Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (2): 20240455.doi: 10.7503/cjcu20240455
• Physical Chemistry • Previous Articles Next Articles
WANG Lanyi1, WANG Shiwei1, CHEN Xinyu1, YU Di2, ZHANG Chunlei2, FAN Xiaoqiang1, YU Xuehua1(), ZHAO Zhen1,2(
)
Received:
2024-10-08
Online:
2025-02-10
Published:
2024-12-07
Contact:
YU Xuehua, ZHAO Zhen
E-mail:yuxuehua1986@163.com;zhenzhao@cup.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Lanyi, WANG Shiwei, CHEN Xinyu, YU Di, ZHANG Chunlei, FAN Xiaoqiang, YU Xuehua, ZHAO Zhen. Preparation of MO δ /3DOM ZSM-5 Catalysts and Their Catalytic Performance for the Simultaneous Removal of Soot and NOx[J]. Chem. J. Chinese Universities, 2025, 46(2): 20240455.
Catalyst | SBETa /(m2‧g‒1) | Smicrob /(m2‧g‒1) | Vtotalc /(cm3‧g‒1) | Vmicrod /(cm3‧g‒1) | Dpe /nm |
---|---|---|---|---|---|
3DOM ZSM⁃5 | 641.3 | 177.7 | 0.784 | 0.091 | 4.5 |
MnOδ/3DOM ZSM⁃5 | 435.4 | 121.4 | 0.624 | 0.062 | 5.7 |
FeOδ/3DOM ZSM⁃5 | 426.9 | 142.0 | 0.632 | 0.073 | 5.9 |
CoOδ/3DOM ZSM⁃5 | 432.1 | 116.5 | 0.685 | 0.059 | 6.3 |
CeOδ/3DOM ZSM⁃5 | 354.1 | 109.9 | 0.505 | 0.056 | 5.7 |
PrOδ/3DOM ZSM⁃5 | 255.8 | 57.3 | 0.449 | 0.029 | 7.0 |
WOδ/3DOM ZSM⁃5 | 292.5 | 57.9 | 0.466 | 0.030 | 6.4 |
Table 1 Textural properties of MOδ/3DOM ZSM-5 catalysts
Catalyst | SBETa /(m2‧g‒1) | Smicrob /(m2‧g‒1) | Vtotalc /(cm3‧g‒1) | Vmicrod /(cm3‧g‒1) | Dpe /nm |
---|---|---|---|---|---|
3DOM ZSM⁃5 | 641.3 | 177.7 | 0.784 | 0.091 | 4.5 |
MnOδ/3DOM ZSM⁃5 | 435.4 | 121.4 | 0.624 | 0.062 | 5.7 |
FeOδ/3DOM ZSM⁃5 | 426.9 | 142.0 | 0.632 | 0.073 | 5.9 |
CoOδ/3DOM ZSM⁃5 | 432.1 | 116.5 | 0.685 | 0.059 | 6.3 |
CeOδ/3DOM ZSM⁃5 | 354.1 | 109.9 | 0.505 | 0.056 | 5.7 |
PrOδ/3DOM ZSM⁃5 | 255.8 | 57.3 | 0.449 | 0.029 | 7.0 |
WOδ/3DOM ZSM⁃5 | 292.5 | 57.9 | 0.466 | 0.030 | 6.4 |
Catalyst | OⅡ/OⅠ content ratio | NH3 desorption | |
---|---|---|---|
Weak acid content/(μmol‧g‒1) | Medium acid content/(μmol‧g‒1) | ||
3DOM ZSM⁃5 | — | 37.5 | — |
MnOδ/3DOM ZSM⁃5 | 0.9 | 19.5 | 8.0 |
FeOδ/3DOM ZSM⁃5 | 0.8 | 19.9 | 6.8 |
CoOδ/3DOM ZSM⁃5 | 0.8 | 23.0 | 7.8 |
CeOδ/3DOM ZSM⁃5 | 0.7 | 21.5 | 6.6 |
PrOδ/3DOM ZSM⁃5 | 0.8 | 20.4 | 4.3 |
WOδ/3DOM ZSM⁃5 | 0.7 | 32.2 | 9.1 |
Table 2 Ionic ratios and acid content of MOδ/3DOM ZSM-5 catalysts
Catalyst | OⅡ/OⅠ content ratio | NH3 desorption | |
---|---|---|---|
Weak acid content/(μmol‧g‒1) | Medium acid content/(μmol‧g‒1) | ||
