Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (2): 20240457.doi: 10.7503/cjcu20240457
• Review • Previous Articles
Received:
2024-10-09
Online:
2025-02-10
Published:
2024-11-13
Contact:
LIU Dingbin
E-mail:liudb@nankai.edu.cn
Supported by:
CLC Number:
TrendMD:
BI Yingna, LIU Dingbin. Internal Standard Method-based Surface-enhanced Raman Spectroscopy for Quantitative Analysis[J]. Chem. J. Chinese Universities, 2025, 46(2): 20240457.
1 | Raman C. V., Krishnan K. S., Nature, 1928, 121(3048), 501—502 |
2 | Fleischmann M., Hendra P., McQuillan A., Chem. Phys. Lett., 1974, 26(2), 163—166 |
3 | Jeanmaire D. L., van Duyne R. P., J. Electroanal Chem. Interfacial Electrochem., 1977, 84(1), 1—20 |
4 | Albrecht M. G., Creighton J. A., J. Am. Chem. Soc., 1977, 99(15), 5215—5217 |
5 | Moskovits M., J. Chem. Phys., 1978, 69(9), 4159—4161 |
6 | Nie S., Emory S. R., Science, 1997, 275(5303), 1102—1106 |
7 | Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R., Feld M. S., Phys. Rev. Lett., 1997, 78(9), 1667 |
8 | Lee S., Dang H., Moon J. I., Kim K., Joung Y., Park S., Yu Q., Chen J., Lu M., Chen L., Joo S., Choo J., Chem. Soc. Rev., 2024, 53, 5394—5427 |
9 | Ying Y., Tang Z., Liu Y., Nanoscale, 2023, 15(26), 10860—10881 |
10 | Xu Y., Dong Q., Cong S., Zhao Z., Analysis & Sensing, 2024, 4, e202300067 |
11 | Liu H., Gao X., Xu C., Liu D., Theranostics, 2022, 12(4), 1870—1903 |
12 | Li Q., Huo H., Wu Y., Chen L., Su L., Zhang X., Song J., Yang H., Adv. Sci., 2023, 10(8), 2202051 |
13 | Jiang C., Liu R., Han G., Zhang Z., Chem. Commun., 2013, 49, 6647—6649 |
14 | Cai L., Fang G., Tang J., Cheng Q., Han X., Int. J. Mol. Sci., 2022, 23(22), 13868 |
15 | Wu L., Dias A., Dieguez L., Biosens. Bioelectron., 2022, 204, 114075 |
16 | Jebakumari K. A. E., Murugasenapathi N. K., Palanisamy T., Biosensors, 2023, 13(1), 102 |
17 | Liu L., Ma W., Wang X., Li S., Biosensors, 2023, 13(3), 350 |
18 | Shi L., Zhang L., Tian Y., Analysis & Sensing, 2023, 3(2), e202200064 |
19 | Li C., Huang Y., Li X., Zhang Y., Chen Q., Ye Z., Alqarni Z., Bell S. E. J., Xu Y., J. Mater. Chem. C, 2021, 9(35), 11517—11552 |
20 | Sultangaziyev A., Ilyas A., Dyussupova A., Bukasov R., Biosensors, 2022, 12(11), 967 |
21 | Vendamani V. S., Rao S. V. S. N., Pathak A. P., Soma V. R., ACS Appl. Nano Mater., 2022, 5(4), 4550—4582 |
22 | Zhang X., Fan A., Pan Y., Liu X., Zhao Z., Song Y., Zhang X., ACS Appl. Nano Mater., 2022, 5(10), 15738—15747 |
23 | Xi W. J., Shrestha B. K., Haes A. J., Anal. Chem., 2018, 90(1), 128—143 |
24 | Le Ru E. C., Auguié B., ACS Nano, 2024, 18(14), 9773—9783 |
25 | Pérez⁃Jiménez A. I., Lyu D., Lu Z., Liu G., Ren B., Chem. Sci., 2020, 11(18) 4563—4577 |
26 | Shen Y., Yue J., Xu W., Xu S., Theranostics, 2021, 11(10), 4872—4893 |
27 | Yoshida K., Itoh T., Tamaru H., Biju V., Ishikawa M., Ozaki Y., Phys. Rev. B, 2010, 81(11), 115406 |
28 | Xing H. J., Yin Z. H., Zhang J., Zhu Y., Laser & Optoelectronics Progress, 2020, 57(3), 10 |
29 | Péron O., Rinnert E., Toury T., de la Chapelle M. L., Compere C., Analyst, 2011, 136(5), 1018—1022 |
