Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (12): 20230322.doi: 10.7503/cjcu20230322
• Physical Chemistry • Previous Articles Next Articles
LIAO Aixue1, LI Yiwei1, MAO Yebing2(), LI Xiangyuan1(
)
Received:
2023-07-12
Online:
2023-12-10
Published:
2023-09-18
Contact:
MAO Yebing, LI Xiangyuan
E-mail:maoyb@scu.edu.cn;xyli@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
LIAO Aixue, LI Yiwei, MAO Yebing, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: Combustion of JP-10[J]. Chem. J. Chinese Universities, 2023, 44(12): 20230322.
No. | Species | No. | Species | No. | Species | No. | Species |
---|---|---|---|---|---|---|---|
1 | O | 10 | CO2 | 19 | C2H3 | 28 | cyc⁃C5H9 |
2 | O2 | 11 | HCO | 20 | C2H4 | 29 | cyc⁃C5H8cyc⁃C5H7 |
3 | H | 12 | CH2 | 21 | C3H3 | 30 | C10H15 |
4 | OH | 13 | CH2O | 22 | C3H4 | 31 | cyc⁃C5H9cyc⁃C5H7 |
5 | HO2 | 14 | CH3 | 23 | C3H5 | 32 | C10H16 |
6 | H2 | 15 | CH2OH | 24 | C5H5 | 33 | cyc⁃C5H8cyc⁃C5H8 |
7 | H2O | 16 | C2H | 25 | cyc⁃C5H6 | 34 | He |
8 | H2O2 | 17 | C2H2 | 26 | cyc⁃C5H7 | 35 | Ar |
9 | CO | 18 | CH2CO | 27 | cyc⁃C5H8 | 36 | N2 |
Table 1 Combustion mechanistic species of JP-10
No. | Species | No. | Species | No. | Species | No. | Species |
---|---|---|---|---|---|---|---|
1 | O | 10 | CO2 | 19 | C2H3 | 28 | cyc⁃C5H9 |
2 | O2 | 11 | HCO | 20 | C2H4 | 29 | cyc⁃C5H8cyc⁃C5H7 |
3 | H | 12 | CH2 | 21 | C3H3 | 30 | C10H15 |
4 | OH | 13 | CH2O | 22 | C3H4 | 31 | cyc⁃C5H9cyc⁃C5H7 |
5 | HO2 | 14 | CH3 | 23 | C3H5 | 32 | C10H16 |
6 | H2 | 15 | CH2OH | 24 | C5H5 | 33 | cyc⁃C5H8cyc⁃C5H8 |
7 | H2O | 16 | C2H | 25 | cyc⁃C5H6 | 34 | He |
8 | H2O2 | 17 | C2H2 | 26 | cyc⁃C5H7 | 35 | Ar |
9 | CO | 18 | CH2CO | 27 | cyc⁃C5H8 | 36 | N2 |
Species | C10H16 | O2 | H2 | Species | C10H16 | O2 | H2 |
---|---|---|---|---|---|---|---|
cyc⁃C5H8cyc⁃C5H8 | 1 | 0 | 0 | C2H2 | 1/5 | 0 | -3/5 |
cyc⁃C5H9cyc⁃C5H7 | 1 | 0 | 0 | O | 0 | 1/2 | 0 |
C10H15 | 1 | 0 | -1/2 | H | 0 | 0 | 1/2 |
cyc⁃C5H8cyc⁃C5H7 | 1 | 0 | -1/2 | OH | 0 | 1/2 | 1/2 |
cyc⁃C5H9 | 1/2 | 0 | 1/2 | HO2 | 0 | 1 | 1/2 |
cyc⁃C5H8 | 1/2 | 0 | 0 | H2O | 0 | 1/2 | 1 |
cyc⁃C5H7 | 1/2 | 0 | -1/2 | H2O2 | 0 | 1 | 1 |
cyc⁃C5H6 | 1/2 | 0 | -1 | CO | 1/10 | 1/2 | -4/5 |
C5H5 | 1/2 | 0 | -3/2 | CO2 | 1/10 | 1 | -4/5 |