3DOM ZSM⁃5 | — | 37.5 | — |
MnOδ/3DOM ZSM⁃5 | 0.9 | 19.5 | 8.0 |
FeOδ/3DOM ZSM⁃5 | 0.8 | 19.9 | 6.8 |
CoOδ/3DOM ZSM⁃5 | 0.8 | 23.0 | 7.8 |
CeOδ/3DOM ZSM⁃5 | 0.7 | 21.5 | 6.6 |
PrOδ/3DOM ZSM⁃5 | 0.8 | 20.4 | 4.3 |
WOδ/3DOM ZSM⁃5 | 0.7 | 32.2 | 9.1 |
Catalyst | Tm/℃ | TNO,>80/℃ | XNO,m(%) |
---|---|---|---|
Soot | 641 | — | — |
3DOM ZSM⁃5 | 601 | — | 31.4 |
MnOδ/3DOM ZSM⁃5 | 453 | 184—362 | 96.3 |
FeOδ/3DOM ZSM⁃5 | 494 | 319—411 | 87.8 |
CoOδ/3DOM ZSM⁃5 | 462 | — | 66.1 |
CeOδ/3DOM ZSM⁃5 | 538 | 257—448 | 96.0 |
PrOδ/3DOM ZSM⁃5 | 573 | — | 30.3 |
WOδ/3DOM ZSM⁃5 | 563 | — | 30.7 |
MnOδ/3DOM ZSM⁃5⁃cycle1 | 457 | 180—352 | 95.0 |
MnOδ/3DOM ZSM⁃5⁃cycle2 | 465 | 187—356 | 96.3 |
MnOδ/3DOM ZSM⁃5⁃cycle3 | 462 | 185—361 | 96.2 |
MnOδ/ZSM⁃5 | 470 | 199—380 | 96.0 |
MnOδ⁃powder | 451 | — | 51.5 |
MnOδ/3DOM ZSM⁃5⁃100 mg/m3 SO2+10%H2O | 498 | — | 67.3 |
Table 3 Peak temperature of maximum CO2 concentration(Tm), temperature window with over 80% conversion(TNO,>80) and maximum NO conversion(XNO, m) of MOδ/3DOM ZSM-5 catalysts
Catalyst | Tm/℃ | TNO,>80/℃ | XNO,m(%) |
---|---|---|---|
Soot | 641 | — | — |
3DOM ZSM⁃5 | 601 | — | 31.4 |
MnOδ/3DOM ZSM⁃5 | 453 | 184—362 | 96.3 |
FeOδ/3DOM ZSM⁃5 | 494 | 319—411 | 87.8 |
CoOδ/3DOM ZSM⁃5 | 462 | — | 66.1 |
CeOδ/3DOM ZSM⁃5 | 538 | 257—448 | 96.0 |
PrOδ/3DOM ZSM⁃5 | 573 | — | 30.3 |
WOδ/3DOM ZSM⁃5 | 563 | — | 30.7 |
MnOδ/3DOM ZSM⁃5⁃cycle1 | 457 | 180—352 | 95.0 |
MnOδ/3DOM ZSM⁃5⁃cycle2 | 465 | 187—356 | 96.3 |
MnOδ/3DOM ZSM⁃5⁃cycle3 | 462 | 185—361 | 96.2 |
MnOδ/ZSM⁃5 | 470 | 199—380 | 96.0 |
MnOδ⁃powder | 451 | — | 51.5 |
MnOδ/3DOM ZSM⁃5⁃100 mg/m3 SO2+10%H2O | 498 | — | 67.3 |
Catalyst | 10‒5 rNO/ (mol‧g‒1‧s‒1) | 10‒8 rsoot/ (mol‧g‒1‧s‒1) | 10‒5 mO/ (mol‧g‒1) | 103 TOFSCR,115 ℃/s‒1 | 103 TOFSCR,125 ℃/s‒1 | 103 TOFsoot,350 ℃/s‒1 |
---|---|---|---|---|---|---|
MnOδ/3DOM ZSM⁃5 | 0.7(105 ℃) | 5.1 | 3.8 | 1.0 | 1.6 | 1.4 |
1.1(115 ℃) | ||||||
1.9(125 ℃) | ||||||
FeOδ/3DOM ZSM⁃5 | 0.5(105 ℃) | 4.2 | 3.6 | 0.4 | 0.5 | 1.2 |
0.6(115 ℃) | ||||||
0.7(125 ℃) | ||||||
CoOδ/3DOM ZSM⁃5 | 0.3(105 ℃) | 5.3 | 2.9 | 0.4 | 0.5 | 1.3 |
0.5(115 ℃) | ||||||
0.6(125 ℃) | ||||||
CeOδ/3DOM ZSM⁃5 | 0.5(105 ℃) | 4.2 | 3.2 | 0.9 | 1.2 | 1.3 |
0.6(115 ℃) | ||||||
0.7(125 ℃) | ||||||
PrOδ/3DOM ZSM⁃5 | 0.2(105 ℃) | 2.5 | 2.3 | 0.6 | 0.7 | 1.1 |
0.4(115 ℃) | ||||||
0.5(125 ℃) | ||||||