30 | Wang T., Ji B., Cheng Z., Chen L., Luo M., Wei J., Wang Y., Zou L., Liang Y., Zhou B., Li P., Biosens. Bioelectron., 2023, 228, 115191 |
31 | Peksa V., Jahn M., Štolcová L., Schulz V., Proška J., Procházka M., Weber K., Cialla⁃May D., Popp J., Anal. Chem., 2015, 87(5), 2840—2844 |
32 | Zou Y., Chen L., Song Z., Ding D., Chen Y., Xu Y., Wang S., Lai A., Zhang Y., Sun Y., Chen Z., Tan W., Nano Res., 2016, 9, 1418—1425 |
33 | Tian H. H., Zhang N., Tong L. M., Zhang J., Small Methods, 2017, 1(6), 1700126 |
34 | Li X. T., Liu H. M., Chen Y., Gu C. J., Wei G. D., Zhou J., Jiang T., ACS Sustainable Chem. Eng., 2021, 9(38), 12885—12898 |
35 | Wu Y., Liu J., Xu R., Li J., Fu C., Shi W., Chen J., Microchem. J., 2024, 110127 |
36 | Yu F., Su M., Tian L., Wang H., Liu H., Anal. Chem., 2018, 90(8), 5232—5238 |
37 | Wang Y. P., Yu C. W., Ji H. Y., Liu Z. H., Wang X. T., Ji Y. H., Sun X. M., Zhao Y., Qiu X. H., Zhang T., Li J., Liu X., Lv X. P., Cai B. Z., Zhao Y. Q., Huang J. A., Li Y., Chemical Engineering Journal, 2023, 452, 139588 |
38 | Xu L. J., Lei Z. C., Li J. X., Zong C., Yang C. J., Ren B., J. Am. Chem. Soc., 2015, 137(15), 5149—5154 |
39 | Cheng H. W., Tsai H. M., Wang Y. L., Anal. Chem., 2023, 95(46), 16967—16975 |
40 | Zhang D. M., Xie Y., Deb S. K., Davison V. J., Ben⁃Amotz D., Anal. Chem., 2005, 77(11), 3563—3569 |
41 | Yin P. G., Jiang L., Lang X. F., Guo L., Yang S. H., Biosens. Bioelectron., 2011, 26(12), 4828—4831 |
42 | Li G., Hao Q., Li M., Zhao X., Song W., Fan X., Qiu T., Adv. Mater. Interfaces, 2023, 10(7), 2202127 |
43 | Yan X., Zhao H., Shi X., Yang Z., Ma J., ACS Appl. Mater. Interfaces, 2023, 15(10), 13427—13438 |
44 | Shen W., Lin X., Jiang C. Y., Li C. Y., Lin H. X., Huang J. T., Wang S., Liu G. K., Yan X. M., Zhong Q. L., Ren B., Angew. Chem. Int. Ed. Engl., 2015, 54(25), 7308—7312 |
45 | Guo J., Liu Y., Ju H., Lu G., Trac⁃Trend Anal. Chem., 2022, 146, 116488 |
46 | Ma H., Pan S. Q., Wang W. L., Yue X. X., Xi X. H., Yan S., Wu D. Y., Wang X., Liu G., Ren B., ACS Nano, 2024, 18(22), 14000—14019 |
47 | Fu B. B., Tian X. D., Song J. J., Wen B. Y., Zhang Y. J., Fang P. P., Li J. F., Anal. Chem., 2022, 94(27), 9578—9585 |
48 | Lim D. K., Jeon K. S., Hwang J. H., Kim H., Kwon S., Suh Y. D., Nam J. M., Nat. Nanotechnol., 2011, 6(7), 452—460 |
49 | Song J., Duan B., Wang C., Zhou J., Pu L., Fang Z., Wang P., Lim T. T., Duan H., J. Am. Chem. Soc., 2014, 136(19), 6838—6841 |
50 | Ma S., Li Q., Yin Y., Yang J., Liu D., Small, 2017, 13(15), 1603340 |
51 | Jiang X., Tan Z. Y., Lin L., He J., He C., Thackray B. D., Zhang Y. Q., Ye J., Small Methods, 2018, 2(11), 1800182 |
52 | Chen S., Fan J. Y., Lv M. Y., Hua C. F., Liang G. L., Zhang S. H., Anal. Chem., 2022, 94(42), 14675—14681 |
53 | Terry L. R., Sanders S., Potoff R. H., Kruel J. W., Jain M., Guo H., Anal. Sci. Adv., 2022, 3(3/4), 113—145 |
54 | Chen C., Wang X., Wang R., Waterhouse G. I. N., Xu Z., J. Future Foods, 2024, 4(4), 309—323 |
55 | Guo Z., Wu X., Jayan H., Yin L., Xue S., El⁃Seedi H. R., Zou X., Food Chem., 2023, 434, 137469 |
56 | Chen Y., An Q., Teng K., Liu C., Sun F., Li G., Chem. Asian J., 2023, 18(4), e202201194 |
