高等学校化学学报 ›› 2013, Vol. 34 ›› Issue (6): 1483.doi: 10.7503/cjcu20120911

• 物理化学 • 上一篇    下一篇

中心核对四硫富瓦烯端基星型分子结构和性质的影响

温智1,2, 阚玉和1,2, 闫文艳1,2, 丁艳艳1, 王新龙2   

  1. 1. 淮阴师范学院化学化工学院, 江苏省低维材料化学重点建设实验室, 淮安 223300;
    2. 东北师范大学化学学院, 功能材料化学研究所, 长春 130024
  • 收稿日期:2012-10-05 出版日期:2013-06-10 发布日期:2013-05-17
  • 通讯作者: 阚玉和,男,博士,教授,主要从事应用量子化学研究.E-mail:yhkan@nenu.edu.cn E-mail:yhkan@nenu.edu.cn
  • 基金资助:

    国家自然科学基金(批准号: 20703008)、 江苏省自然科学基金(批准号: BK2011408)和淮阴师范学院高级别科研项目培育基金(批准号: 11HSGJBZ11)资助.

Impact of Core on Structures and Properties of Tetrathiafulvalene Terminated Star-shaped Molecules

WEN Zhi1,2, KAN Yu-He1,2, YAN Wen-Yan1,2, DING Yan-Yan1, WANG Xin-Long2   

  1. 1. Key Laboratory for Chemistry of Low-dimensional Materials of Jiangsu Province, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China;
    2. Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
  • Received:2012-10-05 Online:2013-06-10 Published:2013-05-17

摘要:

采用密度泛函理论方法对以四硫富瓦烯(TTF)为端基、 苯乙烯为桥的5种不同中心核(富电子核: 氮、 三聚咔唑及三聚吲哚; 缺电子核: 三嗪及三聚喹喔啉)构成的星型三支D-π-A型化合物的几何结构、 电子吸收光谱及电荷转移性质进行了研究. 结果表明, 通过改变中心核的类型, 可有效调节LUMO能级, 改变能隙的大小. 电荷差分密度及跃迁密度矩阵分析结果表明, 两支内的TTF端基与核到共轭桥链的电荷转移跃迁及少量的ππ*跃迁对高能吸收带有贡献; 缺电子核化合物的低能吸收峰主要是TTF端基到桥链和中心核的电荷转移跃迁贡献, 不同于富电子核化合物明显的TTF贡献的支内定域电荷转移跃迁. 重组能计算表明, 除化合物NST(中心核为氮)外, 其余4个化合物的空穴重组能(λh)与电子重组能(λe)相当, 中心核为三聚咔唑的化合物CST重组能相对较小.

关键词: 星型分子, 四硫富瓦烯, 中心核, 电荷转移, 密度泛函理论

Abstract:

The geometries, electronic absorption spectra and charge transfer properties of five novel star-shaped compounds with different core(electron-rich core: nitrogen, triazatruxene and triindole; electron-deficient core: 1,3,5-triazine and triquinoxaline), styrene as bridge and tetrathiafulvalene(TTF) as a terminal group, were studied with density functional theory(DFT) method. The results show that LUMO levels and energy gaps can be adjusted effectively via altering the cores. The time-dependent DFT calculation indicates that there are two absorption bands in 300-450 nm. The results of the transition density matrix and charge difference density reveal that high energy excitation mainly arises from charge transfer from TTF donor moiety to core and bridge moiety. The low-lying excitations in electron-deficient core compounds are predominantly TTF donor-bridge and core charge transfer transition from two intra-branch. This differs from electron-rich compounds, whose low-energy transitions are assigned to prominently intra-branch localized excitation from TTF moiety. The reorganization calculations show that the hole and electronic reorganization energy are nearly equal except NST, and CST shows the lowest reorganization energy.

Key words: Star-shaped molecule, Tetrathiafulvalene, Core, Charge transfer, Density functional theory

中图分类号: 

TrendMD: