Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220198.doi: 10.7503/cjcu20220198
• Review • Previous Articles Next Articles
YANG Dan1, LIU Xu2, DAI Yihu1, ZHU Yan2(), YANG Yanhui1()
Received:
2022-03-30
Online:
2022-07-10
Published:
2022-05-04
Contact:
ZHU Yan,YANG Yanhui
E-mail:zhuyan@nju.edu.cn;yhyang@njtech.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198.
Product | Reaction | Potential/V(vs. RHE*) |
---|---|---|
Hydrogen | 0 | |
-1.90 | ||
Carbon monoxide | -0.10 | |
Formic acid | -0.12 | |
Formaldehyde | -0.07 | |
Methanol | 0.03 | |
Methane | 0.17 | |
Ethylene | 0.08 | |
Ethane | 0.14 | |
Ethanol | 0.09 | |
Acetic acid | 0.06 | |
Propanol | 0.10 |
Table 1 Major products, reactions and potentials of CO2RR
Product | Reaction | Potential/V(vs. RHE*) |
---|---|---|
Hydrogen | 0 | |
-1.90 | ||
Carbon monoxide | -0.10 | |
Formic acid | -0.12 | |
Formaldehyde | -0.07 | |
Methanol | 0.03 | |
Methane | 0.17 | |
Ethylene | 0.08 | |
Ethane | 0.14 | |
Ethanol | 0.09 | |
Acetic acid | 0.06 | |
Propanol | 0.10 |
1 | Liu Y. T., Deng D. H., Bao X. H., Chem, 2020, 6(10), 2497―2514 |
2 | Tao Z. X., Wang H. L., Chem. Res. Chinese Universities, 2020, 36(6), 1145―1146 |
3 | Fu X. L., Zhu A. N., Chen X. J., Zhang S. F., Wang M., Yuan M. J., Chem. Res. Chinese Universities, 2021, 37(6), 1328―1333 |
4 | Bai X. F., Chen W., Wang B. Y., Feng G. H., Wei W., Jiao Z., Sun Y. H., Acta Phys. Chim. Sin., 2017, 33(12), 2388—2403 |
白晓芳, 陈为, 王白银, 冯光辉, 魏伟, 焦正, 孙予罕. 物理化学学报, 2017, 33(12), 2388—2403 | |
5 | Jin X. Y., Zhang L. B., Sun X. F., Han B. X., Chem. J. Chinese Universities, 2022, 43(5), 20220035 |
金湘元, 张礼兵, 孙晓甫, 韩布兴. 高等学校化学学报, 2022, 43(5), 20220035 | |
6 | Zhu M. Z, Aikens C. M., Hollander F. J., Schatz G. C., Jin R. C., J. Am. Chem. Soc., 2008, 130(18), 5883—5885 |
7 | Tian S. B., Liao L. W., Yuan J. Y., Yao C. H., Chen J. S., Yang J. L., Wu Z. K., Chem. Commun., 2016, 52(64), 9873—9875 |
8 | Yao C. H., Lin Y. J., Yuan J. Y., Liao L. W., Zhu M., Weng L. H., Yang J. L., Wu Z. K., J. Am. Chem. Soc., 2015, 137(49), 15350—15353 |
9 | Liao L. W., Zhou S. M., Dai Y. F., Liu L. R., Yao C. H., Fu C. F., Yang J. L., Wu Z. K., J. Am. Chem. Soc., 2015, 137(30), 9511—9514 |
10 | Yamazoe S., Matsuo S., Muramatsu S., Takano S., Nitta K., Tsukuda T., Inorg. Chem., 2017, 56(14), 8319—8325 |
11 | McKenzie L. C., Zaikova T. O., Hutchison J. E., J. Am. Chem. Soc., 2014, 136(38), 13426—13435 |
12 | Narouz M. R., Takano S., Lummis P. A., Levchenko T. I., Nazemi A., Kaappa S., Malola S., Yousefalizadeh G., Calhoun L. A., Stamplecoskie K. G., Häkkinen H., Tsukuda T., Crudden C. M., J. Am. Chem. Soc., 2019, 141(38), 14997—15002 |
13 | Yang S., Chen S., Xiong L., Liu C., Yu H. Z., Wang S. X., Rosi N. L., Pei Y., Zhu M. Z., J. Am. Chem. Soc., 2018, 140(35), 10988—10994 |
14 | Itteboina R., Madhuri U. D., Ghosal P., Kannan M., Sau T. K., Tsukuda T., Bhardwaj S., J. Phys. Chem. A, 2018, 122(5), 1228—1234 |
15 | Zhu M. Z., Qian H. F., Jin R. C., J. Am. Chem. Soc., 2009, 131(21), 7220—7221 |
16 | Chen S., Xiong L., Wang S. X., Ma Z. Y., Jin S., Sheng H. T., Pei Y., Zhu M. Z., J. Am. Chem. Soc., 2016, 138(34), 10754—10757 |