57 | Li Y., Jiang G., Wan Y., Dauda S. A., Pi F., Talanta, 2024, 276, 126283 |
58 | Aziz K. H. H., Mustafa F. S., Omer K. M., Hama S., Hamarawf R. F., Rahman K. O., RSC Adv., 2023, 13(26), 17595—17610 |
59 | Lafuente M., Marchi S. D., Urbiztondo M., Pastoriza⁃Santos I., Pérez⁃Juste I., Santamaría J., Mallada R., Pina M., ACS Sens., 2021, 6(6), 2241—2251 |
60 | Tsygankov V. Y., Water Res., 2019, 161, 43—53 |
61 | Li R., Chen M., Yang H., Hao N., Liu Q., Peng M., Wang L., Hu Y., Chen X., Anal. Chem., 2021, 93(10), 4657—4665 |
62 | Wang J., Zhang J. Y., Zhu W. J., Qi B., Wang J. P., Gao G. G., Fan L. L., Liu H., J. Mater. Chem. C, 2023, 11(8), 3050—3058 |
63 | Zhang J., Huang H., Song G., Huang K., Luo Y., Liu Q., He X., Cheng N., Biosens. Bioelectron., 2022, 202, 114003 |
64 | Chen M., Luo W., Liu Q., Hao N., Zhu Y., Liu M., Wang L., Yang H., Chen X., Anal. Chem., 2018, 90(22), 13647—13654 |
65 | Gao J., Zhao C., Zhang Z., Li G., Analyst, 2017, 142(16), 2936—2944 |
66 | Fang X., Ma J., Gu C., Xiong W., Jiang T., Sens. Actuators B: Chem., 2023, 378, 133176 |
67 | Li X., Sun L., Xu B., Dai L., Xiao Y., Ding Y., Liu Q., Meng M., Xi R., Guo L., Yin Y., Sens. Actuators B: Chem., 2023, 385, 133710 |
68 | Zhang Q., Ma R., Zhang Y., Zhao J., Wang Y., Xu Z., ACS Sens., 2023, 8(2), 875—883 |
69 | Zhao X., Zhao S., Song Z. L., Zhang X., Zhang S., Song W., Chen Z., Sens. Actuators B: Chem., 2021, 331, 129373 |
70 | Liang X., Zhang P., Ma M., Yang T., Zhao X., Zhang R., Jing M., Song R., Wang L., Fan J., Nano Res., 2022, 15(4), 3487—3495 |
71 | Wang F., Sun N., Li Q., Yang J., Yang X., Liu D., J. Am. Chem. Soc., 2022, 145(2), 919—928 |
72 | Warren A. D., Kwong G. A., Wood D. K., Lin K. Y., Bhatia S. N., Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3671—3676 |
73 | Liu Y., Zhu W., Hua J., Shen A., Nanoscale Adv., 2021, 3, 6568—6579 |
74 | Lu K., Zhu X. Y., Li Y., Gu N., J. Mater. Chem. B, 2023, 11(24), 5272—5300 |
75 | Yin Y., Li Q., Ma S., Liu H., Dong B., Yang J., Liu D., Anal. Chem., 2017, 89(3), 1551—1557 |
76 | Bi Y., Di H., Zeng E., Li Q., Li W., Yang J., Liu D., Anal. Chem., 2020, 92(14), 9574—9582 |
77 | Gao X., Yin Y., Wu H., Hao Z., Li J., Wang S., Liu Y., Anal. Chem., 2021, 93(3), 1569—1577 |
78 | Li M., Wang J. Y., Chen Q. Q., Lin L. H., Radjenovic P., Zhang H., Luo S. H., Tian Z. Q., Li J. F., Anal. Chem., 2019, 91(23), 15025—15031 |
79 | Deriu C., Thakur S., Tammaro O., Fabris L., Nanoscale Adv., 2023, 5(8), 2132—2166 |
80 | Son J., Kim G. H., Lee Y., Lee C., Cha S., Nam J., J. Am. Chem. Soc., 2022, 144(49), 22337—22351 |
81 | Wang X., Zeng J., Sun Q., Yang J., Xiao Y., Zhuo Z., Yan B., Li Y., Sens. Actuators B: Chem., 2021, 343, 130084 |
[1] | ZHANG Yu, CHEN Long, WANG Zhongcai, HU Guang, XU Dong, SHENG Quankang, CHEN Ao, CHEN Shaoyun, HU Chenglong, CHEN Jian. Rapid Determination of D⁃(+)⁃Glucose in Urine Using Surface⁃enhanced Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240215. |
[2] | QIN Haijing, HE Qianjun, XU Minmin, YUAN Yaxian, YAO Jianlin. Electrochemical-SERS Investigation on the Decarboxylated Reaction of PMBA in Ionic Liquid and Influence of Interfacial Water [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230349. |
