. O., Sun X., Anal. Chem., 2012, 84(12), 5351—5357
URL pmid: 22681704 |
[30] | Dong Y., Pang H., Yang H. B., Guo C., Shao J., Chi Y., Li C. M., Yu T., Angew. Chem. Int. Ed., 2013, 52(30), 7800—7804 |
[31] | Choi Y., Kang B., Lee J., Kim S., Kim G. T., Kang H., Lee B. R., Kim H., Shim S. H., Lee G., Chem. Mater., 2016, 28(19), 6840—6847 |
[32] |
Joseph J., Anappara A. A., PCCP, 2017, 19(23), 15137—15144
URL pmid: 28561114 |
[33] | Liu W., Diao H., Chang H., Wang H., Li T., Wei W., Sens. Actuators B, 2017, 241, 190—198 |
[34] | Meng A., Xu Q., Zhao K., Li Z., Liang J., Li Q., Sens. Actuators B, 2018, 255, 657—665 |
[35] | Lin Y., Li Y. H., Yang H., Huang H. P., Li L., Li S. X., Chinese J. Anal. Chem., 2019, 47(5), 748—755 |
( 林烨, 李跃海, 杨辉, 黄虹浦, 李琳, 李顺兴. 分析化学, 2019, 47(5), 748—755) | |
[36] | Huang H., Li C. G., Shi Z., Feng S. H., Chem. J. Chinese Universities, 2019, 40(8), 1579—1585 |
( 黄贺, 李春光, 施展, 冯守华. 高等学校化学学报, 2019, 40(8), 1579—1585) | |
[37] | Kimura I., Yamana M., Gastroenterol. Jpn., 1969, 4(2), 127—127 |
[38] | Xu Y., Chen Y. H., Ding L., Chem. J. Chinese Universities, 2018, 39(7), 1420—1426 |
( 徐源, 陈艳华, 丁兰. 高等学校化学学报, 2018, 39(7), 1420—1426) | |
[39] | Xia C., Cao M., Xia J., Zhou G., Jiang D., Zhang D., Wang J., Li H., J. Mater. Chem. C, 2019, 7(9), 2563—2569 |
[40] |
Shi B., Zhang L., Lan C., Zhao J., Su Y., Zhao S., Talanta, 2015, 142, 131—139
URL pmid: 26003702 |
[41] | Hu Y., Yang J., Tian J., Jia L., Yu J. S., Carbon, 2014, 77, 775—782 |
[1] | 赵国庆, 袁钊, 王连, 郭卓. 磷化镍/氮硫双掺杂石墨烯复合材料的制备及电催化析氢性能[J]. 高等学校化学学报, 2020, 41(7): 1575-1581. |
[2] | 祝玉鑫, 欧阳杰, 宋艳华, 唐盛, 崔言娟. 硼碘共掺杂氮化碳的制备及光解水制氢性能[J]. 高等学校化学学报, 2020, 41(7): 1645-1652. |
[3] | 熊俊宇, 王姗姗, 许颜清, 胡长文. 原子级分散Fe-N-C温和条件下选择性氧化催化特性[J]. 高等学校化学学报, 2020, 41(6): 1262-1268. |
[4] | 程时富,胡皓,陈必华,吴海虹,高国华,何鸣元. 双离子液体基多孔炭的制备与电化学性能[J]. 高等学校化学学报, 2020, 41(5): 1048-1057. |
[5] | 王霞, 刘彦吉, 贾永锋, 吉磊, 胡全丽, 段莉梅, 刘景海. 含氮多孔纳米碳纤维的制备及对锂硫电池容量的提高[J]. 高等学校化学学报, 2020, 41(4): 829-837. |
[6] | 赵鹏,张晋腾,林艳红. Mg-ZnO复合物的紫外光催化效率及协同作用研究[J]. 高等学校化学学报, 2020, 41(3): 538-547. |
[7] | 韩洪晶,葛芹,陈彦广,王海英,赵宏志,王怡真,张亚男,邓冀童,宋华,张梅. Ca1-xPrxFeO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2020, 41(2): 331-340. |
[8] | 赵艳锋,孙效龙,胡绍争,王辉,王菲,李萍. 氧掺杂对VN-g-C3N4催化剂光催化固氮性能的影响[J]. 高等学校化学学报, 2020, 41(1): 132-139. |
[9] | 王金金, 戚少龙, 杜建时, 杨清彪, 宋岩, 李耀先. 苯并噻唑类荧光探针的合成及对N2H4·H2O和HS |
[10] | 董向阳, 牛晓青, 魏济时, 熊焕明. 一步水热法制备铜掺杂纳米碳点及其在白光器件中的应用[J]. 高等学校化学学报, 2019, 40(6): 1288-1292. |
[11] | 马东玮, 田润赛, 刘振江, 冯源源, 丁泓宇, 冯季军. Na掺杂Li2-xNaxMnSiO4/C正极材料的微波辅助合成与电化学性能[J]. 高等学校化学学报, 2019, 40(6): 1280-1287. |
[12] | 刘欢欢, 袁龙, 刘景海, 侯长民, 冯守华. 铁掺杂钐镓石榴石Sm3Ga5-xFexO12(x=1,2,3,4)可逆热致变色材料的合成与表征[J]. 高等学校化学学报, 2019, 40(4): 652-658. |
[13] | 张勇,申城,幸志荣,陈归柒,卢资,侯志兵,陈雪梅. 可视化检测次氯酸的苯并咪唑类荧光增强型探针[J]. 高等学校化学学报, 2019, 40(12): 2480-2485. |
[14] | 张莹莹,黄译文,赵冰,王丽艳,宋波. Cr 3+比色荧光探针的合成及细胞成像应用[J]. 高等学校化学学报, 2019, 40(12): 2486-2493. |
[15] | 段玉珍,朱金玉,郭俊明,向明武,刘晓芳,白红丽,苏长伟. 尖晶石型锰酸锂正极材料LiNi0.01Co0.03Mn1.96O4的合成及电化学性能[J]. 高等学校化学学报, 2019, 40(12): 2574-2582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||