17 | Hesari M., Workentin M. S., J. Mater. Chem. C, 2014, 2(18), 3631—3638 |
18 | Das A., Li T., Li G., Nobusada K., Zeng C. J., Rosi N. L., Jin R. C., Nanoscale, 2014, 6(12), 6458—6462 |
19 | Zeng C. J., Li T., Das A., Rosi N. L., Jin R. C., J. Am. Chem. Soc., 2013, 135(27), 10011—10013 |
20 | Higaki T., Liu C., Zeng C. J., Jin R. X., Chen Y. X., Rosi N. L., Jin R. C., Angew. Chem. Int. Ed., 2016, 55(23), 6694—6697 |
21 | Yuan S. F., Xu C. Q., Li J., Wang Q. M., Angew. Chem. Int. Ed., 2019, 58(18), 5906—5909 |
22 | Zeng C. J., Qian H. F., Li T., Li G., Rosi N. L., Yoon B., Barnett R. N., Whetten R. L., Landman U., Jin R. C., Angew. Chem. Int. Ed., 2012, 51(52), 13114—13118 |
23 | Donkers R. L., Lee D., Murray R. W., Langmuir, 2008, 24(11), 5976—5976 |
24 | Zeng C. J., Chen Y. X., Liu C., Nobusada K., Rosi N. L., Jin R. C., Sci. Adv., 2015, 1(9), e1500425 |
25 | Dong H. W., Liao L. W., Zhuang S. L., Yao C. H., Chen J. S., Tian S. B., Zhu M., Liu X., Li L. L., Wu Z. K., Nanoscale, 2017, 9(11), 3742—3746 |
26 | Zhuang S. L., Liao L. W., Zhao Y., Yuan J. Y., Yao C. H., Liu X., Li J., Deng H. T., Yang J. L., Wu Z. K., Chem. Sci., 2018, 9(9), 2437—2442 |
27 | Zeng C. J., Chen Y. X., Iida K., Nobusada K., Kirschbaum K., Lambright K. J., Jin R. C., J. Am. Chem. Soc., 2016, 138(12), 3950—3953 |
28 | Liao L. W., Zhuang S. L., Wang P., Xu Y. N., Yan N., Dong H. W., Wang C. M., Zhao Y., Xia N., Li J., Deng H. T., Pei Y., Tian S. K., Wu Z. K., Angew. Chem. Int. Ed., 2017, 56(41), 12644—12648 |
29 | Zhuang S. L., Liao L. W., Li M. B., Yao C. H., Zhao Y., Dong H. W., Li J., Deng H. T., Li L. L., Wu Z. K., Nanoscale, 2017, 9(39), 14809—14813 |
30 | Gan Z. B., Chen J. S., Wang J., Wang C. M., Li M. B., Yao C. H., Zhuang S. L., Xu A., Li L. L., Wu Z. K., Nat. Commun., 2017, 8, 14739 |
31 | Zeng C. J., Liu C., Chen Y. X., Rosi N. L., Jin R. C., J. Am. Chem. Soc., 2016, 138(28), 8710—8713 |
32 | Jadzinsky P. D., Calero G., Ackerson C. J., Bushnell D. A., Kornberg R. D., Science, 2007, 318(5849), 430—433 |
33 | Chen Y. X., Zeng C. J., Liu C., Kirschbaum K., Gayathri C., Gil R. R., Rosi N. L., Jin R. C., J. Am. Chem. Soc., 2015, 137(32), 10076—10079 |
34 | Qian H. F., Jin R. C., Nano Lett., 2009, 9(12), 4083—4087 |
35 | Sakthivel N. A., Shabaninezhad M., Sementa L., Yoon B., Stener M., Whetten R. L, Ramakrishna G., Fortunelli A., Landman U., Dass A., J. Am. Chem. Soc., 2020, 142(37), 15799—15814 |
36 | Zeng C. J., Chen Y. X., Kirschbaum K., Lambright K. J., Jin R. C., Science, 2016, 354(6319), 1580—1584 |
37 | Sakthivel N. A., Theivendran S., Ganeshraj V., Oliver A. G., Dass A., J. Am. Chem. Soc., 2017, 139(43), 15450—15459 |
38 | Liu X., Saranya G., Huang X. Y., Cheng X. L., Wang R., Chen M. Y., Zhang C. F., Li T., Zhu Y., Angew. Chem. Int. Ed., 2020, 59(33), 13941—13946 |
39 | Xu J. Y., Xiong L., Cai X., Tang S. S., Tang A. C., Liu X., Pei Y., Zhu Y., Chem. Sci., 2022, 13(9), 2778—2782 |
40 | Ito E., Takano S., Nakamura T., Tsukuda T., Angew. Chem. Int. Ed., 2020, 60(2), 645—649 |
