高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (9): 2842.doi: 10.7503/cjcu20210354

• 物理化学 • 上一篇    下一篇

Sc, Ti, V修饰B/N掺杂单缺陷石墨烯的储氢研究

马丽娟(), 高升启, 荣祎斐, 贾建峰, 武海顺   

  1. 山西师范大学化学与材料科学学院, 磁性分子与磁信息材料教育部重点实验室, 临汾 041004
  • 收稿日期:2021-05-21 出版日期:2021-09-10 发布日期:2021-09-08
  • 通讯作者: 马丽娟 E-mail:malijuan19852223@163.com
  • 基金资助:
    国家自然科学基金青年科学基金(21805176);山西省青年科技研究基金(201901D211394);山西省研究生创新项目(2020SY332);山西师范大学校级创新项目(2020XSY030)

Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene

MA Lijuan(), GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun   

  1. Key Laboratory of Magnetic Molecules & Magnetic Information Materials,Ministry of Education,School of Chemical and Material Science,Shanxi Normal University,Linfen 041004,China
  • Received:2021-05-21 Online:2021-09-10 Published:2021-09-08
  • Contact: MA Lijuan E-mail:malijuan19852223@163.com
  • Supported by:
    the National Natural Science Foundation of China(21805176);the Natural Science Foundation for Young Scientists of Shanxi Province, China(201901D211394);the Shanxi Province Postgraduate Innovation Project, China(2020SY332);the Innovation Project of Shanxi Normal University, China(2020XSY030)

摘要:

3d过渡金属修饰是改善石墨烯储氢性能的最有效途径, 但仍存在金属团聚和H2解离导致难以脱附的问题. 提出了B/N掺杂单缺陷石墨烯(BMG/NMG)的策略来避免以上两个问题. 密度泛函理论计算结果表明, N掺杂可以使Sc, Ti, V与石墨烯的结合能提高3~4倍, B掺杂可以将Sc与石墨烯的结合能提高3倍. Sc/BMG和Sc/NMG吸附的第一个H2不会解离. Sc/BMG中Sc吸附5个H2, 平均氢分子结合能为-0.18~-0.43 eV, 并且可以通过在同侧锚定多个Sc原子形成Sc/C3B2五元环增加H2吸附位点. Sc/NMG中每个Sc吸附6个H2, 平均氢分子结合能为-0.17~-0.29 eV, 还可以通过在异侧修饰形成Sc/N3/Sc单元进一步提高储氢能力. 研究结果将为设计基于3d过渡金属修饰碳材料的储氢材料提供理论基础.

关键词: 储氢, 硼/氮掺杂, 单缺陷石墨烯, 过渡金属, 密度泛函理论

Abstract:

3d Transition-metal decorating is the most effective way to improve the hydrogen storage performance of graphene. However, metal agglomeration and dissociation of H2 greatly limit their application. In this paper, B/N doping was proposed to avoid the above two problems. Density functional theory calculations show that the binding energy of Sc can be greatly increased by B/N doping. Both Sc/BMG and Sc/NMG can be used as potential hydrogen storage materials because the first adsorbed H2 is molecular. Sc/BMG could adsorb 5H2 with the average hydrogen adsorption energy of -0.18─-0.43 eV. The H2 adsorption sites of BMG could be increased by forming multiple Sc/C3B2 units. Sc/NMG could adsorb 6H2 with the average hydrogen adsorption energy of -0.17─-0.29 eV. The hydrogen storage capacity of Sc/NMG could be further improved by the formation of Sc/N3/Sc units.

Key words: Hydrogen storage, B/N-doped, Monovacancy graphene, 3d Transition metal, Density functional theory

中图分类号: 

TrendMD: