Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (2): 20210591.doi: 10.7503/cjcu20210591
• Physical Chemistry • Previous Articles Next Articles
SUN Cuihong1(), LYU Liqiang1, LIU Ying1, WANG Yan1, YANG Jing1, ZHANG Shaowen2()
Received:
2021-08-18
Online:
2022-02-10
Published:
2021-10-08
Contact:
SUN Cuihong
E-mail:schyjy@163.com;swzhang@bit.edu.cn
Supported by:
CLC Number:
TrendMD:
SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals[J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591.
Reaction | k/(cm3·molecule-1·s-1) | ||
---|---|---|---|
IPN + Cl | IPN + OH | IPN + NO3 | |
absH1 | 4.023×10-15 | 1.001×10-15 | 1.29×10-21 |
absH2 | 4.172×10-15 | 1.318×10-15 | 2.38×10-22 |
absH3 | 2.330×10-15 | 2.223×10-16 | 1.35×10-22 |
absH1′ | 4.050×10-15 | 7.012×10-16 | 9.03×10-22 |
absH2′ | 3.154×10-15 | 1.424×10-15 | 1.09×10-22 |
absH3′ | 5.303×10-15 | 3.519×10-16 | 2.59×10-45 |
absHβ | 2.303×10-14 | 5.019×10-15 | 2.673×10-21 |
absHα | 3.930×10-11 | 1.132×10-13 | 7.107×10-19 |
absHα + absHβ | 3.933×10-11 | 1.182×10-13 | 7.134×10-19 |
Table 1 Rate constants(k) of the β-H abstraction channel at 300 K
Reaction | k/(cm3·molecule-1·s-1) | ||
---|---|---|---|
IPN + Cl | IPN + OH | IPN + NO3 | |
absH1 | 4.023×10-15 | 1.001×10-15 | 1.29×10-21 |
absH2 | 4.172×10-15 | 1.318×10-15 | 2.38×10-22 |
absH3 | 2.330×10-15 | 2.223×10-16 | 1.35×10-22 |
absH1′ | 4.050×10-15 | 7.012×10-16 | 9.03×10-22 |
absH2′ | 3.154×10-15 | 1.424×10-15 | 1.09×10-22 |
absH3′ | 5.303×10-15 | 3.519×10-16 | 2.59×10-45 |
absHβ | 2.303×10-14 | 5.019×10-15 | 2.673×10-21 |
absHα | 3.930×10-11 | 1.132×10-13 | 7.107×10-19 |
absHα + absHβ | 3.933×10-11 | 1.182×10-13 | 7.134×10-19 |
1 | Atkinson R., Arey J., Chem. Rev., 2003, 103, 4605—4638 |
2 | Orlando J. J., Tyndall G. S., Wallington T. J., Chem. Rev., 2003, 103, 4657—4690 |
3 | Rollins A. W., Smith J. D., Wilson K. R., Cohen R. C., Environ. Sci. Technol., 2010, 44, 5540—5545 |
4 | Farmer D. K., Perring A. E., Wooldridge P. J., Blake D. R., Baker A., Meinardi S., Huey L. G., Tanner D., Vargas O., Cohen R. C., Atmos. Chem. Phys., 2011, 11, 4085—4094 |
5 | Paulot F., Henze D. K., Wennberg P. O., Atmos. Chem. Phys., 2012, 12, 1307—1325 |
6 | Zare A., Romer P. S., Nguyen T., Keutsch F. N., Skog K., Cohen R. C., Atmos. Chem. Phys., 2018, 18, 15419—15436 |
7 | Yu K., Zhu Q., Du K., Huang X. F., Atmos. Chem. Phys., 2019, 19, 5235—5249 |
8 | Zare A., Fahey K. M., Sarwar G., Cohen R. C., Pye H. O. T., ACS Earth & Space Chemistry, 2019, 3, 1426—1437 |
9 | Talukdar R. K., Burkholder J. B., Hunter M., Gilles M. K., Roberts J. M., Ravishankara A. R., J. Chem. Soc., Faraday Trans., 1997, 93, 2797—2805 |
10 | Francisco M. A., Krylowski J., Ind. Eng. Chem. Res., 2005, 44, 5439—5446 |
11 | Morin J., Bedjanian Y., J. Anal. Appl. Pyrolysis, 2017, 124, 576—583 |
12 | Fuller M. E., Goldsmith C. F., J. Phys. Chem. A, 2019, 123, 5866—5876 |
13 | Orellana W., Stephens S. L., Novick S. E., Cooke S. A., Brauer C. S., Blake T. A., Int. J. Mol. Spectrosc., 2020, 374, 111376 |
14 | Atkinson R., Aschmann S. M., Int. J. Chem. Kinet., 1989, 21, 1123—1129 |
15 | Becker K. H., Wirtz K., J. Atoms. Chem., 1989, 9, 419—433 |
16 | Talukdar R. K., Herndon S. C., Burkholder J. B., Roberts J. M., Ravishankara A. R., J. Chem. Soc., Faraday Trans., 1997, 93, 2787—2796 |
17 | Aschmann S. M., Tuazon E. C., Arey J., Atkinson R., Atmos. Environ., 2011, 45, 1695—1701 |
18 | Romanias M. N., Morin J., Bedjanian Y., Int. J. Chem. Kinet., 2015, 47, 42—49 |
19 | Morin J., Bedjanian Y., Romanias M. N., Int. J. Chem. Kinet., 2016, 48, 822—829 |
20 | Bedjanian Y., Morin J., Romanias M. N., Atmos. Environ., 2018, 180, 167—172 |