C3H5 | 3/10 | 0 | 1/10 | HCO | 1/10 | 1/2 | -3/10 |
C3H4 | 3/10 | 0 | -2/5 | CH2 | 1/10 | 0 | 1/5 |
C3H3 | 3/10 | 0 | -9/10 | CH2O | 1/10 | 1/2 | 1/5 |
C2H4 | 1/5 | 0 | 2/5 | CH3 | 1/10 | 0 | 7/10 |
C2H3 | 1/5 | 0 | -1/10 | CH2OH | 1/10 | 1/2 | 7/10 |
CH2CO | 1/5 | 1/2 | -3/5 | C2H | 1/5 | 0 | 11/10 |
Table 2 Stoichiometric coefficient matrix of JP-10
Species | C10H16 | O2 | H2 | Species | C10H16 | O2 | H2 |
---|---|---|---|---|---|---|---|
cyc⁃C5H8cyc⁃C5H8 | 1 | 0 | 0 | C2H2 | 1/5 | 0 | -3/5 |
cyc⁃C5H9cyc⁃C5H7 | 1 | 0 | 0 | O | 0 | 1/2 | 0 |
C10H15 | 1 | 0 | -1/2 | H | 0 | 0 | 1/2 |
cyc⁃C5H8cyc⁃C5H7 | 1 | 0 | -1/2 | OH | 0 | 1/2 | 1/2 |
cyc⁃C5H9 | 1/2 | 0 | 1/2 | HO2 | 0 | 1 | 1/2 |
cyc⁃C5H8 | 1/2 | 0 | 0 | H2O | 0 | 1/2 | 1 |
cyc⁃C5H7 | 1/2 | 0 | -1/2 | H2O2 | 0 | 1 | 1 |
cyc⁃C5H6 | 1/2 | 0 | -1 | CO | 1/10 | 1/2 | -4/5 |
C5H5 | 1/2 | 0 | -3/2 | CO2 | 1/10 | 1 | -4/5 |
C3H5 | 3/10 | 0 | 1/10 | HCO | 1/10 | 1/2 | -3/10 |
C3H4 | 3/10 | 0 | -2/5 | CH2 | 1/10 | 0 | 1/5 |
C3H3 | 3/10 | 0 | -9/10 | CH2O | 1/10 | 1/2 | 1/5 |
C2H4 | 1/5 | 0 | 2/5 | CH3 | 1/10 | 0 | 7/10 |
C2H3 | 1/5 | 0 | -1/10 | CH2OH | 1/10 | 1/2 | 7/10 |
CH2CO | 1/5 | 1/2 | -3/5 | C2H | 1/5 | 0 | 11/10 |
C10H16⇌cyc⁃C5H8cyc⁃C5H8 | 3/10C10H16⇌C3H4+2/5H2 | 1/10C10H16+1/5H2⇌CH2 |
---|---|---|
C10H16⇌cyc⁃C5H9cyc⁃C5H7 | 3/10C10H16⇌C3H3+9/10H2 | 1/10C10H16+1/2O2⇌HCO+3/10H2 |
C10H16⇌C10H15+1/2H2 | 1/5C10H16+2/5H2⇌C2H4 | 1/10C10H16+O2⇌CO2+4/5H2 |
C10H16⇌cyc⁃C5H8cyc⁃C5H7+1/2H2 | 1/5C10H16⇌C2H3+1/10H2 | 1/10C10H16+1/2O2⇌CO+4/5H2 |
1/2C10H16+1/2H2⇌cyc⁃C5H9 | 1/5C10H16+1/2O2⇌CH2CO+3/5H2 | O2+H2⇌H2O2 |
1/2C10H16⇌cyc⁃C5H8 | 1/5C10H16⇌C2H2+3/5H2 | O2+1/2H2⇌HO2 |
1/2C10H16⇌cyc⁃C5H7+1/2H2 | 1/5C10H16+11/10H2⇌C2H | 1/2O2+H2⇌H2O |
1/2C10H16⇌cyc⁃C5H6+H2 | 1/10C10H16+1/2O2+7/10H2⇌CH2OH | 1/2O2+1/2H2⇌OH |
1/2C10H16⇌C5H5+3/2H2 | 1/10C10H16+7/10H2⇌CH3 | 1/2H2⇌H |
3/10C10H16+1/10H2⇌C3H5 | 1/10C10H16+1/2O2+1/5H2⇌CH2O | 1/2O2⇌O |
Table 3 30 steps of independent reaction in JP-10 combustion
C10H16⇌cyc⁃C5H8cyc⁃C5H8 | 3/10C10H16⇌C3H4+2/5H2 | 1/10C10H16+1/5H2⇌CH2 |
---|---|---|
C10H16⇌cyc⁃C5H9cyc⁃C5H7 | 3/10C10H16⇌C3H3+9/10H2 | 1/10C10H16+1/2O2⇌HCO+3/10H2 |
C10H16⇌C10H15+1/2H2 | 1/5C10H16+2/5H2⇌C2H4 | 1/10C10H16+O2⇌CO2+4/5H2 |