WOδ/3DOM ZSM⁃5 | 0.3(105 ℃) | 2.7 | 2.6 | 0.6 | 0.8 | 1.1 |
0.5(115 ℃) | ||||||
0.5(125 ℃) |
Table 4 Reaction rate(r) for NH3-SCR/soot combustion and the amount of active oxygen species(mO) for soot combustion and the TOF and Ea values of catalysts
Catalyst | 10‒5 rNO/ (mol‧g‒1‧s‒1) | 10‒8 rsoot/ (mol‧g‒1‧s‒1) | 10‒5 mO/ (mol‧g‒1) | 103 TOFSCR,115 ℃/s‒1 | 103 TOFSCR,125 ℃/s‒1 | 103 TOFsoot,350 ℃/s‒1 |
---|---|---|---|---|---|---|
MnOδ/3DOM ZSM⁃5 | 0.7(105 ℃) | 5.1 | 3.8 | 1.0 | 1.6 | 1.4 |
1.1(115 ℃) | ||||||
1.9(125 ℃) | ||||||
FeOδ/3DOM ZSM⁃5 | 0.5(105 ℃) | 4.2 | 3.6 | 0.4 | 0.5 | 1.2 |
0.6(115 ℃) | ||||||
0.7(125 ℃) | ||||||
CoOδ/3DOM ZSM⁃5 | 0.3(105 ℃) | 5.3 | 2.9 | 0.4 | 0.5 | 1.3 |
0.5(115 ℃) | ||||||
0.6(125 ℃) | ||||||
CeOδ/3DOM ZSM⁃5 | 0.5(105 ℃) | 4.2 | 3.2 | 0.9 | 1.2 | 1.3 |
0.6(115 ℃) | ||||||
0.7(125 ℃) | ||||||
PrOδ/3DOM ZSM⁃5 | 0.2(105 ℃) | 2.5 | 2.3 | 0.6 | 0.7 | 1.1 |
0.4(115 ℃) | ||||||
0.5(125 ℃) | ||||||
WOδ/3DOM ZSM⁃5 | 0.3(105 ℃) | 2.7 | 2.6 | 0.6 | 0.8 | 1.1 |
0.5(115 ℃) | ||||||
0.5(125 ℃) |
1 | Frank B., Schuster M. E., Schlögl R., Su D., Angew. Chem., 2013, 52, 2673—2677 |
2 | Niessner R., Angew. Chem., 2014, 53, 12366—12379 |
3 | Choi B., Lee K. S., Chem. Eng. J., 2014, 240, 476—486 |
4 | Wei Y. C., Zhang Y. L., Zhang P., Xiong J., Mei X. L., Yu Q., Zhao Z., Liu J., Environ. Sci. Technol., 2020, 54, 2002—2011 |
5 | Meng D., Xu Q., Jiao Y., Guo Y., Guo Y., Wang L., Lu G., Zhan W., Appl. Catal. B, 2018, 221, 652—663 |
6 | Mihai O., Stenfeldt M., Olsson L., Catal. Today, 2018, 306, 243—250 |
7 | Cheng Y., Song W. Y., Liu J., Zhao Z., Wei Y. C., RSC Adv., 2017, 7, 56509—56518 |
8 | Cheng Y., Song W. Y., Liu J., Zheng H., Zhao Z., Xu C. M., Wei Y. C., Hensen E. J. M., ACS Catal., 2017, 7, 3883—3892 |
9 | Xiong J., Mei X. L., Liu J., Wei Y. C., Zhao Z., Xie Z. A., Li, J., Appl. Catal. B, 2019, 251, 247—260 |
10 | Wei Y. C., Zhang P., Xiong J., Yu Q., Wu Q., Zhao Z., Liu J., Environ. Sci. Technol., 2020, 54, 6947—6956 |
11 | Sellers⁃Antón B., Bailón⁃García E., Cardenas⁃Arenas A., Davó⁃Quiñonero A., Lozano⁃Castelló D., Bueno⁃López A., Environ. Sci. Technol., 2020, 54, 2439—2447 |
12 | Cheng Y., Liu J., Zhao Z., Song W. Y., Wei Y. C., Chem. Eng. Sci., 2017, 167, 219—228 |
13 | Cheng Y., Liu J., Zhao Z., Song W. Y., Wei Y. C., J. Hazard. Mater., 2018, 342, 317—325 |