21 | Picquet⁃Varrault B., Suarez⁃Bertoa R., Duncianu M., Cazaunau M., Pangui E., David M., Doussin J. F., Atmos. Chem. Phys., 2020, 20, 487—498 |
22 | Zhao Y., Truhlar D. G., Theor. Chem. Acc., 2008, 120, 215—241 |
23 | Pople J. A., Headgordon M., Raghavachari K., J. Chem. Phys., 1987, 87, 5968—5975 |
24 | Miller J. A., Klippenstein S. J., J. Phys. Chem. A, 2003, 107, 2680—2692 |
25 | Feng B., Sun C., Zhang S., Atmos. Environ., 2019, 201, 18—27 |
26 | Frisch M. J. Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009 |
27 | Truhlar D. G., Garrett B. C., Klippenstein S. J., J. Phys. Chem., 1996, 100, 12771—12800 |
28 | Duncan W. T., Bell R. L., Truong T. N., J. Comput. Chem., 1998, 19, 1039—1052 |
29 | Singleton D. L., Cvetanovic R. J., J. Am. Chem. Soc., 1976, 98, 6812—6819 |
30 | Uc V. H., Alvarez⁃Idaboy J. R., Galano A., Vivier⁃Bunge A., J. Phys. Chem. A, 2008, 112, 7608—7615 |
31 | Alvarez⁃Idaboy J. R., Mora⁃Diez N., Boyd R. J., Vivier⁃Bunge A., J. Am. Chem. Soc., 2001, 123, 2018—2024 |
32 | Alvarez⁃Idaboy J. R., Mora⁃Diez N., Vivier⁃Bunge A., J. Am. Chem. Soc., 2000, 122, 3715—3720 |
33 | Ayala P. Y., Schlegel H. B., J. Chem. Phys., 1998, 108, 2314—2325 |
34 | Lu D., Li J., Guo H., CCS Chemistry, 2020, 2, 882—894 |
35 | Li W., Li J., Ning H., Shang Y., Luo S. N., J. Phys. Chem. A, 2021, 125, 5103—5116 |
36 | Vereecken L., Chem. Phys. Lett., 2008, 466, 127—130 |
37 | https://kinetics.nist.gov/kinetics/Detail?id=2001ATK/BAU1⁃56:214 |
[1] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[2] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[3] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[4] | DENG Hongri, CAO Xiaomei, WANG Jingbo, LI Xiangyuan. Rate Rules for Hydrogen Abstraction Reactions of Polycyclic Aromatic Hydrocarbons and Unsaturated Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210563. |
[5] | WEN Zhiguo, QIAO Zaiyin, TIAN Chong, MAXIM Borzov, NIE Wanli. Catalytic Activity and Reaction Mechanism of FLPs for the Reduction of Enamine [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220555. |
[6] | LI Lun, ZHANG Jingyan, LUO Jing, LIU Ren, ZHU Yi. Synthesis and Properties of UV/Vis-LED Excitable Photoinitiators Based on Coumarin Pyridinium Salt [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220178. |
[7] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[8] | ZHANG Xiaofei, LIU Jiaxin. Visible Light Induced Cyclization of O-Alkenylcarboxanilide to 2-Quinolinone [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220274. |
[9] | XU Fei, LI Gangmei, HAN Songde, WANG Guoming. Photochromism and Photomagnetism in Two Dinuclear Lanthanide Complexes [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210337. |
[10] | MENG Fanwei, GAO Qi, YE Qing, LI Chenxi. Potassium Poisoning Mechanism of Cu-SAPO-18 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J]. Chem. J. Chinese Universities, 2021, 42(9): 2832. |
[11] | LIU Simei, LIU Weihua, LU Manli, ZHANG Wenli, SHEN Rongfang, WANG Mouhua. Evolution of the Radicals in γ-Rays Irradiated Medical Grade Ultra-high Molecular Weight Polyethylene [J]. Chem. J. Chinese Universities, 2021, 42(8): 2602. |
[12] | PENG Xiaoming, WU Jianqun, DAI Hongling, YANG Zhanhong, XU Li, XU Gaoping, HU Fengping. Activation of Peroxymonosulfate by Single Atom Catalysts Ni⁃N⁃C for High Efficiency Degradation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(8): 2581. |
[13] | LI Xinyi, LIU Yongjun. Theoretical Insights into the Cleavage of β-Hydroxy Ketone Catalyzed by Artificial Retro-aldolase RA95.5-8F [J]. Chem. J. Chinese Universities, 2021, 42(7): 2306. |
[14] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[15] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||