C10H16⇌cyc⁃C5H8cyc⁃C5H7+1/2H2 | 1/5C10H16⇌C2H3+1/10H2 | 1/10C10H16+1/2O2⇌CO+4/5H2 |
1/2C10H16+1/2H2⇌cyc⁃C5H9 | 1/5C10H16+1/2O2⇌CH2CO+3/5H2 | O2+H2⇌H2O2 |
1/2C10H16⇌cyc⁃C5H8 | 1/5C10H16⇌C2H2+3/5H2 | O2+1/2H2⇌HO2 |
1/2C10H16⇌cyc⁃C5H7+1/2H2 | 1/5C10H16+11/10H2⇌C2H | 1/2O2+H2⇌H2O |
1/2C10H16⇌cyc⁃C5H6+H2 | 1/10C10H16+1/2O2+7/10H2⇌CH2OH | 1/2O2+1/2H2⇌OH |
1/2C10H16⇌C5H5+3/2H2 | 1/10C10H16+7/10H2⇌CH3 | 1/2H2⇌H |
3/10C10H16+1/10H2⇌C3H5 | 1/10C10H16+1/2O2+1/5H2⇌CH2O | 1/2O2⇌O |
Species | Reaction | A/(cm3·mol-1·s-1) | Ea/(J·mol-1) | No. |
---|---|---|---|---|
C10H16 | C10H16+O2⇌C10H15+HO2 | 1.9×1013 | 191026 | R1 |
C10H16+HO2⇌C10H15+H2O2 | 6.42×1013 | 66796.4 | R2 | |
C10H16+H⇌C10H15+H2 | 3.53×1014 | 31889.2 | R3 | |
C10H16⇌cyc⁃C5H8cyc⁃C5H8 | 1.37×1016 | 331014.2 | R4 | |
C10H16⇌C10H15+H | 1.06×1010 | 368258 | R5 | |
cyc⁃C5H8cyc⁃C5H8 | cyc⁃C5H8cyc⁃C5H8⇌cyc⁃C5H9cyc⁃C5H7 | 1.64×1012 | 59786.5 | R6 |
cyc⁃C5H9cyc⁃C5H7 | cyc⁃C5H9cyc⁃C5H7⇌cyc⁃C5H9+cyc⁃C5H7 | 1.33×1016 | 262512.4 | R7 |
C10H15 | C10H15⇌cyc⁃C5H8cyc⁃C5H7 | 1.65×1012 | 140866 | R8 |
cyc⁃C5H8cyc⁃C5H7 | cyc⁃C5H8cyc⁃C5H7⇌cyc⁃C5H8+cyc⁃C5H7 | 1.94×1017 | 63954 | R9 |
cyc⁃C5H8cyc⁃C5H7⇌cyc⁃C5H9+cyc⁃C5H6 | 5.50×1013 | 88344.3 | R10 | |
cyc⁃C5H9 | cyc⁃C5H9⇌C3H5+C2H4 | 3.35×1013 | 98230 | R11 |
cyc⁃C5H8 | cyc⁃C5H8+H⇌cyc⁃C5H7+H2 | 2.12×1016 | 37816.5 | R12 |
cyc⁃C5H8+O2⇌cyc⁃C5H7+HO2 | 4.39×1013 | 200489.5 | R13 | |
cyc⁃C5H8⇌cyc⁃C5H7+H | 1.47×1023 | 459800 | R14 | |
cyc⁃C5H8⇌C3H5+C2H3 | 1.02×1018 | 371267.6 | R15 | |
cyc⁃C5H7 | cyc⁃C5H7⇌C3H5+C2H2 | 2.60×1010 | 56998.5 | R16 |
cyc⁃C5H6 | cyc⁃C5H6⇌C5H5+H | 4.49×1016 | 356554 | R17 |
C5H5 | C5H5⇌C3H3+C2H2 | 1.53×1015 | 167200 | R18 |
Table 4 New reactions in JP-10 combustion mechanism
Species | Reaction | A/(cm3·mol-1·s-1) | Ea/(J·mol-1) | No. |
---|---|---|---|---|
C10H16 | C10H16+O2⇌C10H15+HO2 | 1.9×1013 | 191026 | R1 |
C10H16+HO2⇌C10H15+H2O2 | 6.42×1013 | 66796.4 | R2 | |
C10H16+H⇌C10H15+H2 | 3.53×1014 | 31889.2 | R3 | |
C10H16⇌cyc⁃C5H8cyc⁃C5H8 | 1.37×1016 | 331014.2 | R4 | |
C10H16⇌C10H15+H | 1.06×1010 | 368258 | R5 | |
cyc⁃C5H8cyc⁃C5H8 | cyc⁃C5H8cyc⁃C5H8⇌cyc⁃C5H9cyc⁃C5H7 | 1.64×1012 | 59786.5 | R6 |
cyc⁃C5H9cyc⁃C5H7 | cyc⁃C5H9cyc⁃C5H7⇌cyc⁃C5H9+cyc⁃C5H7 | 1.33×1016 | 262512.4 | R7 |
C10H15 | C10H15⇌cyc⁃C5H8cyc⁃C5H7 | 1.65×1012 | 140866 | R8 |