14 | Li R. J., Li D., Wang L. Y., Zhou Q., Li J. M., Yu X. H., Liu J., Zhao Z., Chem. Phys. Impact, 2023, 6, 100135 |
15 | Zhong C. M., Ren Y., Yin C. Y., Wang R. D., Hou J., Wang L. Y., Zhao Z., Mozgawa B., Pietrzyk P., Sojka Z., Song Y. Y., ACS Catal., 2023, 13, 10927—10944 |
16 | Guo X. N., Zhang R. D., Di Z. Y., Kang B., Shen H. X., Wei Y., Jia J. B., Zheng L. R., Appl. Catal. B, 2024, 343, 123519 |
17 | Weissenberger T., Machoke A., Bauer J., Dotzel R., Casci J., Hartmann M., Schwieger W., ChemCatChem, 2020, 12, 2461—2468 |
18 | Machoke A., Beltrán A., Inayat A., Winter B., Weissenberger T., Kruse N., Güttel R., Spiecker E., Schwieger W., Adv. Mater., 2014, 27, 1066—1070 |
19 | Wang L. Y., Yu D., Zhao Z., Yu X. H., Li D., Zhou S. R., Zhong C. M., Hou J., Yin C. Y., Fan X. Q., Ind. Eng. Chem. Res., 2023, 62, 21950—21966 |
20 | Wang L. Y., Ren Y., Yu X. H., Peng C., Yu D., Zhong C. M., Hou J., Yin C. Y., Fan X. Q., Zhao Z., Liu J., Wei Y. C., J. Catal., 2023, 417, 226—247 |
21 | Xu J. F., Liu, J., Zhao Z., Xu C. M., Zheng J. X., Duan A. J., Jiang G. Y., J. Catal., 2011, 282, 1—12 |
22 | Zhang Z., Han D., Wei S., Zhang Y., J. Catal., 2010, 276, 16—23 |
23 | Li Y. L., Yang S. U., Peng H. G., Liu W. M., Mi Y. Y., Wang Z., Tang C. J., Wu D. S., An T. C., J. Catal., 2021, 395, 195—209 |
24 | Wang L. Y., Chen M. Z., Yu X. H., Zhao Z., Fan X. Q., Wei Y. C., Liu J., Catal. Today, 2021, 364, 21—34 |
25 | Zhao T., Zhao B. B., Niu Y. C., Liang Y., Liu L., Dong J. X., Tang M. X., Li X. K., J. Fuel Chem. Technol., 2021, 49, 1181—1189 |
26 | Muraza O., Bakare I. A., Tago T., Konno H., Taniguchi T., Al-amer A. M., Yamani Z. H., Nakasaka Y., Masuda T., Fuel, 2014, 135, 105—111 |
27 | Bleken F. L., Barbera K., Bonino F., Lsbye U., Lillerud K. P., Bordiga S., Beato P., Janssens T. V. W., Svelle S., J. Catal., 2013, 307, 62—73 |
28 | Liu S., Wu X. D., Weng D., Li M., Ran R., ACS Catal., 2015, 5, 909—919 |
29 | Chen J. P., SI X. L., Yu J. S., Zhang X. H., Appl. Surf. Sci., 2015, 330, 191—199 |
30 | Liu F. D, Shan W. P., Lian Z. H., Liu J. J., He H., Appl. Catal. B, 2018, 230, 165—176 |
31 | Yu X. H., Zhao Z., Wei Y. C., Liu J., Li J. M., Duan A. J., Jiang G. Y., RSC Adv., 2015, 5, 49780—49790 |
32 | Sullivan J. A., Doherty J. A., Appl. Catal. B, 2005, 3, 185—194 |
33 | Xue H. Y., Guo X. M., Meng T., Guo Q. S., Mao D. S., Wang S., ACS Catal., 2021, 11, 7702—7718 |