41 | Li S. T., Nagarajan A. V., Alfonso D. R., Sun M. K., Kauffman D. R., Mpourmpakis G., Jin R. C., Angew. Chem. Int. Ed., 2021, 60(12), 6351—6356 |
42 | Zhuang S. L., Chen D., Liao L. W., Zhao Y., Xia N., Zhang W. H., Wang C. M., Yang J., Wu Z. K., Angew. Chem. Int. Ed., 2020, 59(8), 3073—3077 |
43 | Liu X., Yao G., Cheng X. L., Xu J. Y., Cai X., Hu W. G., Xu W. W., Zhang C. F., Zhu Y., Chem. Sci., 2021, 12(9), 3290—3294 |
44 | Wan X. K., Cheng X. L., Tang Q., Han Y. Z., Hu G. X., Jiang D. E., Wang Q. M., J. Am. Chem. Soc., 2017, 139(28) 9451—9454 |
45 | Guan Z. J., Zeng J. L., Yuan S. F., Hu F., Lin Y. M., Wang Q. M., Angew. Chem. Int. Ed., 2018, 57(20), 5703—5707 |
46 | Yang D., Pei W., Zhou S., Zhao J. J., Ding W. P., Zhu Y., Angew. Chem. Int. Ed., 2020, 59(5), 1919—1924 |
47 | Yang D., Pei W., Zhang Y. Y., Hu W. G., Cai X., Sun Y. N., Li S. H., Cheng X. L., Zhou S., Zhao J. J., Zhu Y., Ding W. P., Liu X., Nano Res., 2020, 14(3), 807—813 |
48 | Cai X., Hu W. G., Xu S., Yang D., Chen M. Y., Shu M., Si R., Ding W. P., Zhu Y., J. Am. Chem. Soc., 2020, 142(9), 4141—4153 |
49 | Sun Y. N., Yang D., Zhang Y. Y., Hu W. G., Cheng X. L., Liu X., Chen M. Y., Zhu Y., Chem. Commun., 2020, 56(84), 12833—12836 |
50 | Yang D., Song Y., Yang F., Sun Y. N., Li S. H., Liu X., Zhu Y., Yang Y. H., J. Chem. Phys., 2021, 155(5), 054305 |
51 | Li G. J., Sui X., Cai X., Hu W. G., Liu X., Chen M. Y., Zhu Y., Angew. Chem. Int. Ed., 2021, 60(19), 10573—10576 |
52 | Liu Y. Y., Chai X. Q., Cai X., Chen M. Y., Jin R. C., Ding W. P., Zhu Y., Angew. Chem. Int. Ed., 2018, 57(31), 9775—9779 |
53 | Lei Z., Wan X. K., Yuan S. F., Guan Z. J., Wang Q. M., Acc. Chem. Res., 2018, 51(10), 2465—2474 |
54 | Du Y. X., Sheng H. T., Astruc D., Zhu M. Z., Chem. Rev., 2020, 120(2), 526—622 |
55 | Jin R. C., Li G., Sharma S., Li Y. W., Du X. S., Chem. Rev., 2021, 121(2), 567—648 |
56 | Kauffman D. R., Alfonso D., Matranga C., Qian H. F., Jin R. C., J. Am. Chem. Soc., 2012, 134(24), 10237—10243 |
57 | Hashmi A. S. K., Hutchings G. J., Angew. Chem. Int. Ed., 2006, 45(47), 7896—7936 |
58 | Min B. K., Friend C. M., Chem. Rev., 2007, 107(6), 2709—2724 |
59 | Li G. J., Hu W. G., Sun Y. N., Xu J.Y., Cai X., Cheng X. L., Zhang Y. Y., Tang A. C., Liu X., Chen M. Y., Ding W. P., Zhu Y., Angew. Chem. Int. Ed., 2020, 59(47), 21135—21142 |
60 | Kauffman D. R., Alfonso D., Matranga C., Ohodnicki P., Deng X. Y., Siva R. C., Zeng C. J., Jin R. C., Chem. Sci., 2014, 5(8), 3151—3157 |
61 | Narouz M. R., Osten K. M., Unsworth P. J., Man R. W. Y., Salorinne K., Takano S., Tomihara R., Kaappa S., Malola S., Dinh C. T., Padmos J. D., Ayoo K., Garrett P. J., Nambo M., Horton J. H., Sargent E. H., Häkkinen H., Tsukuda T., Crudden C. M., Nat. Chem., 2019, 11(5), 419—425 |
62 | Yuan S. F., He R. L., Han X. S., Wang J. Q., Guan Z. J., Wang Q. M., Angew. Chem. Int. Ed., 2021, 60(26), 14345—14349 |
63 | Li S. T., Nagarajan A. V., Li Y. W., Kauffman D. R., Mpourmpakis G., Jin R. C., Nanoscale, 2021, 13(4), 2333—2337 |
64 | Zhao S., Austin N., Li M., Song Y. B., House S. D., Bernhard S., Yang J. C., Mpourmpakis G., Jin R. C., ACS Catal., 2018, 8(6), 4996—5001 |