cyc⁃C5H8cyc⁃C5H7 | cyc⁃C5H8cyc⁃C5H7⇌cyc⁃C5H8+cyc⁃C5H7 | 1.94×1017 | 63954 | R9 |
cyc⁃C5H8cyc⁃C5H7⇌cyc⁃C5H9+cyc⁃C5H6 | 5.50×1013 | 88344.3 | R10 | |
cyc⁃C5H9 | cyc⁃C5H9⇌C3H5+C2H4 | 3.35×1013 | 98230 | R11 |
cyc⁃C5H8 | cyc⁃C5H8+H⇌cyc⁃C5H7+H2 | 2.12×1016 | 37816.5 | R12 |
cyc⁃C5H8+O2⇌cyc⁃C5H7+HO2 | 4.39×1013 | 200489.5 | R13 | |
cyc⁃C5H8⇌cyc⁃C5H7+H | 1.47×1023 | 459800 | R14 | |
cyc⁃C5H8⇌C3H5+C2H3 | 1.02×1018 | 371267.6 | R15 | |
cyc⁃C5H7 | cyc⁃C5H7⇌C3H5+C2H2 | 2.60×1010 | 56998.5 | R16 |
cyc⁃C5H6 | cyc⁃C5H6⇌C5H5+H | 4.49×1016 | 356554 | R17 |
C5H5 | C5H5⇌C3H3+C2H2 | 1.53×1015 | 167200 | R18 |
Dilute gas | Temperature/K | 10-5Pressure/Pa | Equivalence ratio | Ref. |
---|---|---|---|---|
N2 | 971—1230 | 17 | 0.5, 1, 2 | [ |
N2 | 900—1400 | 2, 10 | 0.5, 1 | [ |
Ar | 1378—1490 | 6 | 1 | [ |
Ar | 1268—1366 | 6 | 0.5 | [ |
Table 5 Experimental data for the ignition delay times of JP-10 in shock tubes
Dilute gas | Temperature/K | 10-5Pressure/Pa | Equivalence ratio | Ref. |
---|---|---|---|---|
N2 | 971—1230 | 17 | 0.5, 1, 2 | [ |
N2 | 900—1400 | 2, 10 | 0.5, 1 | [ |
Ar | 1378—1490 | 6 | 1 | [ |
Ar | 1268—1366 | 6 | 0.5 | [ |
1 | Gao C. W., Vandeputte A. G., Yee N. W., Green W. H., Bonomi R. E., Magoon G. R., Wong H. W., Oluwole O. O., Lewis D. K., Vandewiele N. M., Van Geem K. M., Combust. Flame, 2015, 162(8), 3115—3129 |
2 | Zhao L., Ye D., Guo Y., Fang W., J. Chem. Eng. Data, 2019, 64(6), 2558—2567 |
3 | Chung H. S., Chen C. S. H., Kremer R. A., Boulton J. R., Burdette G. W., Energy Fuels, 1999, 13(3), 641—649 |
4 | Thomas J. B., Huber M. L., Laesecke A., Lemmon E. W., Perkins R. A., Natl. Inst. Stand. Technol., 2006, 6640, 325 |
5 | Li S. C., Varatharajan B., Williams F. A., AIAA Journal, 2001, 39(12), 2351—2356 |
6 | Curran H. J., Proc. Combust. Inst., 2019, 37, 57—81 |
7 | Tan N. X., Wang J. B., Hua X. X., Li Z. R., Li X. Y., Chem. J. Chinese Universities, 2011, 32(8), 1832—1837 |
谈宁馨, 王静波, 华晓筱, 李泽荣, 李象远. 高等学校化学学报, 2011, 32(8), 1832—1837 | |
8 | Guo J. J., Tang S. Y., Li R., Tan N. X., Acta Phys. Chim. Sin., 2019, 35(2), 182—192 |
郭俊江, 唐石云, 李瑞, 谈宁馨. 物理化学学报, 2019, 35(2), 182—192 | |
9 | Zou J. B., Li W., Ye L. L., Zhang X. Y., Li Y. Y., Yang J. Z., Qi F., Chin. J. Chem. Phys., 2018, 31(4), 537—546 |
