Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1899.doi: 10.7503/cjcu20200803
• Physical Chemistry • Previous Articles Next Articles
Received:
2020-11-10
Online:
2021-06-10
Published:
2021-06-08
Contact:
WEI Meiju
E-mail:weimeiju@ustb.edu.cn
Supported by:
CLC Number:
TrendMD:
TIAN Shengqiao, WEI Meiju. Reaction Mechanism for Rh(Ⅱ)-catalyzed [3+3] Cyclization of Indole Derivatives and Propertis of Product[J]. Chem. J. Chinese Universities, 2021, 42(6): 1899.
Compound | MO | Configuration factor | Contribution value | D index | Sr index | t index | H index |
---|---|---|---|---|---|---|---|
5a | 88→89 88←89 | 0.675 -0.030 | 91.11% -0.18% | 0.344 | 0.698 | -1.853 | 3.251 |
5b | 96→97 96←97 | 0.699 -0.023 | 97.62% -0.11% | 2.176 | 0.612 | -0.195 | 2.916 |
Compound | MO | Configuration factor | Contribution value | D index | Sr index | t index | H index |
---|---|---|---|---|---|---|---|
5a | 88→89 88←89 | 0.675 -0.030 | 91.11% -0.18% | 0.344 | 0.698 | -1.853 | 3.251 |
5b | 96→97 96←97 | 0.699 -0.023 | 97.62% -0.11% | 2.176 | 0.612 | -0.195 | 2.916 |
19 | Ding H. L., Wang Z. B., Bai S. L., Lu P., Wang Y. G., Org. Lett., 2017, 19(24), 6514—6517 |
20 | Ruvinskaya J. O., Rostovskii N. V., Filippov I. P., Khlebnikov A. F., Novikov M. S., Org. Biomol. Chem., 2018, 16(1), 38—42 |
21 | Baek Y., Maeng C., Kim H., Lee P. H., J. Org. Chem., 2018, 83(4), 2349—2360 |
22 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009 |
23 | Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132, 154104 |
24 | Becke A. D., Phys. Rev. A, 1988, 38, 3098—3100 |
25 | Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37, 785—789 |
26 | Becke A. D., J. Chem. Phys., 1993, 98, 5648—5652 |
27 | Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82, 270—283 |
28 | Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82, 299—310 |
29 | Fukui K., Acc. Chem. Res., 1981, 14, 363—368 |
30 | Adamo C., Barone V., J. Chem. Phys., 1999,110, 6158—6169 |
31 | Andrae D., Haeussermann U., Dolg M., Stoll H., Preuss H., Theor. Chem. Acc., 1990, 77, 123—141 |
32 | Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B, 2009, 113, 6378—6396 |
33 | Scalmani G., Frisch M. J., J. Chem. Phys., 2010, 132, 114110 |
34 | Zhao Y., Truhlar D. G., Theor. Chem. Acc., 2008, 120, 215—241 |
35 | Lu T., Chen F. W., J. Comput. Chem., 2012, 33, 580—592 |
36 | Lu T., Multiwfn Manual, Version 3.6(dev), Section 3.21.1, http://sobereva.com/multiwfn |
37 | Li S., Li X., Mo H., Qu L., Wei D., Lan Y., Chem. Comm., 2020, 56, 4732—4735 |
38 | Dias F. B., Bourdakos K. N., Jankus V., Moss K. C., Kamtekar K. T., Bhalla V., Santos J., Bryce M. R., Monkman A. P., Adv. Mater., 2013, 25(27), 3707—3714 |
39 | Karzazi Y., J. Mater. Environ. Sci., 2014, 5(1), 1—12 |
40 | Zhang Q. S., Li B., Huang S. P., Nomura H., Tanaka H., Adachi C., Nature Photonics, 2014, 8(4), 326—332 |
41 | Hirata S., Sakai Y., Masui K., Tanaka H., Lee S. Y., Nomura H., Nakamura N., Yasumatsu M., Nakanotani H., Zhang Q. S., Shizu K., Miyazaki H., Adachi C., Nature Materials, 2014, 14(3), 330—336 |
42 | Marcus R. A., J. Chem. Phys., 1956, 24, 966—978 |
43 | Naka S., Okada H., Onnagawa H., Yamaguchi Y., Tsutsui T., Synthetic Metals, 2000, 111, 331—333 |
44 | Sun H. T., Zhong C., Sun Z. R., Acta Phys. Chim. Sin., 2016, 32(9), 2197—2208(孙海涛, 钟成, 孙真荣. 物理化学学报, 2016, 32(9), 2197—2208) |
45 | Krukau A. V., Vydrov O. A., Izmaylov A. F., Scuseria G. E., J. Chem. Phys., 2006, 125(22), 224106 |
1 | Dobereiner G. E., Crabtree R. H., Chem. Rev., 2010, 110(2), 681—703 |
2 | Han F. S., Chem. Soc. Rev., 2013, 42(12), 5270—5298 |
3 | Zhang L., Xu Z. P., Yu H. Y., Fang D. C., Chem. J. Chinese Universities, 2014, 35(6), 1241—1246(张磊, 徐真平, 于皓宇, 方德彩. 高等学校化学学报, 2014, 35(6), 1241—1246) |