[3] | CHEN Jiamin, QU Xiaozhang, QI Guohua, XU Weiqing, JIN Yongdong, XU Shuping. SERS Nanoprobe for the Detection of Reactive Oxygen Species in Cells Produced by Electrostimulus [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220033. |
[4] | XUE Jin, CAO Xiaowei, LIU Yifan, WANG Min. Preparation of Paper Hollow Gold Nanocage SERS Sensor and Its Rapid and Highly Sensitive Detection for miRNAs in Sputum of Patients with Non-small Cell Lung Cancer [J]. Chem. J. Chinese Universities, 2021, 42(8): 2393. |
[5] | CHEN Feng, CHENG Na, ZHAO Jianwei, SONG Yitian, SUN Yanyan, LOU Xinli, TONG Xiayan. Electrodeposition Mechanism and Surface-enhanced Raman Spectroscopic Effect of Nano-sized Silver Layer [J]. Chem. J. Chinese Universities, 2021, 42(6): 1891. |
[6] | PAN Jing, XU Minmin, YUAN Yaxian, YAO Jianlin. Rapid Detection of Banned Dyes in Textiles Based on Surface-enhanced Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2021, 42(12): 3716. |
[7] | BAI Cuiting, YUE Renye, LUO Liegao, MA Nan. Quantitative Analysis of MicroRNA Content by Fluorescence Imaging in Cancer Cells Using Dual-color Fluorescence Nanosensor [J]. Chem. J. Chinese Universities, 2020, 41(6): 1252. |
[8] | LI Wenshuai, WU Guorui, ZHANG Xijing, YUE Aiqin, DU Weijun, ZHAO Jinzhong, LIU Dingbin. Advances in Bacterial Detection Based on Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2020, 41(5): 872. |
[9] | ZHANG Yimeng, ZHANG Huixin, LIU Yang. Recent Advances of Exosomes Bioanalysis and Their Clinic Applications [J]. Chem. J. Chinese Universities, 2020, 41(11): 2306. |
[10] | WANG Hongmei, LI Lingling, CHEN Haibin, ZENG Yongming, CHEN Hongju, CHEN Qizhen, LIN Huizhen, TIAN Zhongqun, LIU Guokun. Application of Surface-enhanced Raman Spectroscopy in the Fast Screening of Phosphodiesterase Type 5 Inhibitors† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1040. |
[11] | PANG Ran, JIN Xi, ZHAO Liubin, DING Songyuan, WU Deyin, TIAN Zhongqun. Quantum Chemistry Study of Electrochemical Surface-enhanced Raman Spectroscopy† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2087. |
[12] | YANG You-Ming, RUAN Wei-Dong, SONG Wei, WANG Xu, XU Wei-Qing, ZHAO Bing. Trace Benzidine Detection by Surface Enhanced Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2012, 33(10): 2191. |
[13] | LI Na, ZHU Jian, ZHA Qing-Fang. Quantitative and Qualitative Analyses of Oxygen-containing Surface Functional Groups on Activated Carbon [J]. Chem. J. Chinese Universities, 2012, 33(03): 548. |
[14] | RAO Gui-Shi, ZHANG Lei, KE Hui-Xian, ZHONG Qi-Ling*, REN Bin*, TIAN Zhong-Qun. In situ Surface-Enhanced Raman Spectroscopic Investigation of Formaldehyde Oxidation on Aucore@Ptshell Nanoparticles Coated Platinum Electrode in Different Media [J]. Chem. J. Chinese Universities, 2009, 30(6): 1205. |
[15] | GAO Min-Xia, LIN Xiu-Mei, REN Bin*. Surface-Enhanced Raman Scatting Substrates Fabricated by Combining Chemical Assembly and Electrodeposition Methods [J]. Chem. J. Chinese Universities, 2008, 29(5): 959. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||