10 | Green W.H., Allen J.W., Buesser B.A., Ashcraft R.W., Beran G.J., Class C. A., Gao C. W., Goldsmith C. F., Harper M. R., Jalan A., Keceli M., Magoon G. R., Matheu D. M., Merchant S. S., Mo J. D., Petway S., Raman S., Sharma S., Song J., Suleymanov Y., Van⁃Geem K. M., Wen J., West R. H., Wong A., Wong H. S., Yelvington P. E., Yee N., Yu J., RMG⁃Reaction Mechanism Generator v4.0.1 2023, http://rmg.sourceforge.net/ |
11 | Herbinet O., Sirjean B., Bounaceur R., Fournet R., Battin⁃Leclerc F., Scacchi G., Marquaire P. M., J. Phys. Chem. A, 2006, 110(39), 11298—11314 |
12 | Vandewiele N. M., Magoon G. R., Van⁃Geem K. M., Reyniers M. F., Green W. H., Marin G. B., Energy Fuels, 2014, 28(8), 4976—4985 |
13 | Magoon G. R., Aguilera⁃Iparraguirre J., Green W. H., Lutz J. J., Piecuch P., Wong H. W., Oluwole O. O., Int. J. Chem. Kinet., 2012, 44(3), 179—193 |
14 | Davidson D. F., Horning D. C., Herbon J. T., Hanson R. K., Proc. Combust. Inst., 2000, 28, 1687—1692 |
15 | Tao Y. J., Xu R., Wang K., Shao J. K., Johnson S. E., Movaghar A., Han X., Park J. W., Lu T. F., Brezinsky K., Egolfopoulos F. N., Davidson D. F., Hanson R. K., Bowman C. T., Wang H., Combust. Flame, 2018, 198, 466—476 |
16 | Zhong B. J., Zeng Z. M., Zhang H. Z., Fuel, 2022, 312, 122900 |
17 | Mechanical and Aerospace Engineering(Combustion Research), San Diego Mechanism, University of California at San Diego, 2023, http://combustion.ucsd.edu |
18 | Li X.Y., Shentu J. T., Li Y. W., Li J. Q., W J. B., Chem. J. Chinese Universities, 2020, 41(4), 772—779 |
李象远, 申屠江涛, 李宜蔚, 李娟琴, 王静波. 高等学校化学学报, 2020, 41(4), 772—779 | |
19 | Li X. Y., Yao X. X., Shentu J. T., Sun X. H., Li J. Q., Liu M. X., Xu S. M., Chem. J. Chinese Universities, 2020, 41(3), 512—520 |
李象远, 姚晓霞, 申屠江涛, 孙晓慧, 李娟琴, 刘明夏, 许诗敏. 高等学校化学学报, 2020, 41(3), 512—520 | |
20 | Weltin E., J. Chem. Educ., 1994, 71(4), 295—297 |
21 | Tsang W., Hampson R. F., J. Phys. Chem. Ref. Data, 1986, 15(3), 1087—1279 |
22 | Wang H., Sheen D. A., Prog. Energy Combust., 2015, 47, 1—31 |
23 | Li X. Y., Wang J. B., Li Y. W., Shentu J. T., Chem. J. Chinese Universities, 2021, 42(6), 1871—1880 |
李象远, 王静波, 李宜蔚, 申屠江涛. 高等学校化学学报, 2021, 42(6), 1871—1880 | |
24 | Esparza A. A., Ferguson R. E., Choudhuri A., Love N. D., Shafirovich E., Combust. Flame, 2018, 193, 417—423 |