34 | Cao C. M., Yang H., Xiao J. Y., Yang X. C., Ren B. Z., Xu L., Liu G. J., Li X. G., Fuel, 2021, 305, 121446—121456 |
35 | Wei Y. C., Zhao Z., Li T., Liu J., Duan A. J., Jiang G. Y., Appl. Catal. B, 2014, 146, 57—70 |
36 | Xie S. Z., Li L. L., Jin L. J., Wu Y. H., Liu H., Qin Q. J., Wei X. L., Liu J. X., Dong L. H., Li B., Appl. Surf. Sci., 2020, 15, 146014—146026 |
37 | Jiang L. J., Liang Y., Liu W. Z., Wu H. L., Aldahri T., Carrero D. S., Liu Q. C., J. Environ. Chem. Eng., 2021, 9, 106360—106373 |
38 | Wang F. M., Shen B. X., Zhu S. W., Wang Z., Fuel, 2019, 249, 54—60 |
39 | Tan J. B., Wei Y. C., Sun Y. Q., Liu J., Zhao Z., Song W. Y., Li J. M., Zhang X., J. Ind. Eng. Chem., 2018, 63, 84—94 |
40 | Chen Z., Liu Q., Guo L., Zhang S., Pang L., Guo Y. B., Li T., Appl. Catal. B, 2021, 286, 119816—119828 |
41 | Chen Y. J., Shen G. R., Lang Y., Chen R., Jia L. W., Yue J., Shen M. Q., Du C., Shan B., J. Catal., 2020, 384, 96—105 |
42 | Liu J., Li X. Y., Zhao Q. D., Ke J., Xiao H. N., Lv X. J., Liu S. M., Tadé M., Wang S. B., Appl. Catal. B, 2017, 200, 297—308 |
43 | Wang F., Xie Z. B., Liang Z. S., Fang B. Z., Piao Y. A., Hao M., Wang Z. S., Environ. Sci. Technol., 2019, 53, 6989—6996 |
44 | Wang B., Wang M. X., Han L. N., Hou Y. Q., Bao W. R., Zhang C. M., Feng G., Chang L. P., Huang Z. G., Wang J. C., ACS Catal., 2020, 10, 9034—9045 |
45 | Liu B., Liu J., Xin L., Zhang T., Xu Y. B., Jiang F., Liu X. H., ACS Catal., 2021, 11, 7613—7636 |
46 | Liu X. S., Jiang P., Chen Y., Wang Y. G., Ding Q. L., Sui Z. M., Chen H. F., Shen Z. Y., Wu X. D., Chem. Eng. J., 2021, 421, 127833—127845 |
47 | Meng D. M., Zhan W. C., Guo Y., Guo Y. L., Wang L., Lu G. Z., ACS Catal., 2015, 5, 5973—5983 |
48 | Chen T., Guan B., Lin H., Zhu L., Chin. J. Catal., 2014, 35, 294—301 |
49 | Liu Z. M., Liu Y. X., Li Y., Su H., Ma L. L., Chem. Eng. J., 2016, 283, 1044—1050 |
50 | Wang L. Y., Ren Y., Yu X. H., Yu D., Peng C., Zhou Q., Hou J., Zhong C. M., Yin C. Y., Fan X. Q., Zhao Z., Cheng K., Chen Y. S., Sojka Z., Kotarba A., Wei Y. C., Liu J., Catal. Sci. Technol., 2022, 12, 1950—1967 |
51 | Gao C., Shi J. W., Fan Z. Y., Yu Y. K., Chen J. S., Li Z. H., Niu C. M., Fuel Process. Technol., 2017, 167, 322—333 |
52 | Yu D., Peng C., Yu X. H., Wang L. Y., Li K. X., Zhao Z., Li Z. G., Fuel, 2022, 307, 121803—121817 |