4 | Wang Q. J., Su Y. J., Li L. X., Huang H. M., Chem. Soc. Rev., 2016, 45(5), 1257—1272 |
5 | Ouyang K. B., Hao W., Zhang W. X., Xi Z. F., Chem. Rev., 2015, 115(21), 12045—12090 |
6 | Man W. L., Xie J., Pan Y., Lam W. W. Y., Kwong H. K., Ip K. W., Yiu S. M., Lau K. C., Lau T. C., J. Am. Chem. Soc., 2013, 135, 5533—5536 |
7 | Wang Y., Zhao F., Chi Y., Zhang W. X., Xi Z., J. Org. Chem., 2014, 79, 11146—11154 |
8 | Wang Y., Chi Y., Zhang W. X., Xi Z., J. Am. Chem. Soc., 2012, 134, 2926—2929 |
9 | Hu L. R., Chen H., J. Organometal. Chem., 2018, 864, 105—109 |
10 | Haller L. J. L., Page M. J., Erhardt S., Macgregor S. A., Mahon M. F., Naser M. A., Velez A., Whittlesey M. K., J. Am. Chem. Soc., 2010, 132(51), 18408—18416 |
11 | Koch J. L., Shapley P. A., Organometallics, 1999, 18(5), 814—816 |
12 | Uto T., Shimizu M., Ueura K., Tsurugi H., Satoh T., Miura M., J. Org. Chem., 2008, 73(1), 298—300 |
13 | Cho J. Y., Tse M. K., Holmes D., Maleczka R. E., Smith M. R., Science, 2002, 295(5553), 305—308 |
14 | Edwards H. J., Hargrave J. D., Penrose S. D., Frost C. G., Chem. Soc. Rev., 2010, 39, 2093—2105 |
15 | Xing Y. Y., Liu J. B., Sun C. Z., Huang F., Chen D. Z., J. Org. Chem., 2018, 83(8), 4545—4553 |
16 | Wu Y. X., Chen Z. Q., Yang Y. X., Zhu W. L., Zhou B., J. Am. Chem. Soc., 2018, 140(1), 42—45 |
17 | Zhao Y. Z., Yang H. B., Tang X. Y., Shi M., Chem.Eur. J., 2015, 21(9), 3562—3566 |
18 | Xu W. B., Li C. K., Wang J. B., Chem. Eur. J., 2018, 24, 15786—15790 |
[1] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[2] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[3] | SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591. |
[4] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[5] | MENG Fanwei, GAO Qi, YE Qing, LI Chenxi. Potassium Poisoning Mechanism of Cu-SAPO-18 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J]. Chem. J. Chinese Universities, 2021, 42(9): 2832. |
[6] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[7] | LI Xinyi, LIU Yongjun. Theoretical Insights into the Cleavage of β-Hydroxy Ketone Catalyzed by Artificial Retro-aldolase RA95.5-8F [J]. Chem. J. Chinese Universities, 2021, 42(7): 2306. |
[8] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
[9] | REN Ying, LI Changhua, WANG Tao, XUE Shanshan, ZHANG Tingting, JIA Jianfeng, WU Haishun. Theoretical Studies on Pd-catalyzed Oxidative N─H Carbonylation to Synthesis of 1,3,4-Oxadiazole-2(3H)-one Heterocyclic Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1793. |
[10] | QI Guodong, YE Xiaodong, XU Jun, DENG Feng. Progress in NMR Studies of Carbohydrates Conversion on Zeolites [J]. Chem. J. Chinese Universities, 2021, 42(1): 148. |
[11] | LI Xiangyuan, SHENTU Jiangtao, LI Yiwei, LI Juanqin, WANG Jingbo. Combustion Mechanism Construction Based on Minimized Reaction Network: Hydrogen-Oxygen Combustion † [J]. Chem. J. Chinese Universities, 2020, 41(4): 772. |
[12] | LI Xiangyuan,YAO Xiaoxia,SHENTU Jiangtao,SUN Xiaohui,LI Juanqin,LIU Mingxia,XU Shimin. Combustion Reaction Mechanism Construction by Two-parameter Rate Constant Method [J]. Chem. J. Chinese Universities, 2020, 41(3): 512. |
[13] | ZHANG Lin, ZHANG Wei, YUE Xin, LI Pengjie, YANG Zuoyin, PU Min, LEI Ming. Theoretical Study on Mechanism of CO2 Hydrogenation to Formic Acid Catalyzed by Manganese Complex † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1911. |
[14] | ZHANG Xiaoying,DU Guifang,ZHU Bo,GUAN Wei. Theoretical Mechanistic Study on Nickel-Catalyzed Cycloaddition of Azetidinone with Butadiene† [J]. Chem. J. Chinese Universities, 2019, 40(4): 770. |
[15] | LU Lilin,SHU Hongfei,RUAN Zhuhua,NI Jiaqi,ZHANG Haijun. Preparation of Graphene-supported Pt-Pd Catalyst and Its Catalytic Activity and Mechanism for Hydrogen Generation Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||