25 | Wang Z. D., Ee L. L., Yuan W. H., Zhang L. D., Wang Y. Z., Cheng Z. J., Zhang F., Qi F., Combust. Flame, 2014, 161, 84—100 |
26 | Robinson R. K., Lindstedt R. P., Combust. Flame, 2011, 158(4), 666—686 |
27 | Chiara S., Alessio F., Alberto C., Tiziano F., Eliseo R., Combust. Flame, 2013, 160(7), 1168—1190 |
28 | Shi L., Xu P., Wang R., Tang W. X., Ding T., Jiang R. P., Zhang C. H., Fuel, 2023, 333, 126418 |
29 | Colket M. B., Spadaccini L. J., J. Propul. Power, 2001, 17(2), 315—323 |
30 | Chemkin⁃Pro, Reaction Design, San Diego, 2010 |
31 | Chang Y., Jia M., Li Y., Liu Y., Xie M., Wang H., Reitz R. D., Combust. Flame, 2015, 162(10), 3785—3802 |
32 | Ji C., Sarathy S. M., Veloo P. S., Westbrook C. K., Egolfopoulos F. N., Combust. Flame, 2012, 159(4), 1426—1436 |
[1] | XIA Wenwen, YU Hongjing, WANG Shiye, YAO Li, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: Combustion of Aromatic Hydrocarbon [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220616. |
[2] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
[3] | LI Xiangyuan, SHENTU Jiangtao, LI Yiwei, LI Juanqin, WANG Jingbo. Combustion Mechanism Construction Based on Minimized Reaction Network: Hydrogen-Oxygen Combustion † [J]. Chem. J. Chinese Universities, 2020, 41(4): 772. |
[4] | LI Xiangyuan,YAO Xiaoxia,SHENTU Jiangtao,SUN Xiaohui,LI Juanqin,LIU Mingxia,XU Shimin. Combustion Reaction Mechanism Construction by Two-parameter Rate Constant Method [J]. Chem. J. Chinese Universities, 2020, 41(3): 512. |
[5] | GONG Xian-Jie, GUO Yong-Sheng, YANG Yu-Zhong, ZHANG Ling-Ling, FANG Wen-Jun, LIN Rui-Sen. Volumetric Properties of Binary Systems of Straight-chain Alkanes+JP-10 [J]. Chem. J. Chinese Universities, 2012, 33(11): 2509. |
[6] | XIAO Juan, GUO Yong-Sheng, YANG Yu-Zhong, GONG Xian-Jie, FANG Wen-Jun, LIN Rui-Sen. Volumetric Properties of Binary Systems of n-Butanol or n-Pentanol+JP-10 [J]. Chem. J. Chinese Universities, 2012, 33(07): 1523. |
[7] | YANG Feng-Jun, GUO Yong-Sheng*, WEI Hui, XING Yan, FANG Wen-Jun, LIN Rui-Sen . Volumetric Properties of Binary Systems of n-Alkane/JP-10 [J]. Chem. J. Chinese Universities, 2010, 31(6): 1222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||