[1] | XU Jianing, BAI Wenjing, LOU Yuhan, YU Haipeng, DOU Shuo. Electrocatalytic Oxidative Cleavage of Lignin: Facile and Efficient Biomass Valorization Strategy [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220749. |
[2] | GAO Fengyu, CHEN Du, LUO Ning, YAO Xiaolong, DUAN Erhong, YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Catalytic Performance and Reaction Mechanism of Chlorobenzene Oxidation over MnO x -CeO2 Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220690. |
[3] | XIA Wenwen, YU Hongjing, WANG Shiye, YAO Li, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: Combustion of Aromatic Hydrocarbon [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220616. |
[4] | LIAO Aixue, LI Yiwei, MAO Yebing, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: Combustion of JP-10 [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230322. |
[5] | ZHOU Zihao, WANG Sihao, HUANG Daichuan, LIU Bo, NING Hongbo. Molecular Dynamics Simulation Study on High Temperature Oxidation Mechanism of n-Propylbenzene [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230276. |
[6] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[7] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[8] | SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591. |
[9] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[10] | MENG Fanwei, GAO Qi, YE Qing, LI Chenxi. Potassium Poisoning Mechanism of Cu-SAPO-18 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J]. Chem. J. Chinese Universities, 2021, 42(9): 2832. |
[11] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[12] | LI Xinyi, LIU Yongjun. Theoretical Insights into the Cleavage of β-Hydroxy Ketone Catalyzed by Artificial Retro-aldolase RA95.5-8F [J]. Chem. J. Chinese Universities, 2021, 42(7): 2306. |
[13] | REN Ying, LI Changhua, WANG Tao, XUE Shanshan, ZHANG Tingting, JIA Jianfeng, WU Haishun. Theoretical Studies on Pd-catalyzed Oxidative N─H Carbonylation to Synthesis of 1,3,4-Oxadiazole-2(3H)-one Heterocyclic Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1793. |
[14] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
[15] | TIAN Shengqiao, WEI Meiju. Reaction Mechanism for Rh(Ⅱ)-catalyzed [3+3] Cyclization of Indole Derivatives and Propertis of Product [J]. Chem. J. Chinese Universities, 2021, 42(6): 1899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||