65 | Wan X. K., Wang J. Q., Wang Q. M., Angew. Chem. Int. Ed., 2021, 60(38), 20748—20753 |
66 | Gao Z. H., Wei K. C., Wu T., Dong J., Jiang D. E., Sun S. H., Wang L. S., J. Am. Chem. Soc., 2022, 144(12), 5258—5262 |
67 | Tang Q., Lee Y. J., Li D. Y., Choi W., Liu C. W., Lee D., Jiang D. E., J. Am. Chem. Soc., 2017, 139(28), 9728—9736 |
68 | Sun Y. N., Liu X., Xiao K., Zhu Y., Chen M. Y., ACS Catal., 2021, 11(18), 11551—11560 |
69 | Li S. T., Alfonso D., Nagarajan A. V., House S. D., Yang J. C., Kauffman D. R., Mpourmpakis G., Jin R. C., ACS Catal., 2020, 10(20), 12011—12016 |
70 | Choi W., Seong H., Efremov V., Lee Y., Im S., Lim D. H., Yoo J. S., Lee D., J. Chem. Phys., 2021, 155(1), 014305 |
[1] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[2] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[3] | SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591. |
[4] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[5] | MENG Fanwei, GAO Qi, YE Qing, LI Chenxi. Potassium Poisoning Mechanism of Cu-SAPO-18 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J]. Chem. J. Chinese Universities, 2021, 42(9): 2832. |
[6] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[7] | LI Xinyi, LIU Yongjun. Theoretical Insights into the Cleavage of β-Hydroxy Ketone Catalyzed by Artificial Retro-aldolase RA95.5-8F [J]. Chem. J. Chinese Universities, 2021, 42(7): 2306. |
[8] | REN Ying, LI Changhua, WANG Tao, XUE Shanshan, ZHANG Tingting, JIA Jianfeng, WU Haishun. Theoretical Studies on Pd-catalyzed Oxidative N─H Carbonylation to Synthesis of 1,3,4-Oxadiazole-2(3H)-one Heterocyclic Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1793. |
[9] | LI Yiwei, SHENTU Jiangtao, WANG Jingbo, LI Xiangyuan. Combustion Mechanism Construction Based on Minimized Reaction Network: C1⁃Oxygen Combustion [J]. Chem. J. Chinese Universities, 2021, 42(6): 1871. |
[10] | TIAN Shengqiao, WEI Meiju. Reaction Mechanism for Rh(Ⅱ)-catalyzed [3+3] Cyclization of Indole Derivatives and Propertis of Product [J]. Chem. J. Chinese Universities, 2021, 42(6): 1899. |
[11] | HOU Hua, WANG Baoshan. Group Additivity Theoretical Model for the Prediction of Dielectric Strengths of the Alternative Gases to SF6 [J]. Chem. J. Chinese Universities, 2021, 42(12): 3709. |
[12] | QI Guodong, YE Xiaodong, XU Jun, DENG Feng. Progress in NMR Studies of Carbohydrates Conversion on Zeolites [J]. Chem. J. Chinese Universities, 2021, 42(1): 148. |
[13] | YE Xiaodong, QI Guodong, XU Jun, DENG Feng. Glucose Oxidation on Au-supported SBA-15 Molecular Sieve [J]. Chem. J. Chinese Universities, 2020, 41(5): 960. |
[14] | LI Xiangyuan, SHENTU Jiangtao, LI Yiwei, LI Juanqin, WANG Jingbo. Combustion Mechanism Construction Based on Minimized Reaction Network: Hydrogen-Oxygen Combustion † [J]. Chem. J. Chinese Universities, 2020, 41(4): 772. |
[15] | LI Xiangyuan,YAO Xiaoxia,SHENTU Jiangtao,SUN Xiaohui,LI Juanqin,LIU Mingxia,XU Shimin. Combustion Reaction Mechanism Construction by Two-parameter Rate Constant Method [J]. Chem. J. Chinese Universities, 2020, 41(3): 512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||